
1

A Multilayered Urdu Treebank

Tafseer Ahmed1, Toqeer Ehsan2, Almas Ashraf3, Mutee u Rahman4, Sarmad Hussain2, Miriam Butt5

2Centre for Language Engineering
Al-Khawarizmi Institute of Computer

Science, UET, Lahore
firstname.lastname@kics.edu.pk

 3NEDUET, Karachi
almasashraf@neduet.edu.pk

 4Isra University, Hyderabad
mutee.rahman@isra.edu.pk

5University of Konstanz,
Konstanz, Germany

miriam.butt@uni-konstanz.de

Abstract

The paper presents the design and construction of a

multilayered phrase structure treebank. The treebank
consists of three layers for phrases, grammatical
functions and semantic roles. A small phrase tagset
(consisting of 12 tags) is used as the primary label of the
phrase. Phrase label is followed by grammatical
function (mainly inspired by lexical functional
grammar). It is followed by the semantic role label
using propbank roles. 1,300 sentences from CLE Urdu
Digest Corpus are annotated using the treebank
guideline1.

1. Introduction

 Treebank is an important linguistic resource for
syntax analysis of languages. Creating a treebank
involves choosing the theoretical model, creating the
annotation guidelines and then annotating the corpus.
The annotated corpus is used to create syntactic parsers
and other syntax analysis tools.

Urdu is an Indo-Aryan language spoken mainly in
Pakistan and India [1]. Urdu and Hindi share common
grammar. However, there are differences in script,
vocabulary and phonology.

The current work is part of a bigger project
introducing intonation in Urdu Text to Speech System.
One goal of the project is creation of phrase structure
parser for the system. For this reason, a phrase structure
Urdu Treebank is planned. The treebank design
introduces three different layers of annotation to model
phrase structure (constituents), their grammatical
functions and semantic roles. This paper presents a
description of the treebank creation task.

In subsequent sections, Section 2 presents the
important treebanks and major works for Urdu/Hindi
treebanks. Section 3 compares different treebank design
options to create our treebank. Section 4 describes the

1 The author was affiliated with DHA Suffa University, Karachi when
this work was done.

design principles and a brief description of different
layers of the treebank. Conclusion and Future work is
mentioned in Section 5.

2. Literature Review

There are two major types of syntactic annotation:
phrase structure and dependency structure. The phrase
structure analysis of sentence was introduced by
Chomsky [2]. The first major treebank, Penn Treebank
has phrase structured annotation [3]. The Penn Treebank
was inspiration for many treebanks for other languages.
Penn Treebank (PTB) has around 25 phrase labels.
Figure 1(a) shows a phrase structure of an English
sentence annotated using PTB guidelines. Figure 1(b)
has its representation in bracketed notation. The
bracketed notation is in text format, so it can be
processed by computer applications.

As different languages and different treebanks use
different set of phrase labels in design, Han et. al. [4]
introduced a common tagset after analyzing 25 different
treebanks covering 21 languages. They introduced 9
universal phrase labels namely Noun Phrase (NP), Verb
Phrase (VP), Adjectival Phrase (AJP), Adverbial Phrase
(AVP), Prepositional Phrase (PP), Sentence (S),
Conjunction Phrase (CONJP), Coordinated Phrase
(COP) and others (X).

The other type of syntactic annotation is dependency
structure. Its primary focus in not on the word order or
constituency, but it deals with the syntactic relations
between the words. A dependency structure along with
corresponding phrase structure is presented in figure 1.
The most important milestone is the introduction of
universal dependencies [5]. There are more than 100
treebanks annotated using universal dependencies [6].

2

a.

b. (S

(NP Casey)
 (VP will (VP throw
 (NP the ball))))
c.

Figure 1 : (a)
phrase structure, (b) its bracketed notation and (c)
dependency structure for the English sentence Casey
will throw the ball.

For Urdu (and Hindi), there was no freely available
treebank at the start of this project. There were earlier
works on computational grammar of Urdu (and Hindi).
Urdu Pargram implements major parts of Urdu grammar
using Lexical Functional Grammar (LFG) framework
[7]. An important syntactic structure bank is Hindi Urdu
Treebank (HUTB) [8] that has Urdu corpus annotated
using Panini style dependencies. The dependency
structure can be automatically converted to the phrase
structure. An additional layer of dependencies based on
LFG’s f-structure is also proposed for HUTB [9].

