AUTOMATIC LFG GENERATION

MS Thesis for the Degree of

Submitted in Partial Fulfillment
of the Requirements for
the Degree of

Master of Science (Computer Science)

at the

National University of Computer and Emerging Scienes

by

Umer Khalid Qureshi

2009

Approved by Committee Members:

Advisor

Co -Advisor

Approved:

Head
(Department of Computer Sciences)

20

Dr. Sarmad Hussain

Professor

National University of Computer &
Emerging Sciences

Mr. Shafig-ur-Rahman

Associate Professor

National University of Computer &
Emerging Sciences

Ms. Nayyara Karamat

Senior Development Engineer
National University of Computer &
Emerging Sciences

VITA

Mr. Umer Khalid Qureshi was born in Lahore, Pakistn December 04, 1983. He
received a Bachelor of Science in Computer Scidérama PUCIT, Lahore in 2005. He
had been associated with CRULP-NUCES as a Resédficer from 2007 to 2008. His
area of interest includes Natural Language Proegssi general and Text Processing in

particular.

Acknowledgments

I am most grateful to Allah, who has empowered onadcomplish my all tasks including

this research.

| am grateful to my advisor Dr. Sarmad Hussain &, vior his kind considerations,
encouragement, guidance, supervision and suppodghout the course of this research
work. | am also thankful to him for trusting me diod all the facilities he provided me to
complete my research. | am thankful to my co-adsishir. Shafiq-ur-Rahman and Ms.
Nayyara Karamat, for the guidance and help. Boththein have been a source of

inspiration and kind help for me.

| am also thankful to CRULP for providing me an ogpnity to develop this research
work. | must thank my colleagues at CRULP as weécgally Mr. Aasim Ali and Mr.
Shahid Igbal for helping me in the implementatiémy system.

Umer Khalid Qureshi

Table of Contents

L INTRODUCTION. ettt ee et et e ee e et e e e em e e e s s e a s e eas e eneanens
2 BACKGROUND .. cuitiiiit it ettt emee s s e s e e ea e enss
2.1 Lexical Functional Grammarc.ccoeoiveeiiiiieiiiie e e 2
PN N R O 1§ (o (U P UPPPPPPRRPP 2
2.1.1.1 Descriptive Representation of C-Structurecovvvvvviiiiiiiiie e eeeeeee, 4
2.0.2 F-SUIUCTUIE ...ttt e e e et e e e e eaaa e e aeees 5
2% 7 L U L 1 o= o o RSP 7
2.1.2.2 Building F-Structure USINg LFGcvvuiiiiiiiiiieeeeeccceeeeevis e 8
2.1.2.2.1 Constraints based parsing in LFG oo
2.1.2.3 Descriptive representation of F-Structure............cccvvvvvviviiiiienin e, 15
2.1.2.4 F-StruCtUre ProPertiES....ccoiii e e e e ettt e 16
2.1.2.4.1 ComMPIletenesS: .. .o 16
2.1.2.4.2 CONEIENCE ... 16
2.1.2.4.3 CONSISLENCY ...vvvvurrurrnrrnnenss e s eeeeseaeaeeeasaeseasaeaeeseeeereeeseeaees 17
2.2 Analysis of Verbal Elements............cccooeeiiiiiiiiiciie e 17
2.2.1 SUDJECE (SUBUJ) ..ottt e e e e e e e e e e an e 17
2.2.2 ODJECE (OBUJ) ..ottt e e e e e e e e e e e aa e 18
2.2.3 Secondary ODbJecCt (OBJ2)ccooeiiiiiiiieieieiii e 20
2.2.4 ODBlIQUE (OBL) ...cceiiiiiiiiiiiiiie e e e e e e e 20
2.2.5 Closed and Open Complementary ClauSesS........ccccoveeeeeeeeiiiiieeeieeiinnnns 21
2.2.6 ADJUNC T ..ottt e et a s e e e e e e e e e e e e aeeeeeeesenenes 23
2.2.7 Grammar deVelOPMENTccoooii i 24
2.3 Parsing TECNNIQUESouiiiiiiieiiii e 25
2.3. 1 PIpeling MOAElcouueeiiieii e 25
2.3.2 Integrated MOlueiiiii e 26
2.3.3 Comparison of both ModelS ... 28
2.3.4 ANNOtatioN Of CFGuuuiiiiiiiii i e e eeeanenes 28
2.3.4.1 Regular Expression based teChNiQUe...........cooeveeeviiiviviiciiciees e, 29
2.3.4.2 Flat Tree based teChniqueooovviiiiiiiiii e 31
S PROBLEM STATEMENT .euiiiiiiiiiiieitieeee e e e aeeaesae e eemnenneeneenss 33
G 70 R |V [1 1)Y= o] 1RSSR 33
G J N S Yo 0] o 34
3.2.1 Template DevelopmMeNt........cccooeeiiiiiiiiiiiiiiiii s e e eeeaeaeees 34
3.2.2 Annotation System Development...........oeuuuuiiiiiiiiiiine e 34
ICTC TN Y/ =1 g T Yo (o] oo Y 34
3.3.1 Grammar EXIracCtioNcoveeiiiiiiiiii e e e e e e 37
3.3.2 RUIE SEIECHON......uiii e 38
3.3.3 EXIract SOIULION.......iiiiie e 39
I I B I e R 1T o1 =1 o] o I 40
N N I 2] 1 42
4.1 Template Syntax Varationccooooveiiiiiiiiiiiineeecie e 42
4.2 Verbal ANAlYSISccvuieiiieceee e 43
4.2.1 SUDJECE (SUBUJ) ..uutiiiiiiiiiiii et e ettt s e e e e e e e e e e e e eaeeeeeaeennns 43

£.2.2 ODJECE (OBJ) cvroveeveeeeeeeeeeeeeeeeeeeeeeeeseeeeee e s eee e e es s es e s ereenes 47

4.2.3 Secondary Object (OBJ2)cooiiiiiiiiiiiiiiiieee e 48
4.2.4 OBHQUE (OBL) ..ettttiiiiiiiiiie ettt e e e e e e e e e e eeeeeeeaeeenes 49
4.2.5 Closed Complementary Clause (COMP)uciiiiiiiiiieiiiiiiiieieieeeiieiiinns 52
4.2.6 Open Complementary Clause (XCOMP)ucceiiiiiiiiiiiiiiiiiieiiieeiiiiiienns 54
.27 ADJUNC T ...ttt ettt ettt e e e e e e e e e e e 55
A.2.7.1 ADIECTIVE ... e 55
4.2.7.2 ADVERBoe i 55
R e B o (=Y o0 1= | (T o 56
4.2.7.4 REIALVE ClAUSE.....eeeiiiieiiieee ettt a e e 57
A.2.7.5 PartiCiPle e 58
4.3 Relaxing CoNSraintSccuuiiiiiiiiiiieeeeiiie e 59
4.4 Structured Walk Through ..o 61
D RE SULT S it 77
5.1 TrAINING ceetiiieiiiii et e e eaea 77
o T =111 o [78
5.2.1 Quantitative ANAIYSIS ..o 78
5.2.2 QUAlItAtIVE ANAIYSIS.uuuiiieiee e aaaees 80
B CONCLUSION ...cctuiiiieeti et e e et e e e et s e ne e e s e ea e e een e 107
L FUTURE WORK . e uitii it eee et e e e e e e smnee s e e s e e enenens 108
B REFERENCE ... ittt ittt eee et ee e ra e s e e et e e e eaeeaneens 109
A PPENDIX A ottt 112
APPENDIXB ..o it 114
APPENDIX C .ottt e e e e e 115

Table of Figures

FIGURE 1: C-STRUCTURE OFHE ATE APPLES WITH ME ... tttiitiittiiiietieienietteestiesiestnssssesnessnsesseesssessnessnssanns 3
FIGURE 2: TREE WITH DESCRIPTIVE FORNM. . .etuuuetttuiettttetestesetiaeetstaeessuesssssaeessneesstaeesstneesstneeestnnersieee 4
FIGURE 3: PARSE TREE USINGC G .. .ctuiiiiiiiiiii ettt ettt e mmmms e e et e e e et e e e st e e e eaa s e eeaaeessn e erananeessnnaees
FIGURE 4 : PARSE TREE ANNOTATED WITH FUNCTIONAL DESCRIPTION
FIGURES : PARSETREE OFHE EATS WITH CIFG L..iiiiiiiiiiiii e et e e e et n e e st e e saa e e saan e e aaas
FIGURE G : THE F-STRUCTURES OFHE' AND EATS ituittiittiiteititettetntetteestettssatsssesssstneessessnessnseieenneenn
FIGURE 7 : HIERARCHAL NAMING OF F=-STRUCTUREucttuiitiiiieiiiieiieeet e e s eseest s saseassansesnesebseaneees
FIGURE 8 : MAPPINGF-STRUCTURE AND TREE NODES.....0uuiittuiiiittietetiererteeesteeessnessssnneessnneessnaesssseessnnn.
FIGURE 9 : UNIFIED F-STRUCTURE MAPPED WITH TREE NODES ituiiuiiitiiteitneisneerneeneesseseeesnsssneeans
FIGURE 10: F-DESCRIPTION ANNOTATEDPARSE TREE......uuittttuiitttieiitieeiesaesstieesetneesrsnneessseesssinesssneessnnns
FIGURE 11: F-STRUCTUR OF AHMAD KNOWS THAT ASIF CHEATEDuiivuiiitiiiiieiieiiieerereiiesneestsesnneennesnnns
FIGURE 12: F-STRUCTURE OFASIF REFUSED TO COME........ovveviiiiniinnnen.

FIGURE 13: SYSTEM FLOW DIAGRAM OFPIPELINE MODEL
FIGURE 14: SYSTEM FLOW DIAGRAM OF INTEGRATED MODEL.......ccivvuieiitteeeitteeestinessineeeteerssnessrneessnnns
FIGURE 15: MACHINE TRANSLATION SYSTEM ARCHITECTURE .. .uuittiitiiteiteeineisneetieeensessssnesesnsssneeans
FIGURE 16: PROPOSED ARCHITECTURE ORANNOTATION SYSTEM ...vuiiiitiiiitieeiiiieieieeeerneeesneesesnneesssneeees
FIGURE17: A COMPLETEF-STRUCTURE USING OUR GENERATELFG
FIGURE 18: GRAPH BETWEENTOTAL TEMPLATE AND SENTENCES PER TRAINING ITERATION
FIGURE 19: GRAPH OFTEMPLATES ADDITION PER ITERATION.uuttttuieittieeeetneeestniersteereneesssnnsessnneesssnneees

Vi

1 INTRODUCTION

The demand of the Natural Language Processingasable computer to understand the
language of human. Syntax of a language plays mapyi role in that language.
Generative Grammar is an approach to study and etmmjhe syntax of a particular
natural language. The generative grammar of a Egeyincludes a set of rules that will
correctly calculate if a combination of words isugimatically correct. Lexical Functional
Grammar is also a variety of generative grammans. Major focus of this grammar is to
analyze the syntax of a language with perspectfvgeaerally two syntactic structures
[35]: (1) the outer structure (C-Structure) dealthwhe visible hierarchical organization
of words into phrases and (2) the inner structBr&tfucture) contains abstract relational

information of the outer structure [6].

The aim of this work is to present a system thdbraates development of Lexical
Functional Grammar for English using Templatesalko discusses the issues with
different types of grammar development practicdse Tollowing sections include the
LFG formalism and linguistic analysis needed fax ttevelopment of unification based
functional grammars. Later, we review couple ofspag architecture needed to generate
F-Structure of a sentence. We present the problatersent of the thesis followed by the
methodology for proposed system and linguistic ysigl needed for our grammar
development. We also report the results compilethfthe development of our proposed

system.

2 BACKGROUND

In this section, we review the information neededinderstand the following section of
problem statement. It includes the linguistic armmputational aspects of Lexical

Functional Grammars.

2.1 Lexical Functional Grammar

This section discusses a brief overview of a lisgaiformalism established for analysis

and representation of natural languages partigweth respect to machine translation.

Lexical Functional Grammar [10] is a formal them/language. The major focus of
theoretical linguistics researchers in the lingaigbrmalism has been syntax [11]. This
unification based linguistic formalism is used nhpstor computation and syntax
processing. LFG has different levels of structucesepresent the linguistic information.

This thesis covers only two components [11]: C-&trirte and F-Structure.

2.1.1 C-Structure

Representation of the hierarchal grouping and serpief the words in phrases is called
constituent structure. This representation alsevsitbe syntactic categories of the words
(Part Of Speech). The constituents maintain theear order in the representation. In
other words, this representation shows how phrasesformed with combinations of

words; and the sentences as hierarchal combinatfophrases. These hierarchical
groupings are describable by phrase structure ndasmonly represented as a context-

free grammar.
Example 1:

Consider the sentencéneé ate apples with me ". The phrase structural rules

describing the hierarchal constituent structarfethis sentence are as follows.

! The output of Collins’ Parser [22] [23].

S - NP VP

VP - vbd NP PP
NP - prp | nns
PP —in NP

The parsing using the above Context Free GrammBG{(an depict the constituent

structure of the sentence “he ate apples with mdbkows:

S
NP VP
prp vbd NP PP
he ate l /\

nns in NP

apples with

pre

me

Figure 1 C-Structure of 'he ate apples with me'
Here, ‘prp’, ‘vbd’, ‘nns’ and ‘in’ are parts of speh and refer to personal pronoun, past

participle of verb, plural common noun and prepositespectively.

C-Structure represents information about the phspeech in each constituent and the
syntactic structure of the sentence. Since the FO8e terminal element in this
grammar, hence it is independent of words. C-Stireclicenses the constituencies of a
language at POS level. The lexicon binds the PO thie words which can aid to

analyze the source sentence.

2.1.1.1 Descriptive Representation of C-Structure

The model-based representations of structures {eeg) can also be represented in
descriptive and declarative form [12]. The promertdf one structure are used to generate
formal descriptions of other representations. THesmal descriptions are in the form of
a collection of constraints on the relations thabse structures must possess. The
structures that satisfy all the propositions in tescription are acceptable [12]. The
description of structure implies the writing of ohéfig properties and relation in that
structure. We construct a tree and describe itimdescriptive representation in Example
2.

