

79

NCL-Crawl: A Large Scale Language-specific Web Crawling System

Hafiz Muhammad Shafiq, Muhammad Amir Mehmood
Al-Khawarizmi Institute of Computer Science, UET, Lahore, Pakistan

{hafiz.shafiq, amir.mehmood}@kics.edu.pk

Abstract

There exist many cases that require language-
specific web crawling, e.g., text corpus building in
Natural Language Processing (NLP) domain and
regional language search engine content crawling. In
NLP, linguistics use text corpus for statistical analysis,
checking occurrences or validation of linguistic rules
within a specific language territory. Similarly, regional
search engines use focused crawling to serve better
quality results to the users. In this study, we build a
system “NCL-Crawl” for large scale language specific
web crawling using Apache Nutch crawler. For this
purpose, we have customized Apache Nutch and added
Compact Language Detector 2 (CLD2) module for
language identification at runtime. The system also
provides an option to specify minimum language bytes
to avoid garbage collection in configured language. For
evaluation, we have chosen the Urdu language and
crawled 25,723 documents from the given seed and got
very good quality pages with better accuracy. Our work
is an effort towards building large scale text corpus for
the NLP community especially for the low resource
languages. In addition, regional search engines can
effectively use NCL-Crawl for language specific web
crawling.

1. Introduction

With the passage of time as Internet users are
increasing, many regional search engines have appeared
in the search engine market, e.g., Baidu, Yandex etc. In
China, Baidu has 76.69% market share [1] and in
Russia, Yandex has 45.16% market share [2]. These
types of regional search engines require to crawl the
WWW for a specific language at large scale. This
approach not only provides better quality web
documents of given language, but also helps to use
minimal resources in terms of storage, bandwidth, and
time [3]. Further, language-specific crawl is also
required to build text corpus for linguistic researches
and NLP applications. The advancement in NLP and
Information Retrieval (IR) domain, e.g., summarization,
cross-language information retrieval, etc., requires to
build corpus in single or multiple languages at large
scale [4][5].

There exists many open-source solutions to crawl
World Wide Web (WWW) from small to large scale,
e.g., curl, Apache Nutch, Scrapy, Heritrix etc. [6]. But
for language specific crawl, none of these provides a
concrete solution. In most cases, a new job is executed
to find language information of crawled documents,
which is both time as well as storage consuming.
Moreover, language threshold based crawling, e.g.,
crawling documents with more than 50% Urdu content,
is even more complex than former case. Some crawlers
provide language filters but in most cases, it is based on
web server response header and hence, it requires
customization to find language information from
crawled content. For instance, Apache Nutch provides
“language-identifier” plugin to find language
information but it is also based on web server response
header.

This work is an effort to build Apache Nutch with
CLD2 Language Crawl (NCL-Crawl) - A system using
Apache Nutch Crawler and Compact Language
Detector (CLD2) for language specific web crawling.
NCL-Crawl aims to filter web-documents based on the
content size in bytes of a particular language. Apache
Nutch is an open-source large scale web-crawler and is
developed in Java language that can be extended very
easily. It has two major development branches, i.e., 1.x
and 2.x [7]. We have used latter one for our
experimentation. For language detection, we have
integrated CLD2 with Nutch that can detect a maximum
of three languages in a single document with percentage
information [8]. Further, we do our customization in the
fetcher module of Nutch to remove irrelevant
documents at run time which also minimizes time and
storage resources. For this purpose, we also added many
new configuration parameters to set the language label
and minimum bytes threshold.

To test our work, we collect Urdu language seed of
50 URLs from different domains and run the crawler for
40 iterations. We configure Urdu minimum threshold to
256 bytes and disable out-links. For politeness, a
maximum of 50 URLs are selected in each iteration
from a single domain. Our main findings in this study,
are given below:
· Yield Rate Statistics: NCL-Crawl runs for 40

iterations and crawls 25,723 documents. From total
fetched documents, 24,172 documents have Urdu
content more than configured threshold. Crawling

80

rate varies from 50 documents to 1300 during the
experimentation.

· Accuracy Measurements: Overall 93.99% of the
fetched documents have Urdu content greater than
the configured threshold. For each iteration,
accuracy varies from 86% to 99%.