Urdu.Kon.TB [10] is another Urdu treebank that uses
a rich feature based pos tagset and a big phrase tagset.
A parser was also developed using this treebank of 1400
sentences.

3. Comparison and Design Principles

The previous section presented some important
treebanks generally for all languages and specifically
for Urdu and Hindi. In this section, we compare the
approaches used in these treebanks and find which
approach is better for the design of our treebank.

The first question is whether the syntactic bank will
have phrase structure or dependency structure
representation. The dependency structures have become
more popular due to the introduction of universal

dependencies in language processing applications.
However, our team have a bigger goal of creating a text
to speech system and using syntactic information to
predict prosody/intonation of the system.

We find that most of the work related to syntax-
prosody interaction involves phrase structure models
[11],[12] as phrase structure grammar is more
commonly used by linguists. Hence, we decided to
adopt the classical method of phrase structure treebank.
After deciding to create phrase structure treebank, we
analyzed the existing treebanks (described in previous
section) on the basis of following criteria. This analysis
recommends the design principles for our treebank.

1. How is the structure of the tree?
2. What is the granularity of the phrase label?
3. How additional information is encoded?

These criteria are discussed in the following
subsections.

3.1 Structure of Tree

There are many ways to construct parse tree
corresponding to a given sentence. There are linguistic
theories such as X-bar theory that ask for strictly binary
trees. HUTB has binary trees because they are inspired
by X-bar style work.

Other theories and traditions prefer flatter trees
having head and all its dependents on the same level.
Penn Treebank and Urdu Pargram have flat structures
having head and all the adjacent modifiers on the same
level of tree.

The simplicity of annotation scheme to facilitate the
annotator is one of our primary design policies. Hence,
we prefer the flat structures as they are easy to annotate
and many members of treebank community use it for its
simplicity.

3.2 Granularity

The second issue is the granularity of the tags. Some
schemes e.g. Penn Treebank use more phrase tags (27
for PTB). Multiple tags for the same/similar phrases are
used to highlight the difference in structure and/or
words used in the phrase. In PTB, most of the phrases
have two versions, one for the general usage and the
other for the phrases having wh-word. For example,
“my books” is an NP and “whose books” or “how many
books” are WHNP.

The phrase tagset of Urdu.Kon.TB, in this regard, is
inspired by Penn Treebank. It has 26 main tags. Some
of these tags have function subtags. The tags NPQ,
ADJPQ, QWP and SQ etc, are the tags for question
sentences/phrases. Similarly, there are four tags

3

corresponding to the verb complex i.e. VCmain, VP,
VPI and VCP.

The other schemes e.g. Multilingual Tagset, HUTB
and Urdu Pargram does not differentiate the phrases on
the basis of their internal structure or usage. For this
reason, PTB has 27 tags and Multilingual Tagset has 12
tags. So, following our design policy of choosing
simpler annotation scheme, we prefer smaller tagset
approach, and considered Multilingual Tagset as the
starting point.
HUTB also uses a small tagset. We did not use some of
its tags and the reasons are explained in the discussion
of our tagset in section 4.

3.3 Additional Information

Penn Treebank introduced function tags that
concatenate additional information e.g. grammatical
role etc. to the phrase labels. The function part is
attached with the main label by a hyphen. See the
example.

1. (S (NP-SBJ He)
 (VP left
 (NP-TMP yesterday)))

HUTB uses -pred function tag for modeling small
clause. So NP, AP, degP and NumP has -pred suffix e.g.
NP-pred. Similarly, Urdu.Kon.TB uses function tags to
encode case information of the phrase head.

Our treebank used the concept of function tag in a
systematic way (as depicted in example 2 in section 4)
to represent different layers of syntactic and semantic
information.

4. Urdu Treebank Design

The basic design principles of Urdu Treebank were:

(a) a phrase structure bank, as it helps in syntax-
intonation interface. However, a phrase to
dependency convertor is part of the future work.

(b) smaller tagsets, if possible, to help annotators. The
idea of smaller tagset is in line with the universal
phrase labels [4] and propbank [13]

(c) a modular design, so different applications may
retrieve the required annotation information from the
treebank. The encoded semantic roles are not for
immediate use. The parser will ignore this layer,
however they can be used in the semantic parser in
future.