Example 2:
nl: A
/\ M(n2) = nl A(N2) =B
n2: B n3: C M(n4) = n2 A(n3)=C
M(n3) = n1 A(n4) =D
l n2 < n3
A(Nl) =A
n4: D

Figure 2 Tree with descriptive form
Example 2 describes that parent of“rig ‘n1’, represented by ‘M(n2) = n1’. Similarly,
parent of ‘n4’ and ‘n3’ are ‘n2’ and ‘nl’, respealy. ‘n2’ is on the left of ‘n3’,
represented by ‘n2 < n3'. The value of ‘nl’ is A2' is B, 'n3’ is C and ‘n4’ is D, as
represented by the\” relation. ‘n4’ and ‘n3’ have no direct relatioma hence not
described in the descriptive form. Similar is tlase with relation of ‘n1’ and ‘n4’. As
they both do not have a direct arch, so they che'tdescribed unless queried as
‘M (M (n4)) = n1’. The symbols ‘M’, ‘<’ and A’ are for representation purpose and may
vary. The potential strength of this abstract repmeation is discussed later in
Section2.3.4.2

1 n2’ is the representation name of the node withug B in the tree.

2.1.2 F-Structure

It is not sufficient to know the information abate external structure of the sentence;
the relation of phrases in which they may occur atso important [26].
C-Structure captures the external aspects wheré&dsuEture covers the internal aspects
of the sentence. F-Structure represents the highetactic information along with
functional information in a sentence. The highentagtic information describes the
grammatical attributes of a word for instance ‘feethird person singular pronoun and
‘ate’ is past participle of ‘eat’. The functionalformation of a sentence describes the
relations between words and phrases for instaheéjs the subject of ‘ate’ in Example 1
above. F-Structure can also represent the kind(syrtactic function a predicafomay
have [26]. Usually the higher syntactic and funadibinformation is shown as an
attribute-value pair [13]. These pairs form the emaf an acyclic graph structure. The
attribute-value pair in F-Structure is representweh that an attribute can be a
grammatical symbol (for instance: Number) or a gratical function (for instance:
Subject) and the value for that attribute can batamic symbol (for instance: Singular),
a semantic form (as illustrated in Example 3 bel@wv)a subsidiary F-Structure (see
Example 4 below) [14]. An atomic value describeg trammatical feature of a
constituent. The semantic form represents the sitnaterpretation of a predicate. The
semantic interpretation is represented in termb@fsyntactic functions that a predicator

can have. Semantic form is usually represente@RE&D’ [26].
Example 3:

Following is the semantic form of ‘ate’.
PRED ‘eat<(tSUBJECT)(tOBJECT)>'

The semantic form is more related to sub-categuoizdrame than representing the exact
semantic form in F-Structure [11]. The purposeashantic form is to encode the number

and type of grammatical functions for that pari@cyredicate.

! Predicate is usually the head of a phrase andetieor the preposition in clauses [26].

The subsidiary F-Structure of a syntactic funciorepresented in Example 4 below.
Example 4.

The Noun Phrase (represented as NP) capturingegipigl the object of the verb ‘ate’ in

Example 1. This can be represented in the F-Streictuthe sentence as follows.

1 PRED ‘apple’
©OBJ [NUM PL J

The subsidiary F-Structure nature of these reptasens makes them look like tree;
however, there can be some cross level links wigahe definition of tree (see Figure
12).

The attribute-value pair in an F-Structure is inelggent of order. The C-Structures
shown in Figure 1 above do not carry any functiatedcription about the constituents
and hence cannot assign the F-Structures to theesseThus, the grammar rules are

annotated with the functional information as showthe Example 5 below.
Example 5:
S -NP(1SUBF= |)VP(1=1)

The phrase structure rule in Example 5 has beeotaten with functional equations to
specify the mappindrom C-Structure to F-Structure, termed ‘a@s. The functional
equation employ two meta variablgsand |. The? refers to the F-Structure associated
with the parent node, whilgrepresents the F-Structure associated with thremufself)
node. In the functional equations, = is used fafication of the F-Structure attributes

[16] [10]. As a consequence, the grammar rule iarBple 5 can be described as follows.

! Short form of OBJECT.
2 Short form of SUBJECT.

The node S has a left child NP and a right child Vire F-Structure associated with S is
unified with the F-Structure of VP & |). The value of SUBJ attribute of the F-Structure
of S is unified with the F-Structure of NP $UBJ =|).

In LFG formalism, entries in the lexicon (lexicalems) also have the functional

information with them. The lexical item for wordaté” and “apples” is following.

Example 6:
ate: vbd, + PRED = 'eat<SUBJ,OBJ>'",
+ TENSE = PAST .
apples: nns, 1+ PRED ="apple’, 1+ NUM =PL .

Thus, the lexical items are used to deliver attebwalue pairs to the leaf nodes in the
parse tree.

2.1.2.1 Unification

Unification is the process of merging the inforratcontent of two structures and ruling
out the merger of structures that are incompatibith each other [15]. The term
‘structure’ is used as abstraction of semantic foatomic value and subsidiary F-

Structure. The following Example 7 [26] illustratthe results of unification.
Example 7:
(7.1)

NUMBER PL NUMBER PL
[NUMBER PL] U { } = { }

GENDER F | |GENDER F
(7.2) [NUMBER PL] U [NUMBER SG = Failure
(7.3) [NUMBER PL| U NULL = [NUMBER PLl]

In (7.1), the unification operator successfully figs its both operands which are

structurally different but compatible. (7.2) shoasfailure in unification because of

incompatible or inconsistent information for samtrileute [15]. In Example (7.3),

unification with ‘NULL’ results the other argumeanchanged.

“The feature structures are represented as directmyclic graphs (DAGs), where
features are depicted as labels on directed edged,feature values are either atomic
symbols or DAGY15]. The unification operator is somewhat strdigiward recursive
graph matching algorithm, customized to carry tigtouhe different requirements of
unification. The details of unification process atglressed in [15].

2.1.2.2 Building F-Structure Using LFG

The F-Structure can be built by parsing the semtdérmn the LFG of that language. The
building of F-Structure can be shown with the hafifxample 8 below.

Example 8:

The relative Lexical Functional Grammar of the sene he ate apples with

me can be following (using Penn Treebank Tagset)[34]
S -NP('SUBJ= |)VP(1=))
VP —vbd(1=,)NP(1OBJ=)) PP(1PREP=)
NP —prp(1=1)
NP —nns(1=})
PP —in(1=,)NP(10BJ=}).

And the C-Structure (parse tree) using the abow® t&n be as shown in Figure 3. The
F-Structure is built using the unification procestarting from the lexical level. F-
Structure at each node is the result of unificatrom its child nodes. As a start, the tree

can be annotated using the functional informatromfLFG rules as Figure 4 shows.

T

NP VP

prp vbd NP PP

he ate l /\
nns in NP

apples with

prp
me
Figure 3 Parse Tree using CFG
S
1SUBJ:| 1=l
NP VP
=] 1=l 10BJ=| 1PRED:=|
prp vbd NP PP
he ate ‘ /\
1=l 1=l 10BJ=|
nns in NP
apples with TL
pre
me

Figure 4: Parse tree annotated with functional description

Each node knows its relation with its parent. Fstance, the NP is SUBJ of parent's F-
Structure and VP unifies all its features to itsepd without any subsidiary classification.

Similarly, NP as a child node of VP has relatior©&J with its parent node.

Each word and its POS are coupled within the ctuesit. The feature description of each
word builds F-Structure of corresponding POS inttke. The F-Structures flow towards
root from each node to result a single F-Strucfarea sentence. It used unification at
each node with its children. The Example 9 illustsahe F-Structure building. A shorter

sentence is used to make the process easy to tarders

Example 9:

The C-Structure forte sleeps ' is as follows using LFG rules given:
(9.1) S -NP: 1 SUBJ= |; VP: = .
(9.2) NP - prp: 1= ;.

(9.3) VP - vbz: 1= .

S
NP VP
prp vbz
he sleeps

Figure 5: Parse Tree of 'he eats' with CFG

And the lexical entries for given words

he: prp, 1 PRED ='pro’, 1+ NUM=SG, 1 GEND=M,
1 PERS= 3.

10

sleeps: vbz, 1+ PRED = 'sleep< 1SUBJ>',

1+ TENSE = PRES, + NUM = SG,
1 PERS=3.
PRED ‘pro’
NUM SG
f1: PERS 3
GEND M
- PRED ‘eat<SUBJ>’
' TENSE PRES
NUM SG
PERS 3

Figure 6: The F-Structures of 'he' and 'eats’
To build a single F-Structure for the above sergemwte need to know the relation
between both structures. As described earlier|ekieal items, “he” and “eats” delivers
their feature description to corresponding PO’ ‘and ‘vbz’. The ‘f1’ and ‘f2’ are the
F-Structures of ‘prp’ and ‘vbz’, respectively. Fuet, the F-Structure building is moved

towards root using the C-Structure within LFG asve below.

11

S f5: S

N TN

NP VP f3: NP f4: VP
f1: prp f2: vbz fl: prp f2: vbz
he eats he eats

(@) (b)

Figure 7: Hierarchal naming of F-Structure

The Figure 7 (a) describes that the feature stresttfl’ and ‘f2’ are brought upward
from the words. And 7 (b) shows that there is eBtifeicture at each node. The ‘NP’ node
receives the F-Structure from its child node ‘pag’ shown in the rule (9.2), and ‘VP’
also receives F-Structure from ‘vbz’ using rule3}9.S’ receives two F-Structures from
its children (NP’ and ‘VP’). The node is updatesing the relation as described in rule
(9.1). The F-Structure ‘f4’ is unified with ‘f5’ whhout any subsidiary relation marking.
The structure of ‘f5’ will have an attribute nam&1JBJ” containing the ‘f3’ as its value.
Figure 8 illustrates the building of 3’ and ‘f4".

12

PRED ‘pro’

NUM SG
: PERS 3
/\ GEND M
f3: NP f4: VP
\ fo. | PRED ‘eat<SUBJ>’
f1: prp f2: vbz " | TENSE PRES
PERS 3
NUM SG

Figure 8: Mapping F-Structure and tree nodes
Unification of ‘f3’" and ‘f4’ with empty ‘f5’ underrule (9.1) gives the F-Structure of

sentence as shown in Figure 9.

f5: S
4 N
/\ PRED ‘eat<SUBJ>’
TENSE PRES
f3: NP f4: VP
‘ PRED ‘pro’
f5, f4, f2: . | NUM SG
SUBJ 3, f1: PERS 3
f1: prp f2: vbz GEND M
3
SG
4

Figure 9: Unified F-Structure mapped with tree nodes

13

The figure describes that ‘f1’ and ‘f3’ refer toetsame F-Structure, as the LFG rule (9.2)
requires. The LFG rule (9.3) requires the F-Stnecttd’ to be same as ‘2. LFG rule
(9.1) requires ‘f5’ and ‘f4’ to be equal and heneigh the associative property, ‘2’ and
‘5" are equal. The reason for having rule (9.1) &% same as the ‘f2’ is the semantic
form ‘eat<SUBJ>’ requiring an attribute ‘SUBJ’ te lassigned value. This attribute can
be assigned value by using rule (9.1) only. In ptdesay our F-Structure a complete one,
we have to give a value (atomic, semantic or sudasid to all the arguments of a
semantic form and the attributes.

2.1.2.2.1 Constraints based parsing in LFG

Non-transformational theories of syntax are comstaased [16]. They require
satisfaction of static concurrent constraints tdedaine the grammaticality. These
constraints add control on the generation of F¢dtime in LFG. Satisfaction of constraint
is also required, in addition to successful untfama for F-Structure building. Example

10 elaborates the construction of F-Structure wathstraints.
Example 10:

LFG rules of Example 9 are amended to include caimts in the grammar such that

‘person’ and ‘number’ features of verb and its ggbmust match.

(10.1) S -NP: 1 SUBJ= |, 1 PERS=C | PERS; VP: =,
+ NUM =C ; SUBJ NUM;.

(10.2) NP - prp: 1= ;.
(10.3) VP - vbz: =

The constraint is satisfied if the value of ‘persémom (10.2) and (10.3) is same i.e.
“sleeps” is the type of verb allowed with third pen singular subject only. Graphical

representation of the tree is described in Figlre 1

14

1SUBJ =, | PERS =¢} PERS 1=] , 1SUBJ NUM =ct NUM
NP VP
=l 1=l
prp vbz

Figure 10: F-Description annotated Parse tree
The above feature description annotated C-Struaaseribes the F-Structure building
along with its constraints. Constraint succeed$:if(bne argument is a subset of the
other, in case both arguments are non-null orf(@dth arguments are null. It fails: (1) if
any one of the arguments is null or (2) if one amgat cannot be unified with other, in

case both arguments are non-null.

2.1.2.3 Descriptive representation of F-Structure

A structure can be used to generate another forstredture, a descriptive, declarative or
model based representation [12]. In order to regriethe graphical representation of F-

Structure as descriptive form, we first define ti&s’s parenthetic notation [12] as:
(fa)=viff<av>0f

Here ‘f" is an F-Structure, ‘a’ is an attribute ahd is a value (atomic, semantic or
subsidiary F-Structure). The parenthetic notatimplies that an attribute ‘a’ in F-
Structure ‘f’ has the value ‘v’ if any only if thetribute value pair ‘<a v>’ is a member of
.

Example 11:

15

p X

fl.]q f2: E t/}

The descriptive form of above F-Structure is akies.
(fL p) =x (flq) =12
(f2s)=t (f2u)=v

2.1.2.4 F-Structure Properties

The sentences are parsed through LFG to resuttah F-Structure. These F-Structures

must hold the following three properties to fulfile well formed-ness [10].

2.1.2.4.1 Completeness:

An F-Structure is locally complete if and only if ¢ontains all the governable
grammatical functions that it's predicate govermsdaan F-Structure is complete if and
only if all of its subsidiary F-Structures are coete[13].

This condition requires that all the grammaticahdtions for which the predicate
subcategorizes must have a value. The completg@mepsrty of an F-Structure does not
hold if any argument is missing. For instance, ¢laise, ‘We like’ does not hold the
completeness attribute because the grammaticatidmn©BJ of predicate ‘like’ is not
assigned a value.

2.1.2.4.2 Coherence

An F-Structure is locally coherent if and only if the governable grammatical functions
it contains are governed by a local predicate and=aStructure is coherent if and only if
all its subsidiary F-Structures are coherg¢h8].

Coherence requires every semantic form in the Geftre to be assigned to a
grammatical function i.e. every ‘PRED’ in the Fi&tture should be direct or subsidiary
part of the value of a grammatical function. Fastamce,'he died the book”being ill-

formed becausehe bookcan neither be associated as the object of tHena@rit can be

16

added as an adjunct in the relation to main verndd, it cannot be assigned to any

grammatical function and results a structure tloatschot hold the coherence property.