 The rest of our paper is organized as follows: In
Section 2, we discuss existing work for language
specific web crawling. Section 3 presents our
methodology for Nutch customization and
experimentation. In Section 4, experimental results are
presented. Finally, we conclude our work in Section 5.

2. Related Work

For language-specific crawl for text corpus building
and regional search engines, researchers have suggested
various solutions. For instance, [9] has proposed a
heuristics-based approach for focused web crawler. This
approach uses pattern-based recognition algorithm to
match the topic of crawled text. It requires a lot of space
to save fetched data in each iteration and later analysis
for pattern recognition. In [10], the authors have used
Dictionary and Breadth-First algorithm for focused
crawling to build Javanese and Sundanese Corpus. Their
study shows that these two algorithms deliver the
highest performance as compared to others in a focused
crawl.

 Further, [11] has used Semantic Similarity Vector
Space Model for focused crawler improvement. Their
results show better performance of focused crawler as
compared to the Breadth-First model and VSM model.
Similarly, [12] and [13] have used topic-based approach
for focused crawling. In former, the authors have built a
classifier that evaluates the relevance of a given
document with respect to the topics and in latter work, a
weight table is constructed with topic frequency to
check the similarly of a web page.

For language-specific crawl, [14] has used linguistic
graph analysis approach for crawling. The authors have
analyzed web data from large crawl with specific
language attributes for selection strategies. Moreover,
[15] has used language locality in selecting the crawl
paths from a large space of Thai weblogs for specific
web crawl. Their work achieve higher performance than
a naive Breadth-First crawling strategy.

Apache Nutch is one of the most matured web
crawlers and has been used extensively in the research
area for web crawling [16]. In [17], the authors have
optimized Apache Nutch for domain-specific crawling
at large scale. During experimentation, they got a
success rate of only 0.0015% due to sparse data
distribution and duplicate content on the Web. In our

approach, we have also used Apache Nutch to build
language-specific web crawler.

3. Formatting instructions

In this section, we discuss our proposed approach for
language-specific crawling. First, we briefly describe
Apache Nutch crawler with different phases. Next, we
discuss the existing challenges in Apache Nutch for
language-specific crawling. After this, we describe our
proposed approach for Nutch customization in this
regard. Finally, we discuss our testing environment for
customized Nutch.

3.1 Apache Nutch Crawler Overview

Apache Nutch is an open-source distributed crawler
to crawl the web at large scale. There exist two major
versions of Nutch namely 1.x and 2.x. The latter one
differs from the former with the addition of Apache
Gora as a storage abstraction layer that allows to use
different NoSQL databases, e.g., Hbase, Cassandra, etc.,
[18]. We have used Apache Nutch 2.x branch in this
study. Further, each cycle of Nutch consists of many
phases to complete a job as shown in Figure 1. Each of
these phases have been described below:

Inject & Generate: The inject phase is the first
phase where selected seed URLs are provided and
crawler starts crawling by introducing some default
score to URLs. This step is very important because the
crawler will grow and fetch new web-pages based on the
initial seed. The next phase in Nutch is generate phase
where top URLs are marked for fetching based on the
assigned score to URLs. Note that this score is the
default for the first iteration but later on, it is calculated
in updatedb phase of Nutch for each next iteration.

Fetching: In this phase, the crawler requests the
marked URLs (in the generator phase) and fetches
HTML of these pages from the World Wide Web
(WWW). This job is multi-threaded and one can control
the number of threads via Nutch configuration. There
exist many controls in Nutch for various purposes in this
phase, e.g., age filter (filter.age.timestamp), size filter
(http:content:limit), fetcher threads per host
(fetcher.threads.per.queue) etc. At the end of this phase,
complete downloaded HTML with headers is stored in
configured storage back-end, e.g., Hbase etc.

81

Figure 2: A sample webpage with very small Urdu

Parsing: As discussed earlier, each crawled
document consists of various levels of information, e.g.,
raw content, i.e., HTML source code, request/response
headers, etc. The parse phase of Nutch parses each of

this information of crawled data and saves them
separately in the configured database. There are
different parser plugins available in Nutch, e.g.,
html−parser, tika−parser, xml−parser that can be
configured via Nutch configuration file.

