
Proceedings of the Conference on Language & Technology 2009

 32

Adaptive Transliteration Based on Cross-Script Trie Generation: A Case of

Roman-UrduBBB

Usman Afzal, Dr. Naveed Iqbal Rao and Ahmad Muqeem Sheri

Image Processing Center, Military College of Signals,

National University of Sciences and Technology, Rawalpindi, Pakistan

{usman.afzal, naveedi}@mcs.edu.pk, muqeem.sheri@gmail.com

Abstract

In past few years many tools and techniques have

been developed to support language localization.

Keyboard layouts and IMEs have been developed and

standardized to support local language scripts. But

people commonly use Romanized versions of their

local languages for Internet and mobile chat. Like

many other Asian languages, Urdu is also used in

Romanized form (Roman-Urdu) which is very popular

among Urdu speakers. There is no single globally

accepted standard to write Roman-Urdu, so people

write Roman-alphabet spellings by intuition with

respect to their language experience. Therefore,

retrieving back the original Urdu word from a given

Roman-spellings (reverse-transliteration) is a

challenging problem.

In this paper, we propose an adaptive cross-script

trie model which solves the reverse-transliteration

problem effectively. The model consists of three layers:

a) pre-processing, b) cross-script mapping, and c) trie

generation. Pre-processing layer simplify the input

word for the next layer. Cross-script mapping layer is

the core of the model which performs mapping and

transformation across the scripts. This layer is totally

based on the analysis of vowel and consonant

mappings which is another contribution we present in

this paper. Our model returns all possible equivalent

Urdu words as a trie for any given Roman-Urdu word.

Trie generation layer uses trie-pruning to remove false

branches. Experimental results have proved the

significance and effectiveness of our model against

variations of roman-spellings in test data.

1. Introduction

Writing a language in its customary script is a basic

need of speakers of any language. With advancement

in technology and language computing, many

techniques and tools have been developed to support

language localization, especially for Asian languages

 [1], [2]. Standardization of keyboard layouts and

development of different Input Method Editors (IMEs)

have been the primary focus of language localization

efforts. The purpose of an IME is to allow users to

input characters of their local languages using standard

Latin keyboards. Microsoft Windows XP provides

many IMEs for East Asian languages like Chinese,

Japanese, and Korean [3]. Pronunciation-based IMEs

are very helpful for users who are less familiar with

language specific keyboards and use transliterated

versions of their languages using Roman alphabets.

Like many other Asian languages (Arabic, Persian,

and Hindi) Urdu is also written using Roman

alphabets, and is named as Roman-Urdu. Although

there are different interfaces and layouts available to

input Urdu characters, majority of the language

speakers prefer to use Roman-Urdu, especially for

Internet and mobile chat. The obvious reason is the

unfamiliarity and less use of Urdu keyboards.

Transliteration is a transformation of text from one

script to another, usually based on phonetic

equivalences. Roman alphabets are most commonly

used for transliteration of languages which have non-

Latin scripts. A transliteration scheme defines

unambiguous one-to-one mapping of characters across

the scripts. Urdu language has many different

transliteration schemes [4]- [11] and, therefore, no

single set standard is followed by the speakers to write

Roman-Urdu. Roman-alphabet spellings are highly

dependent on accent and educational level, so everyone

writes roman spellings of Urdu words by intuition. As

a result, there exists multiple spelling combinations

equivalent to one Urdu word, as shown in Figure 2(a).

This diversity of roman spellings makes retrieval of the

original word (technically known as Reverse

transliteration) very difficult. Transliteration is not

trivial to automate, but reverse transliteration is even

more challenging problem.

Proceedings of the Conference on Language & Technology 2009

 33

The number of Urdu alphabets is greater than the

number of Roman alphabets, so every transliteration

scheme uses some special symbols and capitalization

of Roman-alphabets to unambiguously map all Urdu

characters. But language speakers do not prefer to use

special symbols or capitalization while writing Roman-

Urdu in their casual conversation. An example of a

transliteration scheme is shown in Figure 1. South

Asian languages especially Urdu has given less

attention in automatic NLP [14]. Urdu transliteration

systems found in literature are single-scheme systems

and are very specialized. A better transliteration system

is available for Persian language which is based on

statistical language modeling technique. It does not use

special symbols and it also handles diversity of roman

spellings to some extent [13].