2 This paper presents the design of the treebank and pilot annotation
of 1300 sentences. The further work is mentioned, but that is not in
the scope or not a contribution of this paper.

The Urdu Treebank consists of three layers: phrase
labels, grammatical function and semantic role. The text
is annotated in the form of XML representation. In this
paper, we show the equivalent bracketed notation that is
widely comprehensible. The labels of each bracketed
phrase encode all the three layers of the representation.
The labels of each layer are separated by a hyphen.
Following is the template of annotation scheme.

2. (PhraseLabel-GrammaticalFunction-

Semanti cRole-ChunkId
word1/pos1 word2/pos2 ….
wordn/posn)

The chunkId part is explained in 4.2.9. An example from
English using our representation scheme is following

3. (S (NP-SUBJ-Agent Casey)

(VP will
(VP throw
(NP-OBJ-Theme the ball))))

Following section discusses the details of the corpus

and the layers of annotation.

4.1 POS Tagged Corpus

We used CLE POS tagged Urdu Digest Corpus [14]
for syntactic annotation. The corpus consists of
sentences having unique ids. The corpus was manually
edited to deal the common segmentation problems of
Urdu text The token are separated by space and
multiwords have Zero Width Non Joiner (ZWNJ)
character between its components. The corpus was
tagged by using CLE POS tagset [15].

The tasks of annotation was divided in three steps.
The first step is of pilot annotation for testing and
revising the annotation guidelines. In this step, 200
sentences were annotated. Annotation scheme and
guidelines are revised according to the feedback of the
annotators. In second step 1100 more sentences were
annotated. In the third step, the whole of the remaining
corpus (around 6,000 sentences) will be annotated2.

4.2 Phrase Labels

The first layer of treebank consists of phrase labels.
We are inspired by the small tagset introduced by Han
et. Al [4]. At the design phase, a list of 10 phrase labels
are identified. During the pilot annotation phase two

4

more phrase labels are added to the list. The description
of phrase labels are given below.

4.2.1 S and SBAR. The phrase label S is used for
main/matrix/independent sentences and clauses. SBAR
is used for subordinate clause/sentence. Penn Treebank
has SBAR, SINV and SQ for different types (and word
order) of clauses, however we do not use these labels
that are designed for English syntax. The main reason
for SBAR is that the POS tagset differentiate between
coordinating and subordinating conjunctions. So we
want to keep this distinction in all the layers (if
possible). Some examples of S and SBAR are following.

4. (S vuh[he] chAhtA[want] he[is]

(SBAR kah[that]
(S sEb[apple] kHAyE[eat]))))
'He wants to eat apple.'

5. (NP laRkA[boy] (SBAR jo[who]
(S sEb[apple] kHA[eat]
rahA[progressive] he[is])))
'the boy who wants to eat apple'

4.2.2 VC (Verb Complex). The phrase label VC is used
for verbs, auxiliaries, light verbs and particles/adverbs
of the verbs. The object is not part of verbal complex as
we followed the analysis used in Urdu Pargram [7].

6. (S (NP vuh[he]) (NP kitAb[book])
(VC parH[read] hi[intensifier]
nahIN[not] rahI[progressive]
hE[is]))
'She is not reading the book.'

Urdu has Noun+LightVerb and
Adjective+LightVerb complex predicates [16] e.g. Yad
'memory.noun' kar 'do.verb' for 'memorize' and sAf
'clean.adj' kar 'do.verb' for clean. In our annotation
scheme, the noun or adjective is not the part of VC as
these act syntactically as noun or adjective phrases.

7. (S (NP vuh[he]) (NP sabaq[noun]) (NP

yAd[memory) (VC kar[do]
rahA[progressive] tHA[was]))

'He was memorizing the lesson.'

4.2.3 Noun Phrase (NP). Noun Phrase has noun and its
modifiers, specifiers and intensifiers. The CLE POS
tagset considers the adverbials like andar 'inside' and Aj
'today' as a noun because these are syntactically similar
to nouns. We use the same argument to label the
following as a noun phrase. Following are some
examples of NP.

8. (S (NP vuh[he) bHI[too])

(NP ye[this] acHcHI[good]kitAb[book])
(VC parHtA[read] hE[is]))

'He also reads this good book.'