UpdateDB & Indexing: After parsing, the next
phase of crawling is to update the database using parsed
documents. Many types of activities are performed in
this phase, e.g., addition of in-links/outlinks, page score
calculation, extra markers removal etc. There exist
many configuration options for each of these actions to
enable/disable these controls or to add some scoring
plugin etc. For instance, db.ignore.external.links
configuration parameter is used to allow the addition of
external links, i.e., outlinks, in the database. Later on,
these URLs get a mark possibility for fetch in generate
phase based on their score. This is the last major phase
of Nutch in the crawling cycle and the crawler can jump
back to generate phase from here for the next cycle.
Nutch also provides an indexing phase to index and
search crawled content via some text search platform,
e.g., Apache Solr or Elastic Search, etc. This phase
should be executed after updatedb to include current
crawled documents in index.

Figure 1: NCL-Crawl Execution Pipeline

82

3.2. Language Specific Crawl and Challenges in
Nutch

Although, Nutch provides language identification
plugin ”language-identifier” to find language details of
crawled documents, however, this plugin is based on a
web-server response header and is not reliable. In most
websites, this header is not properly set and in some
cases, it is not even available. Further, Nutch also does
not provide language information for multilingual pages
with their percentage distribution.

To crawl specific websites only for text corpus
building and regional search engine content, Nutch
provides an option to disable out-links and crawl inlinks
completely. For this purpose, one has to configure
db.ignore.external.links property to true in Nutch
configurations. Despite the fact that this approach will
crawl all documents of given seed, but it cannot filter
low quality documents w.r.t. given language, and hence,
will cause garbage collection. For instance, Figure 2
shows such a sample page that has English as a
primarily language and Urdu as a secondary language.
Although, this document has Urdu content but it is of
very small size, i.e., bytes. Such documents should be
filtered for applications that requires very rich content
in Urdu language. Unfortunately, Nutch does not
provide any such option to avoid garbage collection for
language specific crawling.

3.3. Nutch Customization for Language specific
Crawl

In this section, we have discussed the customization
of Apache Nutch for language specific crawling. First,
we discuss the addition of language detection tool in
Nutch and later, we discuss about the implementation of
minimum language size filter to avoid garbage
collection.

3.3.1. Language Detection Tool. For language specific
crawling, the first and most important step is tool
selection for language identification of a given
language. For this purpose, there exist many open-
source tools e.g., langid, langdetect, ldig and CLD2
[19][20][8]. Each of these tools has its own limitations
and requirements. In our case, we have selected CLD2
for language identification of crawled content. CLD2
accepts only UTF-8 encoded strings and can identify
161 different languages. For a given text, it can detect
upto maximum of three languages along with their
percentage and total bytes. The percentage information
can help to apply a minimum size filter for configured
language as discussed later.

To add CLD2 module in Nutch, we decided to detect
document language at runtime, and if a document is
irrelevant, we truncate it at the spot. This strategy not
only helps to remove documents that are not in the
required language but also helps to save storage. For this
purpose, we have customized Apache Nutch fetcher
module that actually crawls the documents from WWW.
In this module, fetched content is parsed via Boilerpipe
library to get the main article of document. Boilerpipe is
an open-source library developed for boilerplate
removal from HTML documents [21]. Later, this
extracted text is sent to CLD2 module that returns
language information of the document.

3.3.2. Minimum Size Filter. In order to implement
minimum size filter to avoid garbage collection, as
already discussed, we cannot directly use CLD2
percentage value as a minimum threshold without
language bytes information. For example, if there are
two documents with a content of 1 MB and 1KB
respectively and CLD2 returns 10% Urdu in both cases,
then in first case, Urdu bytes are 100 KB while in
second, these are just 100 bytes. Thus, first document is
more rich with Urdu as compared to the second one. To
cater this problem, we find language bytes from the
CLD2 output using following equation:

��������� �
������ ������ � ������ �����������

���

Bytes information for above discussed documents will
be as follows w.r.t. this equation:

���� ��������� �
����������� � ����

���
� �����

���� ��������� �
������� � ����

���
� ����

In order to configure language and minimum
language threshold, we introduce few new configuration
parameters, e.g., filter.lang.label and
filter.lang.minSize.bytes etc. Complete details of all new
configuration parameters are given in second part of
Table 1 with default values and description. Lastly,
Figure 1 shows complete workflow of Apache Nutch
with language filter and minimum size filter. Our main
contributions are highlighted with light blue color in the
diagram.