Interestingly, the problem of Urdu reverse

transliteration is two-fold. Firstly, one Urdu word can

have more than one Roman-Urdu spellings and

secondly, one Roman spellings can correspond to more

than one word in Urdu as shown in Figure 2. An ideal

solution to this problem is to have a parallel corpus of

Roman-Urdu, listing all possible roman equivalents for

all Urdu words. But, unfortunately, no such corpus is

available to date. The available corpus is in Urdu script

in Unicode format [15]. Statistical and N-gram based

language modeling techniques are effective for many

applications like spellchecking, auto-correct, and

information retrieval [16]- [20]. These techniques

cannot be employed for reverse transliteration problem

of Roman-Urdu unless a parallel corpus is available.

An adaptive cross-script trie generation model is

proposed in this paper (explained in section 3) and a

transliteration system for Roman-Urdu was developed

which gave favorable results. Our model is a dictionary

based solution which utilizes the available corpus in

Urdu script [21]. We structure our model as three layer

architecture, shown in Figure 3. Cross-script mapping

layer (explained in section 3.2) performs the core

functionality in our model. Mapping is performed

letter-by-letter which returns all possible Urdu

characters for the given Roman alphabet(s). It is

totally based on the analysis of vowel and consonant

mappings (section 2) across the two scripts: Urdu

script and Roman script. Based on these mappings, a

cross-script trie is generated for the given roman word

at the last layer. The leaf nodes of this trie provide a

list of possible Urdu words equivalent to the given

Roman-Urdu word.

The contributions we have presented in this paper

are:

• A precise analysis of cross-script vowel and

consonant mappings.

• A cross-script trie generation model is proposed

which supports two major applications:

(a) adaptive transliteration of Roman-Urdu, and

(b) cross-script phonetic search.

• An implementation of the proposed model as a

simple application of reverse transliteration for

causal Roman-Urdu. A screen short is given in

Figure 4.

__
P

1
P Examples of Urdu-script are quoted along with their IPA

equivalent and English meaning in the form {IPA, Meaning}

(a) Transliteration scheme

(1) ��� Z^abt^

{zәbt, discipline}P

1
P

(2) ��� Sabar

{sәbәr, patience}

(b) Example words

Figure 1: Transliteration scheme with example

(a) Urdu to Roman script (b) Roman to Urdu script

Figure 2: Transliteration two-fold mapping.

Pre-Processing

Cross-Script Mapping

Trie Generation

Figure 3: Cross-script trie generation
model

Proceedings of the Conference on Language & Technology 2009

 34

2. Vowel and consonant mappings

Urdu has 29 basic and 4 secondary characters.

Combination of these characters results in a rich

inventory of 44 consonants, 15 long vowels and 3 short

vowels [22]. In this section we present a precise

discussion of vowel and consonant mappings across

the Roman and Urdu scripts. This discussion is based

on a detailed analysis of many different transliteration

schemes defined for Roman Urdu and also on the

usage patterns of vowels and consonants in casual

Roman-Urdu.

Vowels and consonants in Roman-Urdu usually

map to more than one Urdu character. This one-to-

many mapping create ambiguity in reverse

transliteration which is the core problem of Urdu

transliteration. Vowels and consonants map differently

in Roman-Urdu and they both have their own relevant

issues. So, we discuss these issues under separate

subsections for simplicity. Vowel and consonant

mappings are discussed in section 2.1 and section 2.2

respectively.

2.1. Vowel mappings

As mentioned earlier, Urdu has 15 long and 3 short

vowels. To pronounce these vowels in Roman-Urdu,

different people use different Roman-alphabets

depending upon their accent and level of education.

We identify two main issues in vowel mappings which

are described in sections 2.1.1 and 2.1.2.

2.1.1. Shot vs. long vowels. Short vowels of Urdu

language are pronounced and are normally written in

Roman-Urdu, but they are not written in Urdu script.

So, short vowels do not require any mappings from

Roman alphabet to Urdu character. On the other hand,

long vowels are written in Urdu script and, therefore,

must be mapped to some Urdu character. In case of a

strict transliteration scheme, each short and long vowel

is designated with different Roman alphabet(s) to

disambiguate the mappings along with the rules which

apply according to positional context (initial, middle,

or final) of the vowels. So there is no problem while

retrieving Urdu script back as far as the rules of the

particular scheme are followed. But in casual Roman-

Urdu, which follows no standard, a single Roman

alphabet is used for both short and long vowels and

speakers of the language understand and distinguish

these vowels by their context.