2.1.2.4.3 Consistency

In a given F-Structure, an attribute can have astnome value. However, there is a
possibility that multiple values unify and buildsat of values (which never violates the
unification principles) [13]. For instance, in anSkucture of English sentence, the
TENSE feature cannot have values both PRESENT AT P13].

2.2 Analysis of Verbal Elements

The predicate is the element, containing infornraibout the relationship in a sentence.
[26]. A grammatical unit containing one predicate andpégsticipants is called a simple
sentence or a claudé8]. Verbal elements include predicates whichumsgargument(s)
for a clause to be grammatical [13]. The identifma of a verb’s sub-categorization
frame (the grammatical functions) plays importamé tin the development of any natural
language grammar. The following sections discud$erdnt type of grammatical
functions that are usually used in developmentrafrgnars; for instance LFG. These
grammatical functions cover Subject (SUBJ), Obj&BJ), Secondary Object (OBJ2),
Complementary clauses (COMP), open complementanses (XCOMP).

2.2.1 Subject (SUBJ)

It is assumed that all verbs subcategorize foresupjput some languages like German
and Hindi challenge this assumption [13]. A nounagk in the clause acts as a subject of
clause. One of the identification rules for subjedhe agreement with verb (or auxiliary
verb). Properties of subjects vary from languaganguage [26]. The other clue can be
the nominative case marking of the noun phrasefei@iiit case markings can help in
identification of subject in different languages. German, nominative case marking
helps in identifying subject [13]. The noun phiaas subject are highlighted in Example
12 below.

Example 12:

17

(12.1) He eats.

(12.2) John gave me a book.

(12.3) Mary can drive.

(12.4) The worker union protested.
(12.5) Barking dogs seldom bite.
(12.6) Swimming is fun.

(22.7) Both of them joined the board.

(12.8) A couple of years ago, Ahmad graduated.
(22.9) The men, four of whom are ll , were indicted for
fraud.

The sentencél2.5) in Example 12 includes a gerund verb as difieo of noun, but it is
still included in the subject categorization. Thiject in(12.6) is itself a gerund verb yet
representing a noun phrase and hence a subjeden8erfl2.7) is an example of a
subject with prepositional phrase. The sentgii@9) includes another sentence clause

within a subject frame.

There is another definition which is in general enanderstandable but not practical. The
subject is the noun phrase that is a simulatomigiator or an actor or sometimes subject
experiences an action. The later case is moslylikebccur in the case of passive voice.

For instance in Example 12, senteit2.2) shows an action performed Rphri.

2.2.2 Object (OBJ)

Usually the second argument of transitive verbanisobject [13]. The object is usually
recognized by its position. For instance, it appdaliowing and adjacent to the verb in

English. However, mostly in free order languagéss IGermen, Hindi etc, the case

18

markers identify the object. For example, the folltg two sentences in German have

the same meanings. The accusative case helpsitifytiey object in both sentences.
Example 13:
As described in [26].
(13.1) Der Fahrer startet den Traktor.
The.Nom driver starts the.Acc tractor
(13.2) Den Traktor startet der Fahrer.
the.Acc tractor starts the.Nom driver
(The driver is starting the tractor.)

The case marking test in English and French wonkg for pronouns such as he vs. him
(object) and il vs. le (object French) [13].

Cross linguistically, passivization can be a goest to identify object. The noun phrases
of subject and object are inverted in passivizasaoh that, object become subject and
vice versa. The active subject is realized as NUhLthe passive sentence. The
nullification is referred to argument suppressi@8][An English example is represented
in the following Example 14 with the semantic forofsmain verb.

Example 14:
(14.1)He stole the money. (+ PRED) = ‘steal<SUBJ, OBJ>".
The money was stolen. (1 PRED) = ‘steal<SUBJ >’.

(14.2) (Reproduced from [26])
He went home.

Home was gone.

19

In Example 14 (14.2), if a noun phrase is not dbjecannot be passivized correctly.

2.2.3 Secondary Object (OBJ2)

Ditransitive verbs subcategorize for three argusexgt subject, object and secondary
object [13], for instance, the verb ‘give’. In Eigll secondary objects can be identified
by their position. It must be adjacent to and fetal by the object (the primary object)

[26].

In the sentence, “He gave me a pen”, direct obgefme” and secondary object is “a
pen”. The secondary object in any language requiesexistence of first object no

matter what other test is used.

2.2.4 Oblique (OBL)

In English, the ditransitive sub-categorizationrfra for ‘verbs of giving’ alternates (the
dative alternations) with a ditransitive frame whkothird argument is an obliqug.3].
Oblique class is difficult to define. They are #iguments other than subject and are not
appropriate morph-syntactic form to be object. Théso do not undergo the syntactic
processes which affect object such as passivizatidgnglish. Generally, in English,
Prepositional phrases stand as oblique. For exafofaving sentence is represented

with semantic form of verb. [13]
Example 15:
(15.1) She gave the pen to ahmad.
(1 PRED) = ‘give<SUBJ, OBJ, OBL>".
(15.2) The pen was given to ahmad.
(1 PRED) = ‘give<SUBJ, OBL>".

The sentence (15.1) in Example 15 shows the semtgitls active voice and (15.2) is the

passivization of (15.1). The object is removeddhlique persists.

20

2.2.5 Closed and Open Complementary Clauses

Arguments of a verb are not only noun or preposétigphrases. An entire clause may
also be the compliment of a verb. Sometimes theylmeareplacing a noun phrase. [13]
Example 16:

(16.1) Ahmad knows that Asif cheated.

The verb ‘knows’ has a closed complementary cldisst Asif cheated’. In LFG, the
closed complementary clauses have their own subjecshown in example, there is a

whole clause under sub-categorization of ‘know’ ethive call as ‘COMP’.

There is a possibility that a complementary cladses not have its own subject rather its

subject is functionally controlled from outside ttiause.
(16.2) Asif refused to come.

The clause ‘to come’ is an open complimentary danfs'refused’ because it has a verb
(the predicate) for the clause. This open compltarsnclause is marked as XCOMP of
‘refused’. This implies that COMP has an expliaibgct whereas XCOMP does not
[13]. The F-Structures of the sentences (16.1)(&6d2) from Example 16 are shown in
Figure 11 and Figure 12.

21

_
PRED ‘*know<SUBJ, COMP>’
TNS_ASP TENSE PRES
e
PRED ‘Ahmad’
SUBJ PERSON 3rd
CASE NOM
-
PRED ‘cheat<SUBJ>’
TNS_ASP |[TENSE PAST]
COMP -
PRED ‘Asif’
SUBJ PERSON 3rd
CASE NOM
. J
SUB_CONJ_FORM ‘that’
/

~

Figure 11: F-Structur of '"Ahmad knows that Asif cheated'

22

~
PRED ‘refuse<SUBJ, XCOMP>'
TNS_ASP TENSE PAST

e

PRED ‘Asif’
SUBJ PERSON 3rd

CASE NOM

-

PRED ‘come<SUBJ>’

TNS_ASP [TENSE PRES
XCOMP

SUBJ

INF POS

. J

J

Figure 12: F-Structure of 'Asif refused to come’
The link in the Figure 12 shows the subject shaangong parent and subsidiary F-

Structures (in other words: clauses).

2.2.6 ADJUNCT

The grammatical functions ‘Adjunct’ is not subcaigged for by the verb [13]. They
include a large number of different items for imgta adverbs, prepositional phrases etc.
These grammatical functions are analyzed as beigrtgia set which can occur with any

PRED [13]. Following examples shows a sentence adjflincts.

Example 17:

(17.1) He did not come before me.

(1 PRED) = ‘come<SUBJ>’

23

(17.2) | went to the city with my brother yesterday.
(1 PRED) = ‘go<SUBJ>’

In (17.1), ‘did’ is the auxiliary verb adding only smand aspectual information to main
verb. ‘not’ and ‘before me’ are the adverbial aneépwsitional adjuncts respectively.
In (17.2), ‘to the city’ and ‘with my brother’ are gresitional adjunct and ‘yesterday’ is

adverbial adjunct.

2.2.7 Grammar development

There are 2 major reported types of grammars [2].
1. Hand-crafted grammars.
2. Automatically acquired grammars.

The type of a grammar can affect the level of aosivn needed for a grammar. For
instance, a hand-crafted grammar can achieve mgrgactic abstraction than
automatically acquired grammar but with the inceesstraining corpus and increase in
the size of developed grammar, maintenance isswontes primal [2] [4]. The
development of large coverage, rich unificationdzhgrammar resources are not only
time consuming and expensive but also requiresiderable linguistic expertis§¢l3].
Small and medium sized grammars do not fulfill tieguirement for a real world

application and a large hand-crafted grammar iaey to maintain.

A reasonable suggestion to avoid the problem & sfzcorpus and acquired grammar is
to compact the grammar of a corpus [3] [4]. The paation has been reported with quite
a good reduction in size of grammar with gain icatebut decrease in precision [3]. The
development of Lexical Functional Grammar for aunat language is still an issuA.
solution to this problem is to automatically acquihe Context Free Grammar from the
Treebank and manually annotate it with the feati@gcription [5] [6] [19]. This solution
is acceptable as far as there is a human involvetoenanually annotate the grammar to

build an LFG. However, it becomes impractical ifaage Treebank is to be annotated

24

with feature descriptionSome degree of automation in grammar development i

unavoidable for any real world applicatiofi3].

2.3 Parsing Techniques

This section presents the architectures for thpgee of parsing and making F-Structure
of a source sentence [1]. The two simple but ustitihniques, pipeline and integrated
model [1] are discussed in the following sub-sewiwith their potential pros and cons.
Section2.3.3 discusses the different issues with theseels and in Sectiah3.4 we

review the two major techniques to build LexicahEtional Grammar.

2.3.1 Pipeline model

In the pipeline model [1], first the PCFG (probéadit context free grammar) is extracted
from the un-annotated Treebank. Then, the inpueser is parsed so that we may have
the most appropriate C-Structure according to P@ieGave extracted. The C-Structure
is then annotated with feature description. Furthie® annotated C-Structure is sent to

constraint solver so that we may get an F-Strudtutke end.

System flow diagram is illustrated in following fige 13.

25

Treebank

PCFG

y
Sentence — » Parser

l

Tree

|

F-Structure
Annotation

A 4

Constraint
solver

l

F-Structure

Figure 13: System flow diagram of Pipeline model

There are two major phases in the pipeline ardhitec The first phase includes

extracting the PCFG from Treebank and parsing tipeti text according to PCFG. The

accuracy is dependant on the size and coverageeeb@ank. We have tree(s) as input to
the second phase which is F-Structure annotatibe. dnnotation process can be either
manual or automated. The feature description atetbtaee is sent to constraint solver.
Constraint solver resolves all possible F-Strugurem leaf to root node and chooses
one of them.

2.3.2 Integrated model

In the integrated model, we first annotate the whobrpus (Treebank) with feature
description. From annotated corpus, we extract thated PCFG' (APCFG). The

26

APCFG is somewhat like probabilities assigned LFi#wonstituent structure of real
examples. Then the input sentences are parsedveéd tge annotated tree. The f-

description annotated tree is further sent to caimgt solver to generate the final F-
Structure of the input sentence.

The architecture is as following figure 14.

Treebank

A

F-Structure
Annotatior

Sentence ——— | APCFG

A-Tree

y

Constraint
Solvel

l

F-Structure

Figure 14: System flow diagram of Integrated model
The major difference between pipeline and integratedel is the corpus annotation.
This annotation process is the same as in pipehodel and hence either manual or
automatic. From the annotated PCFG, we parse titersz(s) and get an annotated tree.
This annotated tree is further sent to constraihtes which results a single F-Structure
randomly among all possible F-Structures.

27

2.3.3 Comparison of both models

Probabilistic parser and tree annotation are tleenhajor systems needed in both models.
In pipeline model, parser is trained on un-anndtdtees. As name shows, integrated
model uses the integration of parsed trees frompusoand the feature description. In
integrated model, the probabilistic parser is dbtumfluenced by the feature and
functional description that becomes the part ohing data. This positive aspect may
also put expectation off the track for the reswltsparser because the parser may be
distressed by the extra annotation it has. Howeawnethe pipeline model, the parser is
relatively trained only for the grammar it finds éorpus. We find more probability that
pipeline model may give a more relevant C-Structime the testing sentence than
integrated may do. However, in the tree annotagpioase, we may have more chances of
mistakes than integrated model. There is some tadtidbetween both models for
sequencing the parser and annotation. Any prolébiliparser can be used under
conditions such as it should not be biased whdaimng for different ‘type’ of corpora.
[1] [11]

It is notable that manually annotating the C-Stuitestdramatically differentiates the
systems. Pipeline model always needs a grammartexpannotate the parsed tree. This
can increase time cost for instance in batch psicgsHowever, the integrated model
uses one time cost to manually annotate the caoapdslater it can be easily used for
purposes like batch processing or online parsirigo,Aannotation system can be used as
direct or indirect approach [1]. The direct approach is where oneccanvert annotated
corpus to F-Structure. On the other hand in indie@proach, one has to first annotate the

corpus and later convert it into F-Structure.

2.3.4 Annotation of CFG

Annotation system holds the key to generate Lexicalctional Grammar from CFG. A
very obvious way to make the annotation systemhes rnanually building Lexical

Functional Grammar. However, this section discussesautomatic Lexical Functional
Grammar development and automatically annotatiegQ¥Structure to eventually result

as F-Structure.

28

There exists a couple of techniques [1] [20] [Z]tp automatically develop the Lexical

Functional Grammar.

2.3.4.1 Regular Expression based technique

The first technique is to make Meta rules [7] mdlyusuch that they can be used to
annotate the context free grammar's rule. Thesesrwdre somewhat like regular
expressions. We align the CFG rules with these Mées (or templatein literature as

well) and annotate the CFG rules. Templates araddras follows [7].
LHS > RHS @ Annotation

There are three components in a template. It haS (¢t Hand Side) and RHS (Right
Hand Side) (like CFG) and the third component & ‘#nnotation’ we want to perform
for this LHS and RHS. LHS can be only a non-terthinhereas RHS may have
combination of terminals and non-terminals. Consithee following example for the

annotation process.

Example 18:

We have a CFG rule as:
(18.1)S — NP VP

Where LHS is ‘'S’ and RHS has ‘NP’ and ‘VP’. We wrihe Template as following
(18.2)S > * NP * VP * @ [Annotation].