9. (S (NP tum[you] (NP
kal[yesterday]) (NP andar[inside])
(VC AyE[come] tHE[was]))

'You came inside yesterday.'

4.2.4 AdjP, QP, DMP and ValaP. Adjective Phrase
(AdjP), Quantifier Phrase (QP), Demonstrative Phrase
(DemP) and Vala Phrase (ValaP) are usually (not
always) embedded inside the noun phrase (NP).

One of the goals of annotation guideline is to make
speed of annotation faster, if possible, without
compromising on the quality of
representation/modeling. Hence, it is decided that if the
phrase consists of a single word (e.g. an adjective only)
inside the noun phrase then the annotator will not
enclose the word with the phrase brackets and phrase
label. In example 8, the adjective acHcHI is not enclosed
by AdjP. However, if the adjective has modifier or
intensifier then AdjP will be created. For example:

10. (NP

(AdjP buhat [very] acHCHI[good]
sI[particle]) kitAb[book])
 'very good book'

The similar guideline applies for QP, DemP and
ValaP used inside the NP. If any of these phrases appear
at clause level i.e. directly inside S (or SBAR) then we
always put the bracket even around the single word. See
the following example.

11. (S (NP kitAb[book])

 (ADJP acHcHI[good]) hE[is])
 'Book is good.'

The labels DemP and ValaP were not part of the set
of phrase labels listed in the design phase. However,
the pilot annotation provides the cases for which these
labels are required. Like other pos categories,
demonstrative can also have particles like intensifiers
and focus particles. Hence we use the general rule that
if the category word has some other word attached to it
as a modifier or particle then the whole sequence is
enclosed in the phrase label. See the following example:

12. (NP
 (DMP kOI[any] bHI[intensifier])

bAt[matter.noun])
 'any matter'

The ValaP phrase is used in the constructions
having the pos vAlA (roughly translated as 'one'). See
the examples:

5

13. (NP (ValaP (NP tasvIr vAlI)
kitAb[book]))

 'books with/having pictures'

It must be noted that we introduced ValaP instead of
VP, DMP instead of DP and VC (verbal complex)
instead of VP as the later ones have their formal
definition and usage in different syntactic theories and
nomenclatures. Hence, we used longer or different
names for the new labels introduced in our design.

4.2.5 Pre-and-Postpositional Phrases. Urdu has
postpositions (that follow noun phrase). There are some
borrowed positions from Arabic and Persian [17] that
are rarely used in Urdu. Hence, the phrase labels PP
(postpositional phrase) and PrP (prepositional phrase)
are used in the treebank guideline. The examples are:

14. (PP tum[you] nE[ergative])
 'You'

15. (PP gHar[home] tak[till])
 'till home'

16. (PrP sivAE (NP mErE))
'except me'

It must be noted that neither the pos tagset nor the
phrase labels distinguish between case markers and
postpositions as distinguished in Urdu Pargram. This is
done for the sake of simplicity (at phrase layer) and
similar syntax. The functional difference between nE
and tak is modelled through the grammatical function
layer.

As described earlier, the adverbial nouns like andar
'inside' and Upar 'above' etc. are the head of the noun
phrase as in the following example:

17. (NP(PP gHar[house] kE[of])
andar[inside]))

 'inside the house'

4.2.6 Adverbial Phrase. The adverbial phrase has
adverbs as the head word. For example:

18. (S vuh[he] (ADVP bA_AsAnI[easy])
(VC AyA[came]))

 'He came easily.'

In Urdu, adverbial function is usually expressed by a
prepositional phrase or noun phrase. For example, the
following sentence has a PP. However, both (18) and
(19) will the same grammatical function in the second
layer of annotation.

19. (S vuh[he] (PP (NP (AsAnI[easy]

sE[with])) (VC AyA[came]))
 'He came easily.'

4.2.7 X. The phrase label X is used for fragments that
cannot have a phrase label from the above list.

4.2.8 Conjunction. The conjunction is modelled by
enclosing the components into a parent phrase label.
For example,

20. (NP (NP sEb[apple]) yA (NP

Am[mango]))
 'apple and mango'

We do not introduce any phrase label e.g. conjunction
phrase for enclosing the conjuncted components.

4.2.9 Discontinuous Phrases. We find examples of
discontinuous phrases during the pilot annotation phase.
The discontinuous NP in Urdu was earlier discussed in
[17]. Consider the following example.