For example, according to transliteration scheme

shown in Figure 1, د�� {sɑd, name of letter}can only

be written as ‘saad’ as a double ‘aa’ is assigned to the

middle and final position of character ‘ا‘ (initial

position of this character is assigned a single ‘a’). In

casual Roman-Urdu on the other hand, د�� {sɑd, name

of letter} can be written as ‘sad’ or ‘saad’. But ‘sad’

can also refer to the word �� {səd, hundred}. So, when

converting back ‘sad’ to Urdu script, the vowel ‘a’

creates ambiguity and makes it very difficult to

determine either it’s a short vowel and should be

mapped to �� {səd, obstruction} or it’s a long vowel

and should be mapped to د�� {sɑd, name of letter}.

2.1.2. Overlap of long vowels mapping. Urdu long

vowels are represented in Roman-Urdu by many

Figure 4: Screenshot of application developed for reverse transliteration of Roman-Urdu.
(Note: User can select his desired word from ‘Suggested Words List’ by pressing

Ctrl+Num keys)

Proceedings of the Conference on Language & Technology 2009

 35

different Roman alphabets. Again it depends on the

user’s intuition while writing Roman spellings. So,

different users can use the same Roman alphabet for

representing different long vowels. This creates an

overlap of Roman alphabets for a single long vowel.

For example, �
� {sæd, prey} is written either as ‘sad’

or ‘sed’. Here ‘a’ and ‘e’ both can be mapped to the

same Urdu vowel, represented as ‘�’ in this example.

2.2. Consonant mappings

Consonants are easier to map as compared to

vowels. Each consonant in Roman-Urdu must be

mapped to some Urdu character. There are two types

of consonant mappings:

a) One-to-one consonant mapping is used for

consonants which have unique sounds. For

example, b for ب, p for پ, and l for ل.

b) One-to-many consonant mapping is used for

groups of consonants which sound similar to

each other. For example, t is mapped to all

consonants in the group (ٹ ,ت, and ط); and s is

mapped to (ص ,س ,ث).

In general, we name all the roman alphabets which

have one-to-many mapping as ‘ambiguous characters’.

So, all vowels and the type (b) consonants described

above are ambiguous characters and they need special

treatment in any reverse transliteration system.

3. Cross-script trie model

In this section, we present a detailed description of

our proposed model (see Figure 5). We have discussed

each layer of the model in a separate subsection. Our

model is based on a knowledge base of Urdu words

(94,216 words currently) available in the Urdu script.

For simplicity, we are considering only un-spaced

words but the model can be easily extended to spaced

words by little change in the structure of the

knowledge base.

Tries are ordered tree data structure, normally used

to store and retrieve information from dictionaries.

Tries store information as paths from root node to the

leaf nodes and information is retrieved by traversing to

the leaf nodes through the root node. Tries are also

known as ‘prefix trees’ as the information stored in

tries share common prefixes.

We have extracted 94,216 un-spaced Urdu words

from the available corpus and we have stored them in a

trie structure. As common prefixes of words are

shared, our model can be extended to include cross-

script word prediction and error correction features. An

example of a simple trie build upon words ن�� {kɑn,

ear}, ���� {kɑmɪl, perfect}, ��� {umər, age}, and ���

{ɪɪɪɪlm, knowledge}, is shown in Figure 6.

There are two different tries in our model:

1) a knowledge base trie of Urdu words, which is

generated once prior to the processing of the

model

2) a word-trie which is generated for each input

Roman-Urdu word.

Pre-Processing

Cross-Script Mapping

Trie Generation

Knowledge-Base TrieWord-Trie

Roman-Urdu

word

List of equivalent

Urdu words

Bare Transliteration

Figure 5: Detail view of cross-script trie
generation model

Figure 6: Example of trie consisting of words

	 ,{kǡǡǡǡmǺǺǺǺl, perfect} ���� ,{kǡǡǡǡn, ear} ��ن� {umər,

age}, and �� {ǺǺǺǺlm, knowledge}

3.1. Pre-processing

This is the first layer of the proposed model which

gets a Roman-Urdu word as input and simplifies the

word by performing some pre-processing steps. At the

first step, the Roman word is converted into its

Proceedings of the Conference on Language & Technology 2009

 36

lowercase equivalent. This simplifies the

implementation of the following layer of cross-script

mapping explained in section 3.2.