Here, the symbol * (Kleene star) can be alignedrtp symbol(s). Here ‘any symbol(s)’
implies that this can be replaced with a null, rglgton or more than one symbol. We
perform the mapping of CFG with this template sticht the matching symbols are
mapped (for instance NP to NP and VP to VP in bokbs) without overlapping i.e.

(18.3)S — NP VP

! Template is equal to Meta rules. In further distwiss, we use word ‘template’ instead of Meta rules

29

(18.4)S > * VP * NP * @ [Annotation] .

The above CFG and Template can never relate to etheln and hence we cannot use

mapping in this case.

On success of mapping, we can apply annotations. ‘Ahnotation’ part in template

describes the functional structure of Right HanthBgls. We rewrite the template as:
(18.5)S>*NP*VP* @ [S: 1===VP,VP:SUBJ===NP] .

The annotation part of the above system describesahnotations. The above template
rule describes that, VP has a relatior | with her parent S and NP is the SUBJ of its
parent VP. As VP copies itself to the S so it imaplthat NP is the SUBJ of S. Each
annotation is written as the following rule desesgb

(18.6)[Parent symbol: Relation === Child symbol]

Now consider the following case:

(18.7)S>*NP NP * VP * @ [S: 1===VP, VP:SUBJ===NP] .

In the (18.7), we are unable to identify which NRekactly the SUBJ of VP. To resolve
the problem, we use specific symbols called vaembhnd modify the template as

follows.

(18.8)S > * NP:n1 NP:n2 * VP:v1 *
@ [S: 1===v1,v1:SUBJ===n2].

Each variable is representing a Right hand Symbdl ia responsible to express the
relation with its parent. The only additional tdskbe done is to resolve the relations. We
perform it by appending the current relation witle {parent relation to get the absolute
relation with Left Hand Side. In the above templat?’ shows a relation with ‘v1’ but
‘v1’ already had a relation with ‘s’. To get thesalute relation of ‘n2’ we resolve the

relation of its parent (which ig"). As a result we can concatenate the two stringand

30

‘SUBJ’ as 1 SUBJ'. This process returns the relation to beotated with symbol of
‘nl’. We resolve relations of all symbols and uke tnapping to annotate on CFG and

this annotation returns us the LFG.
From (18.5) we have modified template as:
(18.9)S>*NP:n1 *VP.v1 * @ [S: 1===v1, v1:SUBJ===n2] .

From above mentioned process, we resolve the oatatand map it onto (18.1) and get

the CFG rule (18.1) annotated and restructuredlift®é as following
(18.10)S -~ NP: :SUBJ=, ; VP: =

2.3.4.2 Flat Tree based technique

A comparison paper [20] [21] of the above techniguesents even more generalization.
The basic idea is to describe tree in descriptorenf(flat set representation). Then the
templates are made in the same flat set repressntand hence, those templates are

applied to the trees.

The method is more general because it can conarthérary tree fragments instead of
covering local CFG rule. The other reason is thasé templates can be order-dependant
and order-independent unlike regular expressiordtechnique where order does matter
[20] [21] [1].

Considering the issues listed above, we show thetation as following.
Example 19:

We use Example 16 and rewrite the CFG rule (16.BExample 16 as following. The s1,
nl and v1 are the variable to refer S, NP and épeetively.

Tree description:
dom (s1, nl)

dom (s1, v1)

31

pre (n1, v1)
cat (s1, S)
cat (v1,VP)
cat (n1, NP)
Template Description:

dom (X, Y), dom (X, 2), pre (Y, Z), cat (X, S),
cat (Y,VP), cat (Z, NP)

Implies
SUBJ(X, Y), eq (X, 2).

‘dom(1, 2)’ implies that first argument dominatege second one. 'pre(1, 2)’ means that
first argument occurs before second in the CFGauléerst is on the left of the second in
a tree. ‘cat(l, 2)° represents that category oftfa@rgument is shown in the second
argument. ‘eq(1l, 2)’ means that first argument gsiaé in feature description to the
second (ort = | in LFG notation). ‘SUBJ(1, 2)’ shows that subjeétfirst argument is
the second argument.

Here in the example, the tree description shows $hdominates NP and VP and NP is
on the left of VP. In Template description, if wavie an S dominating NP and VP and
NP occurs before VP then VP equals S and NP isubgct of S.

By just removing ‘pre (Y, Z)’ condition in the Tenape, we can make the template order
independent [20] [21].

32

3 PROBLEM STATEMENT

So far we have discussed about the constructsedfigate argument structures, Lexical
Functional Grammar, parsing with this grammar andoaple of parsing schemes.

Following discussion focuses the core purposeisfttiesis.

The problem so far have been seen is the develdpofdrexical Functional Grammar

(Section2.2.7). The manual process of grammar developta&as too long even for a
grammar expert [13]. Hence, there is need to autniee process of lexical functional
grammar building to get resultant F-Structure. dwihg is the problem statement of this

thesis.

“To build Annotation System that can convert a @ahFree Grammar to Lexical

Functional Grammar for English language.”

The focus of the system is to take input a C-Stmgctind result a Lexical Functional
Grammar which can be used to build the F-Strucfline. annotation process is obviously

abstract such that it can be used in any of thelipip or integrated model.

3.1 Motivation

Machine Translation systénmhas been built to translate English sentences lirtdu
using the F-Structure correspondence mechanisnenfesce from English language is
parsed using pre-defined CFG rules and similar kihndFG is used to build F-Structure.
This F-Structure is further transformed into cop@sding Urdu F-Structure and from
that Urdu F-Structure, Urdu sentence is generð English CFG and LFG are hand
written and ambiguous. These ambiguous grammargeaarate many parses. The time
complexity becomes exponential and thus the spaceplexity to store all possible

parses also becomes exponential.

! Seewww.crulp.orgfor Machine Translation System.

33

In order to prevent the problem, the grammar shbaldery specific to the test sentence.
If there is a statistical parser used to genefae €FG, the time and space complexities
can be significantly reduced. The new design of €s Collins’ statistical parser [22]
[23] to parse the test sentence and generate tla& tG&t is very specific to parse the
given sentence. From this point on, the proposedtation system generates the LFG
corresponding to CFG. As a result, both grammarsane un-ambiguous. The new MT
then re-parses sentence using the new CFG and aFRgererate F-Structure with no

more exponential space and time complexity.
3.2 Scope

The thesis covers two major phrases, the Templateldpment and Mapping System
Development. Template development is performed @mifniollowed by the Annotation

system development to automate the process ofreengpecific LFG generation.

3.2.1 Template Development

Template development is the part of linguistic @andhputational analysis in thesis. The
templates will be developed manually. Input datatliss phase will be 100 parsed trees
from Penn Treebank and 200 parsed trees of Engdigls (from BBC and CNN).

3.2.2 Annotation System Development

The Annotation system will be developed to uset¢ingplates, map them to CFG of a test
sentence and finally result an LFG. System wilkdsted over 105 sentences of English.

Sources of testing sentences will be same as thagioning sentences.

3.3 Methodology

The methodology we have adopted for the purposautdmatically generating Lexical
Functional Grammar from C-Structure is based upbe technique described in
Section2.3.4.1 . However, there has been slight modiboa

34

The architecture of the Machine Translation systegiven in Figure 15.

Sentence
— l
Treebank Collins’ Statistical
Parser

Parsed C-Structure < >

A 4
Annotation System

Templates

Sentence Specil
LFG

A 4
Reparsing and F-
Structure Building

l

F-Structure

Figure 15: Machine Translation System architecture

We are using the pipeline model for the systemitecture as described in Sectidrg.1

and Collins’ parser [22] [23] for the purpose ofgiag and obtaining C-Structure from
an English sentence. The parsed structure is tlassed on for F-Structure building
which uses the annotated grammar to reparse themsenand build F-Structure using
constraint solver. Our focus is to produce Lexieahctional Grammar so we are using
the third party parser (Collins’ Parser) to gereetéie C-Structure. We have F-Structure
building system which uses the LFG generated byttion system. The purpose of the

system is to reparse the sentence using the Lekisattional Grammar as shown in
Section2.1.2.2

As mentioned above that the annotation systemeisrin objective of this thesis, so we

look at the proposed system diagram [24] withincaation system.

35

Parse Tree

|

Grammar Extraction

A 4
Templates |« Rule Selection

LFG

\ 4
Extract Solution

A 4
LFG generation

l

Corresponding
LFG

Figure 16: Proposed architecture of Annotation System
In the diagram, the outer thick box shows the ohdtation system boundary. Input for
the system is the most suitable parse tree anautut of the system is the Lexical
Functional Grammar. The output contains the gramtinair can parse only the under-
process sentence i.e. should be unique and unausig(at-least no constituent
ambiguity). First of all, the ‘Templates’ are beihgilt manually. The description of the

sub-systems is as follows.

36

3.3.1 Grammar Extraction

In first phase we discuss the grammar extractigrirm the parsed tree. The process
takes the normalized output of Collins’ parser [@&]the input and extracts the CFG rules

from that parse tree. Following example shows pkrtree and its extracted grammar.
Example 20:
The C-Structure oftte ate apples with me " is following.
(S
(NP-A
(NPB he/PRP))
(VP ate/VBD
(NP-A
(NPB apples/NNS))
(PP with/IN
(NP-A
(NPBme/PRP)))))

Extracted Grammar:

(20.1)S ~ NP-A VP
(20.2)NP-A ~ NPB

(20.3)NPB - prp

(20.4VP — vbd NP-A PP
(20.5)NP-A ~ NPB

37

(20.6)NPB
(20.7)PP
(20.8)NP-A

(20.9)NPB

nns

in NP-A

NPB

Pre

In a simple sentence like shown above, we have thngbiguous rules i.e. (20.2), (20.5)

and (20.8). Similarly, in longer sentence we magrehiave ambiguity in larger sub

structures while looking only at the CFG. In ordertackle this problem, we add a

number on every non-terminal such that the C-Strecttan uniquely re-parse the

sentence given the grammar. Following is the caneerwe can perform.

(20.10)S-0
(20.2)NP-A-1
(20.3)NPB-3
(20.4)VP2
(20.5)NP-A-4
(20.6)NPB-6
(20.7)PP-5
(20.8)NP-A-7

(20.9)NPB-8

3.3.2 Rule Selection

NP-A-1 VP-2

NPB-3

prp

vbd NP-A-4 PP-5

NPB-6

nns

in NP-A-7

NPB-8

prp

This sub-system performs the selection of most@pate Meta rules that can annotate

the under-process CFG rule. The algorithm runswendelow.

38

For each CFG Rule
For each Template such that LHS of template = LHS o f CFG
rule
If (template’s RHS matches CFG rule’s RHS)
Add template in the list attached with CFG
rule.

The rule selection uses the manually built temglated runs the above algorithm. All the
CFG rules undergo the rule selection process. 3ystem eventually results with all the
CFG rules annotated with all possible f-descripgiofhis system is not responsible for
consistency of F-Description. For example, we ddlee templat€34.20) inExample
34:. The reason of this selection is the matchhefdymbols on Left Hand Side and a
successful mapping of symbols on Right Hand Sid8, e select templaté35.36)
instead 0f(35.35) to map with CFG rud5.1) because of extra symbols we have in
template (35.35) . In order to completely understand thecess, we refer to the

structured walk through in Example 34 and Example 3

3.3.3 Extract Solution

The purpose of this system is to use the outpiRuwé Selection and make it consistent
within a CFG rule [24]. For instance, a CFG ruepassibly annotated with f-description
which comes from two templates and both templatesireconsistent with each other.
This sub-system selects the template (or annodatiat annotates maximum number of

symbols in a CFG rule.

There is also a possibility that a CFG rule is dateal by many templates. In such case,
we perform the grouping and make groups of temgltitat do not clash with each other.
The group with most coverage is then selected angséd to annotate that CFG rule.

Consider the following Example 21 [24].
Example 21:

Assume a rule as:

39

S - WP XP YP ZP

Consider the output of Rule selection as:

S - WP XP YP ZP

(a) A B
(b) C D

©) A C E
(d) A D E

Here, the (a), (b), (c) and (d) are the templat@lmering (manually built templates) and
‘A’, ‘B, ‘'C’, ‘D’ and ‘E’ are the f-description amotations that a rule may add to the CFG

rule.

The output of Rule selection shows the annotationnistance (a) marks ‘WP’ as ‘A’ and
‘XP’ as ‘B’. Now resolving the rule we can group) @nd (d) together as they do not
clash with each other and similarly (b), (c) aniiddn also be grouped together as they
are consistently annotating the CFG rule. We selextsecond group because it has the
most coverage in this scenario. If more than owoegican annotate with same coverage,
we select the resultant group arbitrarily. Althoughis selection may or may not be

linguistically correct.

3.3.4 LFG Generation

LFG generation outputs the formal LFG syntax basedhe rules resolved by ‘Extract
Solution’. By reparsing the input sentence fromstlgenerated LFG, we get the
corresponding F-Structure. The LFG generated ksygtib-system is specific to the input
sentence. LFG parser requires completely annotated to build F-Structure whereas it

Is possible in the annotation process mentionexkations above that there are still some

40

symbols left un-annotated in the CFG rules. As imaed in Sectior2.2.6 , ADJUNCT
are the verbal attributes not classified in sulegatization of a predicate. Therefore, we
annotate the un-annotated symbols as ADJUNCT.

The LFG generated by this sub-system is still reseninistic (sedexample 34:, CFG
rule (34.13) and34.17)) and can generate multiple C-Structunegparsing phase. In
order to make it deterministic, we add a unique Ip@in{as described in Secti@B.1)
on each non-terminal symbol [24] as shown in Examp# and Example 35. This
addition makes the grammar deterministic and unguothis. Example 34 and 35

describes this process in detalils.

41

4 ANALYSIS

This section covers different aspects appearedewtidveloping the templates. The
analysis is based on the linguistic as well as adatpnal concerns. We also discuss the

additions and variations we made from the origpraposed technique [7].

4.1 Template Syntax Variation

There are certain variations from original modelSection2.3.4.1 [7]. The existing

regular expression scheme is supposed to annbetgrammatical functions but cannot
add any other lexicalized feature descriptionstt&oaddition is made to original model
[7] such that there are two annotation parts. Thetax is supposed to follow the

expression given below.
LHS > RHS @ [Annotation] (@ [F-descriptions & constraints]).

The second part after RHS (F-descriptions and cains$) is to add the additional

features descriptions or to apply some constraifitese constraints are evaluated later in
the constraint solver. The annotation process adlys them while generating an LFG
rule. Moreover, this part is an optional part otemplate. As an example, see the

following rule.