21. (S (NP vuh[he]) (VC#1 rO[cry]
(ADVP kiyoN[why]) (VC#1 rahA hay))

'Why is he crying ?'

In this example, the VC is not contiguous. We assign the
same chunk id to all the components of discontinuous
phrases.

4.3 Grammatical Function

The second layer of treebank is of grammatical
function. As depicted in (2), the grammatical function
follows the phrase label separated by a hyphen. The set
of grammatical functions is inspired primarily by lexical
functional grammar. Following is a brief introduction of
grammatical functions.

4.3.1 Subject and Object. The syntactic subject and
object have the corresponding grammatical functions.
See the following example.

22. (S (NP-SUBJ laRkI[girl])
 (NP-OBJ kitAb[book[)
 (VC paRHtI[read] hE[is]))

 'The girl reads book.'

Universal Dependencies have three different labels
for subject. nsubj (nominal subject), csubj (clausal
subject) and npaassubj (nominal subject of passive
construction). However, we do not follow this scheme
because the information about nominal (noun phrase) vs
clause is already represented through phrase label.

6

4.3.2 Oblique (OBL). The oblique grammatical
function (OBL) is used with those compulsory
arguments that are not the syntactic subject or object e.g.
the source/goal of the motion verbs, non-canonical
second argument [18] and genitive marked argument in
N+V complex predicate.

23. (S (NP-SUBJ vuh[she])
 (NP-OBL gHar[home])
 (VC ponhcHI[reached]))

 'She came home.'

24. (S (NP-SUBJ vuh[she])
(PP-OBL (NP sANp[snake])
sE[from])
(VC dartI[fear] hE[is]))
'She fears snake.'

4.3.3 Adjunct (ADJ). The non-mandatory arguments
are marked as ADJ (adjunct). Any adverbial function,
whether syntactically realized as NP, PP or ADVP are
marked as having ADJ grammatical function. For
example, both ADVP and PP in examples (18) and (19)
in 4.2.6 (Adverbial Phrase) are marked as having ADJ.

4.3.4 COMP. The dependent clauses have COMP
grammatical function. We do not differentiate between
COMP and XCOMP for the sake of simplicity. For
example:

25. (S (NP-SUBJ vuh[he])
 (VC chAhtA[want] he[is])
 (SBAR kah[that] (S-COMP (NP-SUBJ
 sEb[apple]) (VC kHAyE[eat]))))

 'He wants that he eats apple.'

4.3.5 Predicate Link (PDL). The grammatical function
PDL (Predicate Link) is used in the copular
constructions. For example:

26. (S (NP-SUBJ laRkI)girl])
 (ADJP-PDL aqalmand[wise])
 (VC hE[is]))
 'The girl is wise.'

27. (S (NP-SUBJ vuh[he])
 (NP-PDL sadar[president])
 (vC banA[made])
 'He became president.'

4.3.6 INTJ. This grammatical function was introduced
as the result of pilot annotation. It occurs with NPs
having addressees. For example:

28. (S (NP-INJ bETI[daughter])
(NP-SUBJ tum[you]) (NP-ADJ
kab[when])
(VC AI[come]))

'Daughter, when did you came?'

4.3.7 POF (Part of Function). Part of function marks
the noun or adjective part of the complex predicate. In
4.2.2, we mentioned that these noun/adjective are not
phrasal part of the VC (Verb Complex). However these
are functional related with the verb, hence we
introduced a functionaltag to encode this relation. The
example (7), described in 4.2.2, with the grammatical
function layer becomes:

29. (S (NP-SUBJ vuh[he])
(NP-OBJ sabaq[noun])
(NP-POF yAd[memory) (VC kar[do]
rahA[progressive] tHA[was]))

'He was memorizing the lesson.'

4.3.8 Other grammatical functions. For the annotation
guideline, we introduced only the sentence/clause level
grammatical functions. The other types of grammatical
function (e.g. modifiers/specifiers of the noun) are not
part of the scheme. Our assumption is that there is one
to one correspondence between such phrase labels and
grammatical functions i.e. the grammatical function
ADJ should follow the phrase label ADJP used inside
NP and the grammatical function SPEC (as used in LFG
framework) should attach with DMP etc.