To pronounce the effect of ‘tashdeed’ (which is

used to strengthen a particular consonant in Urdu

language) in a word, the consonant is normally written

twice in Roman-Urdu. The pre-processing layer

normalizes these double consonants into singles in the

second step. For example, ‘tamaddun’ (ن���) {təmədun,

civilization} will be simplified as ‘tamadun’. On the

other hand, if there are any double vowels in Roman

word, they are not normalized in this way because

double vowels are not written due to ‘tashdeed’; rather

they are normally used to represent long vowels.

3.2. Cross-script mapping

The purpose of cross-script mapping (CSM) layer is

to map the given Roman alphabet to corresponding

possible Urdu character(s). This layer performs two

important functions: cross-script mapping and bare

transliteration. Bare transliteration is a sub-layer of

CSM layer which is discussed in section 3.2.1.

Cross-script mapping is based on vowel and

consonant mapping analysis given in section 2.

Mapping is performed letter-by-letter; one letter is

taken at a time from the given Roman word along with

its positional context. Based on the letter and its

context, category of mapping (one-to-one or one-to-

many) is determined as discussed in section 2 and

finally the appropriate mapping is performed. Output

of this mapping becomes the input of Bare

Transliteration sub-layer; therefore, the output is

encoded according to the transliteration scheme

implemented by the sub-layer. This is illustrated in

Figure 7.

3.2.1. Bare transliteration. This sub-layer performs

the actual transformation across the scripts. This layer

behaves like a black-box which takes transliterated

Urdu generated by the CSM layer and returns its

equivalent Urdu script, as shown in Figure 8. We have

separated the transformation from mapping and put it

in a separate sub-layer. This gives the freedom to use

existing implementations which actually perform only

bare transliteration functionality. We have

implemented the scheme proposed in [10] for our

application, which is very phonetic in nature.

3.3. Trie generation

This layer works in parallel with the CSM layer and

generates word-trie for the given Roman-Urdu word.

Each time the CSM layer generates its output for the

current Roman alphabet, it passes control to trie

generation layer which receives a list of candidate

Urdu characters. Each candidate character is

temporarily added to word-trie at different nodes and

verified from the knowledge-base trie for its validity. If

this verification returns true, the addition of the

character in the word-trie is made permanent.

Otherwise, the complete path from root to this

temporary node is declared as ‘false path’. When the

list of candidate characters is exhausted, trie is pruned

by dropping all the false paths. A complete example of

trie generation is illustrated in Figure 9.

After the entire Roman word is mapped, word-trie

is completed, providing a list of suggested Urdu words

at leaf nodes which are equivalent to the given Roman

word. Trie-pruning at each step improves the

performance and helps avoiding the wrong

suggestions, to ensure maximum accuracy of the

model.

t a m a d u n

t T

t

t^

Figure 7: Output of mapping according to
bare transliteration scheme

Figure 8: Bare transliteration black-box

4. Results and discussion

 We have implemented our model in a simple

application developed in Java programming language

with Microsoft Access as the backend database. IBM

provides different code packages to support

applications dealing with Unicode under the project

International Components for Unicode (ICU) [23],

[24]. It also provides packages which support bare

transliteration and we have used this package for our

application.

Proceedings of the Conference on Language & Technology 2009

 37

m u t a b i q

m u t a b i q

m u t a b i q

m u t a b i q

m u t a b i q

m u t a b i q

m u t a b i q

Figure 9: Cross-script trie generation

Our knowledge base covers 94,216 un-spaced

words which we have extracted from a corpus of Urdu

words collected from different sources [21]. To test the

performance and accuracy of our model, we have

randomly selected four poems and three text

paragraphs written in Roman-Urdu from different

Roman-Urdu websites available on the Internet [25]-

 [27]. Poems give a success rateP

2
P of 84.3% on average

and paragraphs give a success rate of 85% on average.

Results for poems and paragraphs are shown in Figure

9 and Figure 10 respectively. Both graphs show very

small variability in success rate which proves the

consistency of our model. The overall accuracy of the

model based on these tests is 84.5% on average and the

error rate is 15.5%. Our application is demonstrated in

Figure 4 where some words in Urdu script are missing

due to the error rate.