VP:vp >*VBD:vl * ADVP:al *
@ [v1:ADJUNCT ADV$===al, vp: t===v1]
@ [vi: 1 INF = NEG].

This template describes that the ADVP is the ADJUMNDV of main verb and the main

verb has an attribute-value pair as INF = NEG.

We have added a relation symbol *_’ which can bedus annotation part of a template.
The purpose of this symbol is to only define theepaand child relation and leaving the

type of relation to ‘unknown’. This ‘unknown’ im@s that there are some computation

42

left to resolve this relation for instance in caastt solver. To understand consider the

following template.

VP:vp >*VBD:vl * S-A:sl *

@ [vp:_===s1,vp: 1===v1]

@ [sl [1 XADJUNCT= & |INF =c NEG]]
|
[1=, & | XCOMP INF=cPOS]]].

The above template describes that, initially, 8&5 its parent ‘vp’ and same does ‘v1'.

However, ‘v1’ defines its relation with parentas | but ‘s1’ does not.

In the 2nd annotation part, ‘s1’ describes thatas two types of relation possible. As
mentioned in the previous sections, the constraiiter resolves which path can be
followed on basis of unification. The relation dameither 1 XADJUNCT =|‘or ‘1 = |’
depending upon the success and failure of resgectimstraint. The symbol ‘&’ forces

all of the conditions and attributes to satisfy andy.

4.2 Verbal Analysis

We discuss here the grammatical functions obsemei@ developing the templates.

4.2.1 Subject (SUBJ)

The sentence marking (clausal level) non-terminatdudes ‘S’, ‘S-A’ etc in Penn

Treebank tagging guide [34]. Usually, subject appean the sentence level
discrimination between noun phrase and a verb phmagh that the noun phrase
completes itself before the start of verb phrase.

For instance, consider the following template.

S:s>*NP-A:nl1 *VP:vl *
@ [v1:SUBJ===n1,s: 1===vl].

43

This template describes that in the domination $f, “‘we have a noun phrase (with
argument marked) before a verb phrase. If thikésdase, we can mark it as subject of
the verb phrase. There is a possibility that twomphrases occur before the verb phrase
and one of them is the subject and the other isodifrar of the subject. Following

Example 22 shows the sentence level subject modifie
Example 22:

PRETORIA, South Africa (AP) Adam Gilchrist hit the fastest
half-century...

As we can clearly see, that ‘PRETORIA’ cannot lassified as the subject of the verb
‘hit’. The C-Structures of sentence is as following

(S
(NP PRETORIA)
(NP-A South Africa (AP) Adam Gilchrist)
(VP hit the fastest half-century...)

)

The CFG rule for S is as follows.

S -NP NP-A VP

We have template for this observation [25] as fefio

S:s > * [NP:n1|NP-A:n1] * NP-A:n2 * VP:v1 *
@ [n2:ADJUNCT MOD$===n1,s: 1 SUBJ===n2,s: 1===vl].

The template annotates as: the first noun phraBe(whether it is NP or NP-A) is the
adjunct modifier of subject ‘n2’. The ‘n2’ (whicls ialready marked as the verbal
argument and is closer to verb phrase at sentened Is the subject of the verb. Hence,

the template annotates CFG rule and results asafsll

44

S - NP: 1 SUBJADJUNCT MOD = | ;NP-A: 1 SUBJ= |;
VP: 1=,

Similarly, in SBAR, SBARQ etc (subordinate clausael non-terminal) can have a

‘WH’ word as subject. The template rule is shown as

SBAR,SBARQ,SQ:sbar > * WHNP:w1 * [SG-A:s1|SQ:s1|S-A :s1]
* @ [s1:SUBJ===wl,sbar: 1===s1] .

Consider the following Example 23 that has a ‘WHirdras subject.
Example 23:
Who knows about the CSD and its works?
The C-Structure is as follows.
(SQ
(WHNP Who)

(SG-A knows about the CSD and its works)

CFG rule for SQ is as follows.
SQ — WHNP SG-A
And it is annotated as given below.
SQ - WHNP: SUBJ = | ; SG-A: T= 0.

Another form of sentences was observed. The subgtialso move and be placed after

the verb in an active declarative sentence [25].

Example 24:

45

"Ponting's team looks a good one, but it carries no
wrote the former England bowler Mike Selvey in the

aura,”

Guardian

The main verb ‘wrote’ in the above sentence hassthgect ‘the former England bowler

Mike Selvey’. This subject is not at the positiohexe usually is occurs. In such case,

Collins’ parser parses the above sentence as e@t/edntence and marks as SINV. The

parse structure is as follows.
(SINV

(S ‘Ponting’s team looks a good one, but it

carries no aura’)
(VP wrote)

(NP the former England bowler Mike Selvey)

CFG rule for SINV is as follows.
SINV - S VP NP
The template that can map the above CFG rulefisllasvs.

SINV:sinv > * S:s1 VP:vl1 NP:nl1 *
@ [v1:COMP===s1,v1:SUBJ===n1,sinv:

And the resulting annotation and LFG rule is akfes.

SINV - S: + COMP =, ; VP: t =,

1 :::V]_]

+ CLAUSE_TYPE = DECLARATIVE;

NP: 1+ SUBJ = | ;.

46

4.2.2 Object (OBJ)

The regular position of the second argument of i V& after the verb itself. In Penn
Treebank based parsing, the parent clause of oisjebe verb phrase itself. So a noun
phrase within the verb phrase is likely to be objfcthe verb. Examples 13 and 14
describe the regular occurrence of object. It heenbobserved that the object phrase is
adjacent to verb. No other phrase can occur betwedm and its object e.g. any other
noun, adjective, clausal or other phrase excepp#hnicle words. Consider the following

example.
Example 25:
He blew up his tires.

The above sentence has a particle ‘up’ with manbh aad is moving the object forward.
The C-Structure is described as;

(S
(NP He)
(VP blew~vbd
(PRT up)

(NP his tire)

The ‘blew~vbd’ refers that the original tree hagm@minal ‘vbd’ which is representing the
word ‘blew’. The CFG rule for VP is as follows.

Y/ SR vbd PRT NP

47

The above CFG rule describes that in the productidnd’ and ‘NP’ are adjacent except
with a particle in between. The template rule ndette annotate such phrase is the

following;

VP:vp > * [VBD:v1|VBG:v1|VBN:V1|VBP:v1|VBZ:v1] (PRT :al)
NP:nl* @ [v1:0OBJ===n1,vp: 1===v1].

Note that it is not mandatory that every phrasanisotated in a template. The template
annotates only the symbol referred in its annotapart. In above template, PRT (the
particle) is only mandatory for alignment, not &motation.

4.2.3 Secondary Object (OBJ2)

As described earlier, the third functional argumanverb can have is the secondary
object. The secondary object or the object2 ocstristly after the first object without

any intermediate phrase. The following example shtihwe case of secondary object.
Example 26:

He showed them the way

Collins’ parser parses the sentence as;

(S
(NP He)
(VP showed~vbd
(NP-A them)
(NP the way)
)
)

CFG rule for VP is as follows.

48

VP - vbd NP-A NP

The second noun phrase in the verb phrase is tomdary object. The template needed
to annotate the above rule is;

VP:vp > * [VBD:v1|VBG:v1|VBN:V1|VBP:v1|VBZ:v1] (PRT :al)
[NP-A:n1|NPB:n1|NP:n1]
[NBP:n2|NP:n2|NP-A:n2] *
@ [v1:0BJ===n1,v1:0BJ2===n2,vp: 1===v1].

We can have a particle between verb and first objmg we cannot have any phrase
between object and secondary object.

4.2.4 Oblique (OBL)

We have observed that class oblique can be merghdhe class adjunct. There are two
reasons for this merge. The primary reason is litabo identify the oblique part i.e. we

are unable to differentiate between the constitagntture of adjunct and oblique.
Example 27:
(27.a) She gave the pen to ahmad.
The C-Structure is as follows.
(S
(NP-A
(NPB she/PRP))
(VP gave/VBD
(NP-A
(NPB the/DT pen/NN))

(PP to/TO

49

(NP-A
(NPB Ahmed/NNP)))))
The CFG rules extracted from above C-Structureaar®llows.
(271) S - NP-AVP
(27.2) NP-A -~ NPB
(273) NPB - PRP
(27.4) VP - VBD NP-APP
(275) NP-A - NPB
(276) NPB - DT NN
(277) PP - IN NP-A
(27.8) NP-A - NPB
(2790 NPB - NNP
We state sentence (27.b) and compare it with seat@7.a).
(27.b) She saw a pen on table.
The C-Structure is as follows.
(S
(NP-A
(NPB she/PRP))
(VP saw/VBD

(NP-A

50

(NPB a/DT pen/NN))
(PP on/IN
(NP-A
(NPB table/NN)))))

The C-Structure is as follows.
(27.10) S ~ NP-AVP
(27.11) NP-A . NPB
(27.12) NPB - PRP
(27.13) VP - VBD NP-A PP
(27.14) NP-A . NPB
(27.15) NPB - DT NN
(27.16) PP - IN NP-A
(27.17) NP-A . NPB

(27.18) NPB - NNP

In the sentence (27.a) of above exanifweahmed’ is parsed under PP which is a
prepositional phrase. This phrase is more likelpeéamarked oblique (see Example 15).
However, in the sentence (27.b) of Example ‘@,table’ is also parsed under PP.
The PP in rul€27.4) is of oblique form whereas in r7.13) it is some other adjunct.
Clearly, we can see no difference between the GR€3(27.4) and27.13) and hence

we cannot differentiate the oblique and adjunctss problem leads us to merge the two

verbal classes; oblique and adjuncts.

51

4.2.5 Closed Complementary Clause (COMP)

The complementary class can be sub-divided intodiasses, one with subject and other
without (or shared) subject. The class with subfectclosed clause) is represented here
as COMP.

Example 28:
We quote Example 16.
Ahmad knows that Asif cheated.
The C-Structure is as follows;
(S
(NP-A (NPB ahmad/RB))
(VP knows/VBZ
(SBAR-A that/IN
(S-A
(NP-A
(NPB asif/IN))
(VP cheated/VBN))))))
We have the CFG rule for above verb phrase as
VP - vbz SBAR-A

The sentence clause under a verb phrase is maskednaplimentary clause of the verb

[25]. The template written for this annotation sskeelow.

52

VP:vp > * [VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1] *
[S:s1|SBAR-A:s1|SBAR:s1] *
@ [v1:COMP$===s1,vp: 1===vl].

The symbols in Right Hand Side of the above terepdaie arranged in two groups. First
is the disjunction of verb POS symbols. The se®mtds the disjunction of symbols used
to dominate the sentence clause. These subordilzaiges are marked as complementary

clauses of the main verb represented by ‘v1’.
Example 29:
Ahmad came before | could leave.
The C-Structure is as follows.
(S
(NP Ahmad/NNP)
(VP came/VBD
(SBAR-A before/IN
(S-A
(NP 1)
(VP could
(VP leave))))))

The ‘SBAR-A’ in above C-Structure is similar to ‘BR-A’ in previous example. Note
that the word ‘that’ and ‘because’ is tagged widme POS in both examples (Example
28 and Example 29). The role of prepositional eleimigefore’ and ‘that’ is to show the

subordinate element. For instance, consider theWoig template.

53

SBAR-A:sbar > * IN:il1 * [S-A:s1|S:s1] *
@ [sbar: 1===81,
sbar: 1CONJ_FORM===i1:CONJ_FORM].

The template describes that the sentence clausefied with its parent ‘SBAR’ without
any subsidiary annotation i.e. = |’ and ‘IN’ only adds the ‘CONJ_FORM'’ to its parent
structure.

4.2.6 Open Complementary Clause (XCOMP)

XCOMP is the class where the subject of clausaustionally controlled outside this
clause. Hence, this is a subordinate clause andrimbservation the verb only occurs in
its nonfinite form.

Example 30:
Using Example 16.
Asif refused to come.

The C-Structure is as follows;

(S
(NP Asif)
(VP refused~vbd
(SG-A to come)
)
)

The CFG rule is:

VP - vbd SG-A

54

The XCOMP shares object with the parent clauses Thibecause semantically, the
subject of both verbs is the same [13] [25]. Thegdkte is as follows.

VP:vp >*VBD:vl * SG-A:sl *

@ [vp:_===s1,vp: 1===v1]
@ [vl: 1 INF=NEG, sl1:[
[1=, & | XCOMP INF =c POS]
I
[1+ XADJUNCT= & |INF =c NEG]]] .

As mentioned in Sectiod.1, the constraint can only define which of thelesive
relations unify with rest of F-Structure in congttasolver. The SG-A either ha$=]’ if
there is ‘XCOMP’ already mentioned in ‘SG-A’ dowinettree and attribute INF as POS
or it is marked ‘XADJUNCT’ if at the current levelf F-Structure building SG-A has
attribute INF as NEG.

4.2.7 ADJUNCT

The ADJUNCT has five main sub-categorizations im observation [13]. Though we

have marked even more but they are rather spegificused in flatter rules.

4.2.7.1 ADJECTIVE

As mentioned above, the adjuncts do not play 4 rota in a sentence and they are often
the modifiers of a PRED. The adjectives as a medifre marked within adjunct
category. For instance adjective as a noun modgigre ADJUNCT ADJ of a noun. For

instance, the following template describes thetieia

NP:np > * [JJ:j1|JIR:j1] *
[NN:n1|NNS:n1|NNP:n1|NNPS:n1]
@ [np: 1ADJUNCT ADJ$===j1,np: 1$===nl].

4.2.7.2 ADVERB

There are further two sub-types marked within adser

55

1. The sentence level adverbs.
2. Any adverb other than the sentence level.
The sentence level adverbs are referred as follgwin

S:s>* ADVP:al * VPl *
@ [V1:ADJUNCT S_ADV$===al,s: r===v1] .

Any adverb which is parsed and marked at senteave is ADJUNCT S_ADV.

In any other observation, we mark the adverbs a3UNICT ADV. Following templates
are instances of the case 2.

ADJP:adjp > * RB:rl1 * [JJ:j1|JJR:j1]
@ [j1:ADJUNCT ADV$===r1,adjp: 1===1] .

NP-A:np-a > NPB:n1 ADVP:al
@ [n1:ADJUNCT ADV===al,np-a: 1===n1] .

PP:pp > RB:rl1 * PP:pl * @ [p1:ADJUNCT ADV$===r1].

The first instance of template describes the adakdrcurrence in adjective phrase. The
observation describes that the head in adjectivasghis the adjective itself. Similarly,
the second instance exemplifies for adverb phrase moun phrase and third template

refers an adverbial phrase within a prepositiomahge.