4.4 Semantic Role

Semantic Role is the third layer of treebank. We
used the Propbank roles, as these are (a) specially
designed to have a small set of roles and (b) an Urdu
corpus has already been tagged using these roles [19]
and Urdu specific roles e.g. for dative subjects, causer
and intermediate agent were already introduced. For
example:

30. (S (NP-SUBJ-ARG0_GOAL Ali ko[dtv])
(NP-OBJ-ARG1 THanD[cold])

 (VC lagi[hit])
 'Ali felt cold.'

31. (S (NP-SUBJ-ARGA Ali nE[ergative])
(NP-OBL-ARG0_MNS Ahmed sE[from])
(NP-OBJ-ARG1 sEb[apple])

 (VC katvayA[cut.caus])
 'Ali caused Ahmed to cut
apple.'

5. Conclusion and Future Work

In this paper, we describe the design of a multilayer
annotation scheme of Urdu corpus and then annotation
of 1,300 sentence using this annotation scheme. The
immediate purpose of this treebank is to create parse
trees for the Text to Speech System.

7

We used small sets of tags to annotate the phrase,
grammatical functions and semantic roles. Most
importantly, we introduced demonstrative phrase,
Interjection grammatical function and modeling of
discontinuous phrases.

As further work, more sentences are annotated and
probabilistic parser is created. However, the creation of
the parser is not in the scope or contribution of this
paper.

9. References

[1] J. E. Grimes and B. F. Grimes (eds.), Ethnologue. Volume
1: Languages of the World; Volume 2: Maps and Indexes. 14th
edition, SIL International, Dallas, 2000.
[2] N. Chomsky, Syntactic Structures, Mouton, The Hague,
1957.
[3] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz,
“Building a large annotated corpus of English: the Penn
Treebank”, Computational Linguistics, 19(2), 1993.
[4] A. Han, et al., “A Universal Phrase Tagset for Multilingual
Treebanks”, Chinese Computational Linguistics and Natural
Language Processing Based on Naturally Annotated Big
Data, Springer International Publishing, 2014.
[5] Marie-Catherine De Marneffe, et al, “Universal Stanford
Dependencies: A cross-linguistic typology” in Proceedings
of LREC 2014, 2014.
[6] J. Nivre, et al., “Enhancing Universal Dependency
Treebanks: A Case Study”, In Proceedings of the Second
Workshop on Universal Dependencies (UDW 2018), 2018.

[7] M. Butt, et. al., “The Parallel Grammar project”, In
Proceedings of COLING 2002. Workshop on Grammar
Engineering and Evaluation, 2002.
[8] R. Bhatt, et al., “A multi-representational and multi-
layered treebank for Hindi/Urdu”, In Proceedings of the Third
Linguistic Annotation Workshop, 2009.
[9] A. Hautli, et. al. “Adding an Annotation Layer to the
Hindi/Urdu Treebank”, Linguistic Issues in Language
Technology, 7(3), Stanford: CSLI Publications, 2012.
[10] Q. Abbas, Building Computational Resources : The
URDU.KON-TB Treebank and the Urdu Parser, KOPS,
Konstanz, 2014.
[11] M. Steedman, “Information Structure and the Syntax–
Phonology Interface”, Linguistic Inquiry, 31, 2000.
[12] D. Büring, “Syntax, information structure, and prosody”,
The Cambridge Handbook of Generative Syntax, Cambridge
University Press, 2013.
[13] P. Kingsbury and M. Palmer, “From TreeBank to
PropBank”, In Proceedings of LREC 2002, 2002.
[14] S. Urooj, et al. “CLE Urdu Digest Corpus”. In
Proceedings of Conference on Language and Technology
2012 (CLT12), 2012.
[15] T. Ahmed, et al., The CLE Urdu POS Tagset, In
Proceedings of LREC 2014, 2014.
[16] M. Butt, et. al., “Complex predicates via restriction”, In
Proceedings of the LFG03 Conference, 2003.
[17] G. Raza, Subcategorization Acquisition and Classes of
Predication in Urdu, KOPS, Konstanz, 2011.
[18] T. Ahmed, Spatial Expression and Case in South Asian
Languages, KOPS, Konstanz, 2009.
[19] M. Anwar, et. Al., A Proposition Bank of Urdu, In
Proceedings of LREC 2016, 2016.