Figure 10: Success rate (%) for randomly
selected poems

Figure 11: Success rate (%) for randomly
selected Roman-Urdu paragraphs

__

100
.

.
(%)2

×=

wordsUrduoutputofNo

wordsRomaninputofNo
eSuccessRat

Proceedings of the Conference on Language & Technology 2009

 38

To test the effectiveness of our model, we have

tested many different spellings used in Roman-Urdu

for different Urdu words. We call different Roman

spellings for same Urdu word as variants of a single

word. For example ن��� can be written as ‘tamadun’ or

‘tmaddun’, so both Roman spellings are called variants

of ن��� . We have randomly selected 15 words out of

94,216 words in our knowledge base, and split them

into 5 groups of 3 words each. Every group is tested

with different number of variants for each word in the

group. Selected words along with their groups and

number of variants are given in Table 1.

Table 1: Word groups and their success ratio

No. of variants Group

Per word Per group

Words in

the group

Success

ratio

�� !�

�$#�ات 6 2 1

 '��&ہ

6/6

(
$
�

)*+ ,- 2 4 12

1�0/ ٹ

11/12

ں�
 ا3�3

 18 6 3 +ہ
ں

 �6اہ
ہ

16/18

 �8#�اہٹ
ں

���9
+ 4 8 24

 ��ا:(

20/24

);
�8�

 30 10 5 ا�*�اض

3/<�
���ں

23/30

 With increasing number of variants per word, the

success rate is decreasing as shown by the curve in

Figure 11. The minimum success rate we got is

76.67%.

Figure 12: Roman word variants’ success
curve

5. Advantages and applications

The layered architecture of our proposed model has

many advantages of extensibility and improvement.

We have implemented the proposed model for Urdu

language and achieved promising. The model can be

extended to other languages like Arabic, Hindi, and

Persian. The pre-processing steps in the model can be

easily modified according to the language requirements

without disturbing the functionality of other layers.

Performance and accuracy of the model is highly

dependent on the vowel and consonant analysis given

in section 2. The cross-script mapping (CSM) layer

performs mapping and transformation based on this

analysis. By just improving vowel & consonant

analysis, overall performance of the model can be

improved without any modification to other layers.

In addition to the adaptive transliteration, our model

can be very useful for implementing a phonetic search

engine. Although there are search engines available in

Unicode to search Urdu resources. But, no cross-script

phonetic search engine is available to date for Urdu,

which can take Roman-Urdu as the search key and can

hunt for resources of Urdu script. Moreover, the trie

structure we used for our model has inherent benefits

to add features like word prediction and error

correction.

6. Conclusion

Reverse transliteration is a very supportive

application for languages which have non-Latin scripts.

Urdu language is one such case among many other

Asian languages (Arabic, Persian, and Hindi). Due to

less familiarity with Urdu keyboards, people use

Roman-Urdu as their medium of communication over

the Internet and mobile SMS. Due to unavailability of

a single set standard to write Roman-Urdu, everyone

Proceedings of the Conference on Language & Technology 2009

 39

writes in its own way. To our knowledge, there is no

tool available which converts casual Roman-Urdu into

its equivalent Urdu script.

We have proposed a cross-script trie model which

serves the purpose of reverse transliteration in an

adaptive way. We have implemented our model which

gives more than 75% accuracy with diverse nature of

casual Roman-Urdu. Our model is applicable to other

languages as well like Arabic, Persian, and Hindi.

We have tested our model for 94,216 un-spaced

words and got an average success rate of 84.5%. The

focus of our future work includes extension of the

model for huge vocabulary containing spaced and

joined words. We also intend to include loan words

from other languages (e.g. English) which are

commonly used by the speakers in their casual use of

Roman-Urdu.

Our model is a dictionary based solution which has

some inherent limitations; like, it cannot retrieve any

word which is not in the dictionary. To cope with this

limitation, we intend to improve the model so that it

can update its knowledge base dynamically.

Furthermore, the addition of an optimization layer can

dramatically improve the usability of the model by

sorting the list of output words based on some

statistical model. We intend to add such a layer to our

model in our future work.