4.2.7.3 Prepositions
Prepositional phrases often add the temporal aatiaspeference in a sentence and again
are categorized as ADJUNCT. The prepositional gzrase also of two types.
Sis>*PP:pl *VP:vl *
@ [V1:ADJUNCT S_PREP$===p1,s: 1===v1]
@ [v1: tCLAUSE_TYPE=DECLARATIVE] .

56

S-Ais-a>*PP:pl * VP:v1 *
@ [v1:ADJUNCT S_PREP$===p1,s-a: t===v1]
@ [v1: 1CLAUSE_TYPE=DECLARATIVE] .

NP:np >* PP:pl*
@ [np: + ADJUNCT PREP$===p1] .

ADJP:adjp > * JJ:j1 * PP:pl
@ [j1:ADJUNCT PREP$===p1,adjp: r===1] .

VP:vp > *VB:vl * PP:pl * (PP:p2 *)
@ [v1:ADJUNCT PREP$===p1,v1:ADJUNCT PREPS$=== 2,
vp: 1===vl].

The first two instances refer to a sentence levep@sition whereas remaining tree
templates are example of the case where a preposginot marked as sentence level
preposition.

4.2.7.4 Relative Clause

Relative clause is the modifier of a noun phradas Bubordinate clause is a complete

sentence within a noun phrase and is exemplifidd|sving.
Example 31:

The woman, who died earlier this week, was from Cam eron
County on the edge of the Gulf of Mexico.

C-Structure;
(S
(NP (NPB The woman)

(SBAR who died earlier this week)

57

(VP was from Cameron County on the edge of the
Gulf of Mexico)

)
The CFG rule is as follows.
NP - NPB SBAR
This CFG rule is annotated by the following temglat

NP:np > * NPB:n1 * SBAR:s1 *
@ [n1:ADJUNCT REL_CL===s1,np: 1===n1] .

The template marks the ‘NPB’ as the head of thagghand SBAR as the modifier of this
phrase. The type of modifier is ADJUNCT with subsdification of relative clause
(REL_CL).

4.2.7.5 Participle

The participle is a non-finite verb and sharesdhieject with parent clause. Usually it is
also considered as a modifier unlike XCOMP. As aldhey can be considered as
predicative words, but in a presence of a noundlaiss acts as a modifier. For instance,
the following example has an ADJUNCT PARTICIPLEtn

Example 32:
Gazing at the painting she recalled the house
The C-Structure for this sentence can be as foligwi
(S
(NP
(SG Gazing at the painting

(NP she)

58

)

(VP recalled the house)

Containing the CFG rule:

NP -SG NP

This CFG rule can be annotated with the followiagnplate.

NP:np > * SG:sl1 * NP:nl
@ [n1:ADJUNCT PARTICIPLE===s1,np-a: 1===n1] .

4.3 Relaxing Constraints

As mentioned above (see Sect®B.4), the LFG built is domain specific and cauty

be used to reparse the sentence under-procesgvétoding templates and generating
LFG rules, our intention is to avoid multiple pase C-Structure and reduce the search
space for constraint solver. However, the proposedhodology based on [7] (see
section2.3.4.1) describes the annotation within thepscof a single CFG rule.
Therefore, it lacks the knowledge of constituenicture beyond the current rule in the
hierarchy. For example, the CFG rule (33.1)Example 33: describes that looking at
only a single rule does not completely define #latron (SUBJ or OBJ). We need to add
non-determinism in our functional description t@yade the flexibility in deciding the
relation at later stage. Later, with the help afisteaint solver and the unification process,
we decide which path is computable and can reauf-&tructure.

We have introduced a binary operator /' in the GAttibute’ part of template syntax
(described in Appendix B). The operator acts asspumction between its operands. To

understand the need of this operator, we refdraddllowing example.

Example 33:

59

We have a sentence as;

What is your name?

The extract of C-Structure for the above sentesess ifollows.

(SBARQ
(WHNP what)
(SQ is your name)

The CFG rule for SBARQ is as follows.
(33.1) SBARQ - WHNP SQ

It is too early to annotate the ‘WHNP’ (representbf the word ‘what’) by looking at
the above CFG rule. The word ‘what’ can play a sat$ as well as an object’s role in a
sentence [25]. Instead of making a wrong deciswa&,make two rules such that one

annotates this ‘WHNP’ as subject and other as objde template is written as follows.

SBARQ:sbar > * WHNP:wl * SQ:sl1 *
@ [s1:SUBJ/OBJ===wl,sbar: 1===s1] .

This template annotates the CFG rule as follows.
SBARQ- WHNP: 1 SUBJ= ;;SQ: 1= ;.
SBARQ- WHNP: 1 OBJ= |;SQ: 1 =;.

This annotation solves the problem and makes adeterministic path for the moment.
The constraint solver solves the issue by makir8jrieture from leaf nodes to root in a
C-Structure. WHNP is selected depending upon ti&ré&eture we receive from SQ i.e.
if there is already a subject in SQ, WHNP becomB3 Gtherwise SUBJ.

60

4.4 Structured Walk Through

The following discussion portrays the system floging a dry run of corpus based

examples.
Example 34:

The report warns that inaction could push millions of people

worldwide into unemployment.
The C-Structure of the sentence is as follows.
(S
(NP-A (NPB the/DT report/NN))
(VP warns/VBZ
(SBAR-A that/DT
(S-A
(NP-A (NPB inaction/NN))
(VP could/MD
(VP-A push/vB
(NP-A (NPB millions/NNS)
(PP of/IN
(NP-A (NPB people/NNS)
(ADJP worldwide/JJ))))
(PP into/IN

(NP-A (NPB unemployment/NN))))))))

61

This parse structure is the input of the annotasgatem described in Figure 15
Machine Translation System architectuamd Figure 16: Proposed architecture of
Annotation SystermAs a first step, we extract CFG from this inplihe grammar is as

follows.
(341) S - NP-AVP
(342) NP-A - NPB
(34.3) NPB - DT NN
(344) VP - VBZ SBAR-A
(345) SBAR-A - IN S-A
(34.6) S-A - NP-A VP
(347) NP-A - NPB
(348) NPB - NN
(349) VP - MD VP-A
(34.10) VP-A - VB NP-APP
(34.11) NP-A -~ NPB PP
(34.12) NPB - NNS
(34.13) PP -~ IN NP-A
(34.14) NP-A - NPB ADJP
(34.15) NPB - NNS
(34.16) ADJP - JJ

(34.17) PP - IN NP-A

62

(34.18) NP-A . NPB
(34.19) NPB - NN

In order to get LFG for this CFG, we have to anteota with feature and functional
description. The next process is to select thegpate templates which can annotate
these CFG rules. In the rule selection, we ignbee@FG rules having only single right
hand symbol (terminal or non-terminal). If thererdy one term in the right hand side of
a grammar rule, it can have only one relation wib left hand symbol (or parent
symbol). This relation ist=|" which implies that all the child’s attributes adelivered

to parent without any subsidiary change or semdotim. As a result, we exclude the
CFG rules (34.2), (34.7), (34.8), (34.12), (34.1634.16), (34.18) and (34.19) listed
above. We have to annotate rules (34.1), (34.3).4]3 (34.5), (34.6), (34.9), (34.10),
(34.11), (34.13), (34.14) and (34.17).

One grammar rule is checked against all templatsee if any of them can annotate the
CFG rule. The algorithm of annotation is describe&ection3.3.2 . For instance, we

annotate rule (34.17) using following template (@ppendix C for complete list).

(34.20) PP:pp > * IN:il * [NPB:n1|NP-A:n1|ADJP-A:nl1] *
@ [i1:0BJ===n1,pp: 1===i1] .

The template rule (34.20) shows that it can onlyubed for the CFG rules having left
hand side as ‘PP’. Furthermore, it should have'lldh symbol on right hand side

followed by disjunction of ‘NPB’, ‘NP-A’ and ‘ADJR’ symbol. The rule selection is
performed to make sure the correct alignment oftmm The alignment of (34.17) and
(34.20) is as follows.

PP - IN NP-A
PP:pp > * IN:i1 * [NPB:n1|NP-A:n1|ADJP-A:n1] *

We ignore the annotation part of a template in e Selection. From the above

alignment, we can also say that this template cem evork if there is one or more

63

symbols between ‘IN’ and ‘NP-A’ in grammar rule (definition of Kleene star [7]). In
the next phase, we extract the solution by anm@ga@€FG rule with corresponding
aligned templates. From the CFG r(34.17) and templag4.20) , we can annotate as

follows.
PP = IN NP-A

PP:pp > * IN:i1 *[NPB:nl] NP-A:nl |[ADJP-A:n1]*
@ [i1:0BJ===n1,pp: 1===i1] .

As described in Secticn.3.4.1 rule (34.6), (see appendix B also)dbeve annotation
described that ‘IN’ (i1) has a relation=]" with the parent ‘PP’ (pp) and ‘NP-A’ (nl) is
subcategorized with relation ‘OBJ’ under ‘IN’. Ugithe alignment, we annotate CFG to

result following LFG rule.
(34.21) PP - IN: 1= NP-A: 1 0OBJ= ;
Similarly, we annotate each CFG rule to give tHeWang LFG for current sentence.

(3422) S - NP-A: 1 SUBJ= |:VP: = |,
+ CLAUSE_TYPE=DECLARATIVE ;.

(34.23) NP-A -NPB: 1 = ;.
(34.24) NPB-DT: 1 SPECDET = | ;NN: 1= ;.

(34.25) VP -VBZ: 1= |, +1INF=NEG;
SBAR-A: 1 COMP = | ;.

(34.26) SBAR-A - IN: 1CONJ_FORMgHY_FORM;
S-A: T = .

(3427) S-A - NP-A: 1 SUBJ= | :;VP: 1= |,
1+ CLAUSE_TYPE=DECLARATIVE ;.

64

(34.28)
(34.29)
(34.30)

(34.31)

(34.32)

(34.33)
(34.34)

(34.35)

(34.36)
(34.37)
(34.38)
(34.39)

(34.40)

NP-A -NPB: 1+ = | ;.

NPB - NN: + = | ;.

VP - MD: += | ;VP-A: = ;.

VP-A -VB: 1+ = | ;NP-A: 10BJ= ;
PP: + ADJUNCT PREP

Ly

NP-A - NPB: ;= |;
PP: + ADJUNCT PREP

I
-

NPB - NNS: 1 = ;.

PP -IN: += | :NP-A: 1 0BJ= ;.

NP-A -~ NPB: 1+ = | ;
ADJP: 1+ ADJUNCT ADJ = | ;.

NPB - NNS: 1 = | :.

ADJP -JJ: += ;.

PP -IN: 1= | ;NP-A: 0OBJ= ;.

NP-A - NPB: 1 = | ;.

NPB - NN: + = | ;.

The rule (34.11) is annotated with following tentpka

(34.41)

(34.42)

NP-A:np > * NPB:n1 * PP:pl *
@ [n1:ADJUNCT PREP$===p1,np:

NP-A:np > * PP:pl *
@ [np: + ADJUNCT PREPS$===p1].

65

T —_——

nij.

The rule (34.11) is annotated with two apparenifiecent templates. However, the both
templates are non-conflicting and provide the sarfgmation about annotation of ‘PP’.
Thus, we get the annotation resulting as rule @34.8Bhe Lexical Functional Grammar
listed above is still ambiguous. Rule (34.34) aB4l.38) are equal and hence can be used
alternatively, for instance in parsing the rule.8®). To avoid this problem, we make the
grammar un-ambiguous in ‘LFG generation’ step (®ac8.3.4) by adding unique

numbers with each symbol as follows.

(34.43) S 28 - NP_A 45 ;SUBJ= |:VP 100: += |,
+ CLAUSE_TYPE=DECLARATIVE ;.

(34.44) NP_A 45 _NPB 61: 1= ;.
(34.45) NPB_61 —DT: 1 SPECDET = | ;NN: = ;.

(34.46) VP _100 —VBZ: 1= |, 1INF=NEG;
SBAR_A_129: { COMP = | ;.

(34.47) SBAR_A 129 - IN: {CONJ_FORM#HY_FORM;
S A 154: t =

(34.48) S_A_154 _NP_A_173: y SUBJ= |;VP_223: 1= |,
1 CLAUSE_TYPE=DECLARATIVE ;.

(34.49) NP_A 173 - NPB_191: 1= ;.
(3450) NPB 191 - NN: 1= ;.
(3451) VP_223 _MD: 1= |:VP_A 249: 1= ;.

(3452) VP A 249 _VB: 1= ;NP A 278 ;OBJ= |;
PP_436: + ADJUNCT PREP

U

(34.53) NP_A_278 - NPB_296: 1= | ;
PP_324: + ADJUNCT PREP

1
-

66

(34.54) NPB 296 - NNS: 1= ;.
(3455) PP_324 _IN: 1= |:NP_A 349: ;OBJ= ;.

(34.56) NP_A_349 . NPB_365: 1= |;
ADJP_400: 1 ADJUNCTADJ = ;.

(34.57) NPB 365 —NNS: 1= ;.

(34.58) ADJP_400 -JJ: 1

Vi
(3459) PP 436 —IN: = | ;NP_A 469: {OBJ= ;.
(34.60) NP_A 469 —NPB 491: 1= ;.

(34.61) NPB_491 - NN: t = | ;.

All the non-terminal symbols in the grammar areaated with a number that makes the
parse structure unique using this grammar. Foant#, rule (34.53) cannot use any other
LFG rule but (34.55). The set of LFG rules (34.48)34.61) comprises the grammar we
need to parse and make F-Structure of given semtéffus grammar is the input of
‘Reparsing and F-Structure Building’ module shown Rigure 15. This module is

responsible for re-parsing and building F-Structiréhe sentence.

Follows is the F-Structure generated by the Funefidapper Systefusing the above
LFG.