3.4. Testing Environment

To test our customized Nutch crawler, we set up a
small size Hadoop/Hbase cluster with 3 worker nodes
and run it for 5, 10, 20, 30 and 40 iterations. We select
Urdu as a test case language, and for seed, we collect 50
number of URLs from different Urdu domains. To avoid
garbage collection, minimum threshold for language

83

size filter is set to 256 bytes. In each iteration, the
crawler selects a maximum 2,500 URLs (topN) from all
domains, and from single domain, a maximum of 50
URLs are marked for politeness via
generate.max.count. In addition, instead of manually
checking crawl documents for accuracy measurement,
we index all crawled documents in Apache Solr that is
an open source full text search engine [22]. Relevant
documents are retrieved using query filter present in
Apache Solr. Important configuration parameters with
their test-case values are given in Table 1.

4. Results

In this section, we present experimental results from
language-specific crawler. First, we discuss yield rate
statistics and later, we discuss the accuracy measures of
our proposed crawler.

4.1. Crawler Yield Rate

Yield rate statistics help to know the crawling rate at
different intervals. After the crawling job completion, a
total of 25,723 documents are successfully fetched, out
of which, 24,174 documents have content in Urdu
language with a percentage more than threshold. Figure
3 presents yield plot in our experimentation of
customized crawler for overall successfully crawled

documents and Urdu language documents vs the
number of iterations. In each iteration, the number of
crawled documents is very close to the total number of
documents fetched in that iteration. It shows better
accuracy of crawler in context of Urdu documents. The
crawling rate varies from 50 to 1300 in this analysis. The

Figure 3: Crawler Yield Rate

decaying behavior in the figure shows that over time,
available URL space, i.e., the list, is reducing as more
and more URLs are crawled with time. It is due to the

Table 1: Configuration changes for testing environment with new language specific
parameters

Type Property Value Options Test value Description
Default db.ignore.internal.links true, false false Enable/ disable internal links

Default db.ignore.external.links true, false true
Enable/ disable external
links

Default generate.max.count numeric 50
Maximum links from single
domain in each iteration

New filter.lang.enable true, false true
Enable/disable language
filter

New filter.lang.label language label Urdu
Language name to be
filtered

New filter.lang.minSize.enable true, false true
Enable/ disable minimum
size filter

New filter.lang.minSize.bytes numeric (bytes) 1
Minimum language bytes,
i.e., threshold

New filter.lang.maxSize.enable true, false false
Enable/ disable maximum
size filter

New filter.lang.maxSize.bytes numeric (bytes) - Maximum language bytes

New filter.lang.minPercentage.enable true, false false
Enable/ disable language
percentage filter

New filter.lang.minPercentage.limit Numeric (%) -
Minimum language
percentage

84

reason that we have disabled out-links as already
discussed in Section 3.

4.2. Accuracy Measurements

In order to measure effectiveness of NCL-Crawl
system, we use the percentage of relevant pages from
total downloaded pages in each iteration as the accuracy

Figure 4: Accuracy Measure of Proposed Language

measurement. The relevant pages are those pages where
Urdu language is found and where the percentage of
Urdu content is greater than the configured threshold.
Figure 4 shows the customized crawler accuracy
measurement for each iteration, and it varies from 86%
to 99% during the experimentation. Overall, the crawler
accuracy is 93.99% which is a very good score.

In general, the system accuracy depends upon the
seed collection and language threshold parameter. If the
seed is refined to the given language and threshold is not
very large, then the accuracy will be very high as
observed in our current experimentation, and if seed is
not very well refined in context of the given language
and the threshold is set very high, then the accuracy will
increase or decrease immoderately. As already
discussed, this is a new feature added in the default
Nutch crawler, hence we cannot compare our results
with some existing feature in Nutch default version.