7. References

[1] S. Hussain, N. Durrani and S. Gul, “PAN Localization:

Suvey of Language Computing in Asia”, CRULP NUCES,

Pakistan, 2005.

[2] T. Rahman, “Language Policy and Localization in

Pakistan: Proposal for a Paradigmatic Shift”, Crossing the

Digital Divide, SCALLA, 2004.

[3] Retrieved: http://www.microsoft.com/

globaldev/handson/user/IME_Paper.mspx

[4] F. Lodhi, Urdu aur Farsi meN naqle Harfee

 ,Natural Language Authority ,(اردو اور ��ر�� ��ں ��� �	��)

Islamabad.

[5] A. Durrani , Pakistani Urdu mazeed mubaaHis

(����� ������� اردو ����), Natural Language Authority,

Islamabad.

[6] M. Humayoun, Urdu Morphology, Orthography and

Lexicon Extraction: Master’s Thesis, Chalmers University

of Technology and Goteborg University, Sweden, 2006.

[7] Urdu Poetry Archive, Transliteration scheme for writing

Urdu in English script. http://www.urdupoetry.com/

itrans.html

[8] Library of Congress, ALA-LC Romanization Tables:

Transliteration Schemes for Non-Roman Scripts.

http://www.loc.gov/catdir/cpso/roman.html

[9] UNGEGN (Working Group on Romanization Systems),

“Report on the Current Status of United Nations

Romanization Systems for Geographical Names”, UNITED

NATIONS GROUP OF EXPERTS ON GEOGRAPHICAL

NAMES, 2003, Version 2.2.

[10] S. Raz., Roman Urdu (Research Paper),

http://sarwarraz.com/tahqiqipage_ur.php?id=232&pageid=8

&title=rt-232.gif

[11] Rizvi S.R.M., Roman Urdu to Unicode Urdu text

converter, http://www.geocities.com/syedrizwanm/UniCon

vertFinal.html

[12] S. Khan, Z. Pervez, M. Mahmood, F. Mustafa and U.

Hasan, “An Expert System Driven Approach to Generating

Natural Language in Romanized Urdu from English

Documents”, In proc IEEE INMIC, 2003.

[13] Behnevis: easy farsi transliteration (pinglish) editor,

Retrieved: http://www.behnvis.com/en/index.html

[14] W. Anwar, X. Wang and X.L. Wang, “A Survey of

Automatic Urdu Language Processing”, Proceedings of the

Fifth International Conference on Machine Learning and

Cybernetics, IEEE, Dalian, 2006.

[15] S. Hussain, “Resources for Urdu Language

Processing”, CRULP NUCES, Pakistan, 2008.

[16] P. Majumder, M. Mitra and B.B. Chaudhuri, “N-gram:

a language independent approach to IR and NLP”, Indian

Statistical Institute, Kolkata,

[17] K. Kukich, “Techniques for Automatically Correcting

Words in Text”, ACM Computing Survey, 1992, pp.377-

439.

[18] J. Goodman, “The State of the Art in Language

Modeling”, Microsoft Research, Speech Technology Group

[19] R. Rosenfeld, “Two Decades of Statistical Language:

Modeling Where Do We Go From Here?”, In proc IEEE,

2004.

[20] J. Allan, “Challenges in Information Retrieval and

Language Modeling: Report of a Workshop held at the

Center for Intelligent Information Retrieval”, University of

Massachusetts, Amherst, 2002.

[21] Urdu word list, CRULP NUCES, http://www.crulp.org/

software/ling_resources/wordlist.htm

[22] S. Hussain, “Letter-to-Sound Conversion for Urdu

Text-to-Speech System”, CRULP NUCES, 2004

[23] IBM, ICU4J 3.4, International Component for Unicode

for Java, Version 3.6. http://icu.sourceforge.net

Proceedings of the Conference on Language & Technology 2009

 40

[24] IBM, ICU User Guide, Transformation Rule Tutorial,

script transliterator, http://www.icu-project.org/userguide/

TransformRule.html

[25] Retrieved: http://wafakadard.com/

[26] Stories in Roman-Urdu, http://www.asian-women-

magazine.com/fun/urdu-storeis.html

[27] MuziqPakistan, A Pakistani Forum, Online Discussion

Community, http://www.muziqpakistan.com/board/

index.php?showtopic=30380&pid=668827&mode=threade

d&start=