! The Machine Translation System available at wwwigcorg

67

=~ Source F-Structure # 1

NUM—5G PL
DEF—FOS
i~ NCOUNT —FOS NEG
L DTYPE —art
e NTYPE — COMMON
B THS_ASP
TENSE —FRES
- COMP
B-PRED

~INDEX—8

L YALUE — push_y

- GF—SUBJ 0B

L WALUE — inaction_n
i NUM —SG
L NTYPE — COMMON
=08
= PRED
- INDEX—7
LvALUE —million_n
UM —FPL
TYPE — COMMON

VALUE —of_p
- GF—OBJ

- INDEX—10
L WALLUIE — worlchwicle_ad)]
A0 _FORM—1
PHY_FORM — of
£ MODAL_STRUCT
L MODAL_FORM — could
TNS_ASP
. TENSE—PRES
- CLAUSE_TYPE — DECLARATIVE
CONJ_FORM— THAT
-~ YOICE — ACTIVE
- ADJUNCT
& PREP

m

INDE=—11
WALUE —into_p
-~ GF—0BJ
0BJ
E-PRED
NDEX—12
WALUE — unemployment_n
MNUM— 55
: NTYPE — COMMON
- PHY_FORM—into
i . PESEM — TEMF DIR LOC INST
CLAUSE_TYPE — DECLARATIVE
INF— NEG

Figure 17: A complete F-Structure using our generated LFG

68

The F-Structure is formed in a hierarchical mannstead of a attribute value matrix
form. Each node contains either an attribute oatamibute value pair. In case if there is
only one attribute, the subsidiary F-Structurehsven as the sub-tree of that attribute
node. The root predicate of the F-Structure isntlaén verb identified in the sentence i.e.
‘warn’. The ‘SUBJ grammatical function is the sabf of predicate i.e. ‘The report’.
Tense we can report for this predicate is ‘Presefite clausethat inaction

could push millions of people worldwide into unempl oyment’ is
identified as the close complementary clause ofnnpaedicate. This complementary
clause has its own predicate i.e. ‘push’. Note tiinait’ is only adding an attribute to the
complementary clause i.e. ‘CONJ_FORM — THAT".

Example 35:
Roderick Daniels said police in Tenaha, Texas, took the
money in October 2007 after they stopped him for do ing 37

mph in a 35 mph zone.
C-Structure of the sentence is as follows.
(S
(NP-A
(NPB roderick/NN Daniels/NNS))
(VP said/VBD
(SBAR-A
(S-A
(NP-A
(NPB police/NNS))

(PP in/IN

69

(NP-A
(NPB Tenaha/NNP)
(NP (NPB Texas/NNP))))
(VP took/VBD
(NP-A
(NPB the/DT money/NN))
(PP in/IN
(NP-A (NPB October/NNP 2007/CD))
(SBAR after/IN
(S-A
(NP-A
(NPB they/PRP))
(VP stopped/VBD
(NP-A (NPB him/PRP))
(PP for/IN
(SG-A
(VP doing/VBG
(NP-A
(NPB 37/CD mph/NN))

(PP in/IN

70

The CFG rules extracted from the above C-Strudtuas follows.

(35.1)
(35.2)
(35.3)
(35.4)
(35.5)
(35.6)
(35.7)
(35.8)
(35.9)
(35.10)
(35.11)
(35.12)
(35.13)
(35.14)
(35.15)

(35.16)

(NP-A

S

NP-A

NPB

VP

SBAR-A

S-A

NP-A

NPB

PP

NP-A

NPB

NP

NPB

VP

NP-A

NPB

(NPB &/DT 35/CD mph/N
INNN))

—

NP-A VP

NPB

NN NNS

VBD SBAR-A

— S'A

NP-APP VP

NPB

NNS

IN NP-A

NPB NP

NNP

NPB

NNP

VBD NP-APP SBAR

NPB

DT NN

71

N zone/NN

(35.17) PP - IN NP-A

(35.18) NP-A ~ NPB
(35.19) NPB - NNP CD

(35200 SBAR- IN S-A

(35.21) S-A - NP-AVP

(35.22) NP-A ~ NPB

(35.23) NPB - PRP

(3524) VP - VBD NP-A PP
(35.25) NP-A ~ NPB

(35.26) NPB - PRP

(3527) PP - IN SG-A
(35.28) SG-A ~ VP

(3529) VP - VBG NP-A PP
(35.30) NP-A ~ NPB
(3531) NPB -~ CD NN

(3532) PP - IN NP-A

(35.33) NP-A ~ NPB

(3534) NPB -~ DT CD NN NN

We want to align template(s) with the CFG rule {35Assume that we want to check

whether the following template can be aligned dr no

72

(35.35) S:s>*NP-A:n2*NP:n1*VP:vl*

@ [n2:ADJUNCT MOD$===n1,s: 1+ SUBJ===n2,
S: 1===v1]
@ [v1: 1CLAUSE_TYPE=DECLARATIVE] .

The template (35.35) can be aligned with rule (Bbelcause both have ‘NP-A’ and ‘VP’
in sequence. However, there is a symbol ‘NP’ betws&th symbols showing that there
must be another ‘NP’ in rule (35.1) between ‘NP&kid ‘VP’. Since, there is no other
symbol on right hand side of rule (35.1) so we caralign the template with rule (35.1).
As a result, we ignore this template and look fune other template that can match the

CFG rule. We have the following template to matah GFG rule.

(35.36) S:s>*NP-A:nl*VPwl*
@ [v1:SUBJ===n1,s: 1===vl]
@ [v1: 1+CLAUSE_TYPE=DECLARATIVE] .

The template (35.36) matches the CFG rule (35.4¢thkand can be used to annotate the
CFG rule. We now find the templates matching r@eZ4).

(35.37) VP:vp>*[VBD:vl1|VBG:Vv1|VBN:V1|VBP:v1|VBZ:v1]
(PRT:al) [NP:n1|NPB:n1|NP-A:n1] *
@ [v1:0BJ===n1,vp: 1===v1]
@ [v1: 1INF = NEG] .

(35.38) VP:vp>*[VBD:vl1|VBG:v1l|VBN:V1|VBP:v1|VBZ:v1] *
PP:pl1 * (PP:p2 *)
@ [v1:ADJUNCT PREP$===p1,
v1:ADJUNCT PREP$===p2,vp: r===vl]
@ [v1: 1INF=NEG] .

(35.39) VP:vp-a>*[VBD:v1|VBG:v1|VBN:v1|VBP:vl|VBZ:v1] *

PP:pl*
@ [v1:ADJUNCT PREP$===p1,vp-a: 1===v1]
@ [v1: tINF = NEG] .

73

As we can see there are three possible templagédéscém match the rule (35.24). In
template (35.37), there is an optional ‘PRT’ symttat can be ignored while matching
the template and grammar rule. The template (351@8)another symbol ‘PP’ but this is
optional too. This is to be noted that all of thésmplates are not conflicting and take
part in annotating the CFG rule (35.24). These tatap can also be used to annotate the
CFG rule (35.29). Similarly, we find annotation falt CFG rules and result a LFG that

can uniquely parse the sentence as follows (frden(85.40) to (35.73)).

(35.40) S_26 -NP_A 44: { SUBJ= |;VP_106: 1= |,
+ CLAUSE_TYPE=DECLARATIVE ; .

(35.41) NP_A 44 . NPB 61: 1= ;.
(35.42) NPB_61 —NN: ;$1;NNS: |$1;.

(35.43) VP_106 —VBD: 1= ,, 1INF=NEG;
SBAR_A_134: { COMP = | ;.

(35.44) SBAR A 134 S A 148 1= ;.

(35.45) S_A_148 . NP_A_165: ; SUBJ= | ;
PP_209: 1+ ADJUNCT S_PREP = | ;
VP_327: =L
1+ CLAUSE_TYPE=DECLARATIVE ;.

(35.46) NP_A 165 - NPB_181: 1= | ;.
(35.47) NPB 181 —NNS: 1= ;.
(35.48) PP 209 —IN: 1= ;NP A 234 ;0BJ= ..

(35.49) NP_A_234 _NPB_250: 1 = ;
NP_279: + ADJUNCT NOUN_MOD = ;.

(35.50) NPB_250 - NNP: 1 = ;.

74

(35.51) NP_279 - NPB 294: 1= | :.
(35.52) NPB 294 . NNP: 1 = ;.

(35.53) VP 327 -VBD: 1= ,, 1INF=NEG;

NP_A_354: tOBJ= | ;
PP_404: + ADJUNCT PREP = | ;
SBAR_493: { COMP = | ;.

(35.54) NP_A 354 - NPB_369: 1= ;.

(35.55) NPB_369 — DT: { SPECDET = | ;NN: 1= ;.
(35.56) PP_404 _IN: := |;NP_A 430: {OBJ= ;.
(35.57) NP_A 430 - NPB_447: 1= | ;.

(35.58) NPB_447 - NNP: = |:CD: :SPECCARD = ;.

(35.59) SBAR_493 - IN: {CONJ_FORMgHY_FORM;
S A 521: T =

(35.60) S_A 521 . NP_A_536: 1 SUBJ= | ;VP_581. 1= |,
1+ CLAUSE_TYPE=DECLARATIVE ;.

(35.61) NP_A 536 - NPB 550: 1= | ;.
(35.62) NPB 550 —PRP: 1 = | :.

(35.63) VP 581 -VBD: 1+ = |, 1 INF=NEG;
NP_A 609: 1+ OB = |
PP_648: + ADJUNCT PREP = | ;.

(35.64) NP_A 609 — NPB_622: 1= ;.

(35.65) NPB 622 - PRP: 1= |:.

75

(35.66)
(35.67)

(35.68)

(35.69)
(35.70)
(35.71)
(35.72)

(35.73)

PP_648 - IN:

1= 1;SG_A 673:

SG_A 673 _ VP _687: ;

VP 687 - VBG: 1= |,

NP_A 713:
PP_758:

NP_A 713 . NPB 726: 1= | ;.

NPB_726 - CD: 1+ SPEC CARD =

PP_758 — IN:

NP_A 781 -~ NPB 795 := | ;.

1 OBJ =

Ly

+ COMP = | ;.

1 INF = NEG;

L

1+ ADJUNCT PREP =

+= | ;NP_A_781:

NPB_795 - DT: 1 SPEC DET =

CD:
NN:

1+ SPEC CARD =

1$1 5.

76

i

U

: NN:

1 OBJ =

1 NN:

L

=l

L

1$1;

5 RESULTS

5.1 Training

In the first iteration, the system is trained fandomly selected 100 sentences from Penn
Treebank Corpus. The C-Structures of parsed sesgesne observed and corresponding
templates are extracted. Four iterations are madsl iterations, a batch of 50 sentences
is parsed; manually checked and corresponding teegphre added wherever necessary.

The following table describes the training phase.

Sentences per lteration 100 50 50 50 50
Cumulative Templates 228 242 248 259 267
Addition 0 14 6 11 8

Table 1: Iterations for development of Templates
As the above table shows that in first iteration160 sentences we have added 228
templates. The second iteration has added 14 téssplthe 3rd has added 6, 4th has
added 11 and the 5th has added 8. The reasonrefsiog graph of total templates in
Figure 18 is the nature of natural language. Themgnars obtained from a natural
language continue to grow [3] if there is no comectechnique applied [19] [3]. The
selection of our training sentences is made froea¥ailable news websites (including
BBC and CNN). Figure 19 shows the change in nunabdremplates extracted in each

iteration.

270 -
260 -

250 242 259
240 4 228 248

230
220
210
200

267

Total Templates

100 50 50 50 50
Sentence/lteration

Figure 18: Graph between Total Template and Sentencesgieinyg iteration

77

16
14
12

14

[e o)

Templates Added
[e0)
o
—
—

oONPh~O

100 50 50 50 50

Sentence/lteration

Figure 19: Graph of Templates addition per iteration

5.2 Testing

We have tested 105 sentences for the annotati®@@nsy3 he selection of sentences is as
follows.

BBC 45

CNN 45

Jang English News 15

The testing sentences selected from BBC and CNMrsothe categorieworld news
sports and weblogsThe number of sentences selected from each cgtéegd5. Only
the world newscategory is selected from Jang English News fgtirtg sentences
collection. The average sentence length is 22.4svdfollowing sections discusses the
guantitative and qualitative analysis of the tegtin

5.2.1 Quantitative Analysis

We evaluate the system in terms of precision aaallras follows:

#generatedannotatiors also in reference
#generatedannotatios

precision =

#generate@nnotatiosalsoin reference
#referenc annotatioss

recall=

78

Precision 0.986
Recall 0.932

Here, the term annotation implies the LFG annotatésl We have counted LFG rules in
order to report results. The required countablefof LFG rule is shown iExample 34:

(LFG rules from (34.22) to (34.40)) i.e. we ignotlee ‘uniqueness’ we added in
Section3.3.4 in form of numbering. We also ignore tHeé@_rules having only one
symbol on right hand side. So, in Example 33, weeHa&0’ unique LFG rules annotated
by our system. Also, an LFG rule is consideredestrif and only if all the symbols are

annotated correctly.

Total reference unique LFG rules are 397. Our sydtas generated 375 LFG rules. 5 of
them are not correctly annotated. Hence, we haeeabh370 of correct LFG rules out of
397 reference LFG rules. We have calculated PREINS&s a ratio of 370 correctly
generated LFG rules with total 375 generated LH&srand RECALL as a ratio of 370
correctly generated LFG rules with total 397 LF@®sun our reference. The system has
generated these 375 LFG rule using 133 Templatgsdjototal 267 Templates). The
percentage of Templates usage is as follows.

#TemplatedJsed 133

x100= ——=x100 =49.81%
267

percentagef templatesised =
#Total Templates

The percentage of templates used shows the covefaganually developed Templates.
The results show that 50.19% of the Templates havgarticipated in the generation of
required LFG rules. Hence, the coverage of Templfttieour test sentences results to be
49.81%.

The test sentences are also tested on the Machimesldtion Systemthat uses a

manually crafted LFG. The system has resulted foilg stats shown in Table 2.

! See www.crulp.org

79

Results Number Of sentences
CFG or F-Structure failed 48
No F-Structure 52
F-Structure 5

Table 2: Results of Parsing system (in Machine Transta8gstem)
Table 2 shows that 48 sentences have been failedgdGFG parsing or F-Structure
building. 52 sentences have been timed out andethow results. Only 5 sentences have
shown required F-Structure. On the other hand,Lfh@ generated by the Annotation
System has successfully resulted F-Structures wissd in Pipeline parsing model

(section2.3.1) for all 105 test sentences.

5.2.2 Qualitative Analysis

The following discussion shows the analysis of igsies and errors our system has
made. In this section we exemplify the type of exrand reasons to count them. There

are following three types of reasons observed.
1. Collins’ parser has not performed as expected amddrmisguided our system.

2. Our system has selected the wrong template thugdabgting annotation is

wrong.
3. Our system cannot find any template matching th& @He.

In type 1 errors, we have checked to what levesdbe parser misguide. For instance,
does it lead to unexpected phrase identificationvmng sub-categorization frame? If
there is an insignificant error seen, for examplease of wrong POS tag or incorrect
phrase identification that is categorized as ADJUNte error is ignored. We have not
included the sentence in our results for which gragsiides our system to add or remove

phrases participating in sub-categorization lish pfedicate.