5. Conclusion

In this work, we endeavor to build a language
specific web crawling system, i.e., NCL-Crawl, to assist
the NLP community for textual corpus building and
regional language web crawling at a large scale. For this
purpose, we have customized the Apache Nutch fetcher
class and added CLD2 language detection module to
identify the language of crawled content at run time. For
experimentation and evaluation of our work, we collect
50 seed URLs in Urdu language from different domains

and run the crawler for 40 iterations. To avoid garbage
collection, we set minimum size threshold to 256 bytes
of Urdu. Total crawled documents are 25,174 that
include 24,174 documents with Urdu language content
more than threshold. The crawling rate varies from 50
to 1300 during the job execution. Overall accuracy is
93.99% and varies from 86% to 99%. In general, this
accuracy is dependent on the given seed URLs and
language threshold parameter and will vary with these
two parameters. Lastly, this solution can be used for any
language and threshold value; one has to just change
configuration parameters only. In future, we plan to
open source this system for research community.

6. Acknowledgement

This research work was funded by Higher Education
Commission (HEC) Pakistan and Ministry of Planning
Development and Reforms under National Center in Big
Data and Cloud Computing.

7. References

[1] Search engine market share china — statcounter global
stats. https://gs.statcounter.com/search-engine-
marketshare/all/china/monthly-201808-201908, 2019.
[2] Search engine market share russian-federation —
statcounter global stats.
https://gs.statcounter.com/searchengine-market-
share/all/russian-federation/monthly-201808-201908, 2019.
[3] Focused web crawler - wikipedia.
https://en.wikipedia.org/wiki/Focused crawler, 2019.
[4] Natural Language Processing - Wikipedia.
https://en.wikipedia.org/wiki/Natural language processing,
2019.
[5] Text Corpus - Wikipedia.
https://en.wikipedia.org/wiki/Text corpus, 2019.
[6] Top 50 open source web crawlers for web mining.
https://bigdata-madesimple.com/top-50-open-sourceweb-
crawlers-for-data-mining/, 2019.
[7] WIKI Apache Nutch Web Crawler.
https://wiki.apache.org/nutch/NutchTutorial, 2019.
[8] Compact Language Detector 2. CLD2owners/cld2.
https://github.com/CLD2Owners/cld2, 2019.
[9] Joy Dewanjee. Heuristic approach for designing a focused
web crawler using cuckoo search. International Journal of
Computer Science and Engineering, 4(09):59–63, 2016.
[10] William Eka Putra and Saiful Akbar. Focused crawling
using dictionary algorithm with breadth first and by page
length methods for javanese and sundanese corpus
construction. International Journal of Procedia Technology,
11:870–876, 2013.
[11] Yajun Du, Wenjun Liu, Xianjing Lv, and Guoli Peng. An
improved focused crawler based on semantic similarity vector
space model. Applied Soft Computing, 36:392–407, 2015.
[12] Ayar Pranav and Sandip Chauhan. Efficient focused web
crawling approach for search engine. International Journal of
Computer Science and Mobile Computing, 4(5), 2015.

85

[13] Soumen Chakrabarti, Martin Van den Berg, and Byron
Dom. Focused crawling: a new approach to topic specific web
resource discovery. International Journal of Computer
networks, 31(11-16):1623–1640, 1999.
[14] Takayuki Tamura, Kulwadee Somboonviwat, and
Masaru Kitsuregawa. A method for language-specific web
crawling and its evaluation. International Journal of Systems
and Computers in Japan, 38(2):10–20, 2007.
[15] Kulwadee Somboonviwat, Masaru Kitsuregawa, and
Takayuki Tamura. Simulation study of language specific web
crawling. In Proceedings of International Conference on Data
Engineering Workshops (ICDEW’05), pages 1254–1254.
IEEE, 2005.
[16] Apache nutch web crawler.
http://https://nutch.apache.org/, 2019.

[17] Luis A Lopez, Ruth Duerr, and Siri Jodha Singh Khalsa.
Optimizing apache nutch for domain specific crawling at large
scale. In Proceedings of International Conference on Big Data
(Big Data), pages 1967–1971. IEEE, 2015.
[18] Digitalpebble’s blog: Nutch fight! 1.7 vs 2.2.1.
https://gs.statcounter.com/search-engine-market-share, 2019.
[19] saffsd. Python’s standalone language identification tool.
https://github.com/saffsd/langid.py, 2017.
[20] Michal Danilak. langdetect: language-detection library to
python. https://github.com/Mimino666/langdetect, 2017.
[21] Boilerpipe. https://code.google.com/archive/p/boilerpipe,
2019.
[22] Apache solr. https://lucene.apache.org/solr/, 2019.