Type 2 errors are really serious and may affectaberall system performance. The

problem is that the system cannot select a linigai$y best solution among others. The

80

system selects a solution randomly, yet only 5 (oit375) rules were annotated
incorrectly. It decreases ‘PRECISION’ of the syst@ee Example 37 below).

Type 3 errors (or insufficient coverage) are amessf some less severity. As described
earlier that the grammars related to natural laggsiagrow rapidly [3]. However, our
observation can state that the coverage issuesuvel fare mostly the flat rules from C-
Structures i.e. the flatter grammars need more regeeand hence more training time
than the non-flatter ones. This type of errors eases the ‘RECALL’ of the system (see

Example 38 and Example 39).

To add to all above, we find no annotation misshngvital sub-categorization argument

i.e. the sub-categorization arguments of semaatmog are always marked correctly.

We quote the following example in order to showtipee of errors.

Example 36:

The United States, some European nations and Israel contend
Iran's nuclear development is aimed at developing n uclear
weapons.

The sentence has subject clau$@e United States, some European
nations and Israel’ . This implies that there are three noufke United

States’ , ‘some European nations’ and‘Israel’
C-Structure of the sentence is as follows:
(S
(NP-A (NPB the/DT United/NNP States/NNP))
(NP
(NP (NPB some/DT European/jj nations/nns))

and/CC

81

(NP (NPB Israel/NNP)))
(VP contend/VBP
(SBAR-A
(S-A
(NP-A
(NPB Iran/NNP 's/POS)
nuclear/JJ development/NN)
(VP is/VBZ
(VP-A aimed/VBN
(PP at/IN
(SG-A
(VP developing/VBG

(NP (NPB nuclear/JJ
weapons/NNS)))))

The CFG rules for the given sentence are as follows
(36.1) S ~ NP-ANP VP 271
(36.2) NP-A . NPB
(36.3) NPB - DT NNP NNPS

(364 NP - NP CC NP

82

D))

(365 NP - NPB

(366) NPB - DT JJ NNS
(367) NP - NPB

(36.8) NPB - NNP

(36.9) VP _ VBP SBAR-A
(36.10) SBAR-A - S-A
(36.11) S-A - NP-AVP
(36.12) NP-A - NPB

(36.13) NPB - NPB JJ NN
(36.14) NPB - NNP POS
(36.15) VP - VBZ VP-A
(36.16) VP-A . VBN PP
(36.17) PP _ IN SG-A
(36.18) SG-A - VP

(36.19) VP - VBG NP-A
(36.200 NP-A —~ NPB

(36.21) NPB - JJ NNS

As CFG rule (36.1) shows there is a split in thbjett phrase that marks the nouns
‘some European nations’ and ‘Israel separate to‘The United

States’

83

Following is the LFG our system has generatedHerabove CFG.

(36.22) S 32 NP A 49: ; SUBJ= | ;
NP_121: + SUBJ ADJUNCT MOD = | ;
VP 271: += ,, 1 CLAUSE TYPE=DECLARATIVE..

(36.23) NP_A 49 - NPB 65: 1= | :.

(36.24) NPB_65 —dt: { SPECDET = | ;nnp: $1;

nnps: 191 5.

(36.25) NP_121 — NP _137: ,$::cc. 1CONJ_FORMECONJ FORM ;
NP_220: 1815

(36.26) NP_137 - NPB 154: 1= | :.

(36.27) NPB_154 - dt:SPEC DET = L + ADJUNCT ADJ = ;

nns: t =
(36.28) NP_220 . NPB_236: t+ = ;.
(36.29) NPB 236 —-nnp: 1= ;.

(36.30) VP 271 —vbp: 1= |, 1INF=NEG;
SBAR_A_300: { COMP = ;.

(36.31) SBAR A 300 -S A 312 1= ;.

(36.32) S A 312 NP A 334: 1SUBJ= |;VP 434 ;= |,
+ CLAUSE_TYPE=DECLARATIVE ; .

(36.33) NP_A 334 . NPB 355; 1= | ;.

(36.34) NPB_355 - NPB_367: 1 SPECDET = | ;
Jj: t ADJUNCTADJ = ;nn: 1= ;.

84

(36.35) NPB_367 - nnp: : GENITIVE= |, 1 CASE=GEN,
+ DEF=POS, DTYPE=genitive;

pos: t= g

(36.36) VP_434 _vbz: ;TNS_ASP=STNS_ASP;
VP_A_459:; t= 1, 1INF=NEG;.

(36.37) VP_A 459 _.vbn: 1= |, +1INF=NEG;
PP_482: + ADJUNCT PREP = | ;.

(36.38) PP 482 —in: 1= ,:SG A 511: ;COMP= ;.
(36.39) SG_A 511 — VP 530: 1= ;.

(36.40) VP 530 —vbg: 1= |, 1INF=NEG;
NP_A_565: ;1 OBJ= | ;.

(36.41) NP_A 565 - NPB_582: 1 = ;.
(36.42) NPB_582 - jj: 1 ADJUNCTADJ = ;nns: 1 = ;.

As CFG rule (36.22) shows that noursome European nations’ and

‘Israel’ have become the noun modifiersdifie United States’

This type of error is result of in-correct parseisture made by Collins’ parser. We mark
it as the type 1 error. The error can be ignorethbse we have observed such errors do
not participate in sub-categorization of the prat#ice.g. modifiers have not been
classified as sub-categorization of predicatesoAlse cannot guarantee a statistical
parser to result a correct C-Structure always.

Example 37:

This brings me to the second big theme; who knows a bout the
CSD and its works?

Following is the C-Structure of sentence.

85

(S
(NP-A
(NPB this/DT))
(VP brings/VBZ
(NP-A
(NPB me/PRP))
(PP to/TO
(NP-A (NPB the/DT second/JJ big/JJ theme
(SBAR

(WHNP who/WP)

(SG-A
(VP knows/VBZ
(PP about/IN
(NP-A
(NP

(NPB the/DT CSD/NNP))
and/CC
(NP~works~1~1

(NPB its/PRPS works/NNS)))

The CFG rules are as follows.

86

NN)

MN)

(37.1)
(37.2)
(37.3)
(37.4)
(37.5)
(37.6)
(37.7)
(37.8)
(37.9)
(37.10)
(37.11)
(37.12)
(37.13)
(37.14)
(37.15)
(37.16)
(37.17)
(37.18)

(37.19)

NP-A —

NPB -

VP -

NP-A —

NPB -

PP -

NP-A -

NPB -

SBAR -

WHNP-

SG-A -

VP

PP

NP-A -

NP -

NPB -

NP -

NPB -

NP-A VP
NPB

dt

vbz NP-A PP
NPB

prp

to NP-A
NPB SBAR
dt jj jj nn
WHNP SG-A
wp

VP

vbz PP

in NP

NP cc NP
NPB

dt nnp
NPB

prps nns

87

The CFG rule (37.8) shows that the clatwbo knows about the CSD and
its works’ is related with Noun phrasehe second big theme’ . Our system

generates the following LFG for above CFG.

(37.20) S_30 -~ NP_A_45: y SUBJ= ;VP_ 88 1= |,
1+ CLAUSE_TYPE=DECLARATIVE ;.

(37.21) NP_A 45 _NPB_59: 1= ;.

(37.22) NPB_59 _dt 1

L

(37.23) VP_88 - vbz: 1 1, 1 INF=NEG;
NP_A_114: 1OBJ= |
PP_150: + ADJUNCT PREP = ;.

(37.24) NP_A 114 - NPB_126: 1 = ;.
(37.25) NPB_126 —prp: 1= ;.

(37.26) PP_150 —to: 1= |, |INF=cNEG;
NP_A 174: ;1 OBJ= | ;.

(37.27) NP_A_174 - NPB_189: 1 = ;
SBAR_246: + ADJUNCT REL_CL = ;.

(37.28) NPB_189 —dt: { SPECDET= ,;j; 1$+ ADJUNCT ADJ;
ji: 1$+ ADJUNCTADJ ;nn: 1 = | ;.

(37.29) SBAR_246 - WHNP_260:+ OBJ= | ;
SG_A 287: 1= .

(37.30) SBAR_246 - WHNP_260: SUBJ = | ;
SG_A 287: 1= .

(37.31) WHNP_260-wp: 1 = ;.

88

(37.32) SG_A_287 VP 301: 1= | ;.

(37.33) VP_301 —vbz: 1= |, 1 INF=NEG;
PP_327: 1+ ADJUNCT PREP = | ;.

(37.34) PP_327 —in: 1= ,;NP_A 352 ;O0BJ= ;.

(37.35) NP_A 352 - NP 364: ,$1:
ccC: 1CONJ_FORMFCONJ_FORM ;
NP_423: 1$1 ;.

(37.36) NP_364 - NPB_377: 1+ = ;.
(37.37) NPB_377 -»dt: SPECDET = | ;nnp: 1= ;.
(37.38) NP_423 - NPB 438: 1+ = ;.

(37.39) NPB_438 - prps: 1+ SPEC DET GEN_PRO = | ;
nns: t= 1, 1 SPECDET DEF=POS,
+ SPEC DET DTYPE=gen_pro ; .

In our reference, this is not the correct parsgcttire and hence incorrect annotation. We
do not expect parser to result parse as CFG rul&)X3hows). As a result, the LFG rule
(37.27) is not correct. ‘'SBAR’ in rule (37.27) sldinhave been classified in CFG rule
(37.4). However, as the SBAR is somewhat relateth tie nountheme’ so it can
easily be confused in a parse structure. Thisasrélason it is classified as error type 1

and ignored in our error count.

Example 38:

A top aide to Senate Judiciary Chairman Patrick Lea hy told
fellow Democrats on Friday to get ready for Preside nt
Obama's Supreme Court pick to come as early as next week,

according to an e-mail obtained by CNN.

89

C-Structure of the sentence is as follows.
(S
(NP-A
(NPB a/DT top/JJ aide/NN)
(PP to/TO
(NP-A

(NPB Senate/NNP Judiciary/NNP Chairman/
Patrick/NNP Leahy/NNP))))

(VP told/VBD
(NP-A
(NPB fellow/JJ Democrats/NNPS))
(PP on/IN
(NP-A
(NPB Friday/NNP)))
(SG-A
(VP to/TO
(VP-A get/VB
(ADJP ready/JJ
(PP for/IN

(NP-A

90

NNP

(NPB

(NPB President/NNP Obama/NNP
Supreme/NNP Court/NNP pick/NN)

(SG
(VP to/TO
(VP-A come/VB
(ADVP
(ADVP as/RB early/RB)
(PP as/IN
(NP-A

(NPB next/JJ
week/NN))))))))))

(PP according/VBG
(PP-A to/TO
(NP-A
(NPB an/DT e-mail/NN)
(VP obtained/VBN
(PP by/IN
(NP-A

(NPB CNN/NNP)))))))

91

's/IPOS)

To avoid the lengthy details of example, we show ltRG generated by our system for

the sentence. The LFG syntax already includes #® &f parsed tree.

(38.1) S 26 ~NP_A_41: SUBJ= |;VP 224 = |,
+ CLAUSE_TYPE=DECLARATIVE ; .

(38.2) NP_A 41 ~NPB_55: 1= |;
PP_94: + ADJUNCT PREP = | ;.

(38.3) NPB 55 - dt: {1 SPECDET= | ;
jj: + ADJUNCTADJ = |, ;nn: 1t = | ;.

(384) PP 94 _to: 1= ,:NP_A 118 ;OBJ= ;.
(385) NP_A 118 - NPB_133: 1= ;.

(38.6) NPB_133 —nnp: $1;nnp: $+;nnp: 1 $1;
nnp: 1$1nnp: 181

(38.7) VP_224 - vbd:

1, 1 INF=NEG:

NP_A_255: 1 OB =

PP_318: 1$+ ADJUNCT PREP;

SG_A _391: 1+ XADJUNCT=,, |INF=c NEG;
PP_819: 1$+ ADJUNCT PREP ;.

(388) VP 224 _vbd: 1= |, 1INF=NEG;

NP_A_255: tOBJ= | ;

PP_318: 1$+ ADJUNCT PREP ;

SG_A_391: 1=, IXCOMP INF =c POS;
PP_819: 1$+ ADJUNCT PREP ;.

(38.9) NP_A 255 . NPB 274: 1= | ;.

(38.10) NPB_274 - ji: 1 ADJUNCTADJ = ;nnps: 1 = | ;.

92

(38.11)
(38.12)
(38.13)
(38.14)

(38.15)

(38.16)

(38.17)

(38.18)

(38.19)

(38.20)

(38.21)

(38.22)

(38.23)

PP_318 —in: 1= | ;NP_A_343: 10BJ= ;.

NP_A 343 . NPB 359: 1= ;.

NPB 359 —nnp: 1= ;.

SG_A 391 VP 402: 1= ;.

VP_402 _to: ;XCOMP INF=INF ;
VP_A_424: { XCOMP = |,
+ XCOMP SUBJ PRED = 'pro’,
+ XCOMP SUBJ PRONTYPE = NULL ; .

VP_A 424 _.vb: ;

1 ; ADJP_449: 1 PREDLINK =

ADJP_449 - 1 L
PP_472: + ADJUNCT PREP = | ;.

PP_472 —in: 1= | ;NP_A_496: ;0BJ= ;.

NP_A 496 - NPB 510: 1 = | ;

Ly

SG_610: + ADJUNCT PARTICIPLE= | ;.

NPB_510 -~ NPB_522: { SPECDET= | ;nnp: $1;

nnp: 115N 1 $y ;.
NPB_522 - nnp: 1 GENITIVE ADJUNCT TITLE = L
nnp: 1+ GENITIVE= |, 1 CASE=GEN,

+ DEF=POS, DTYPE=genitive;

pos: t= g
SG 610 - VP _621: 1= ;.

VP_621 - to: 1XCOMP INF=/INF;
VP_A_644: 1+ XCOMP = |,

93

1+ XCOMP SUBJ PRED = "pro’,
1+ XCOMP SUBJ PRONTYPE = NULL ; .

(38.24) VP_A_644 _vb: 1= |;
ADVP_670: } ADJUNCT ADV = | ;.

(38.25) ADVP_670 - ADVP_686: 1 = | ;PP 718: 1 = ;.
(38.26) ADVP_686 —rb: $1 ;rb: 1Bt

(38.27) PP 718 ~in: 1= | ;NP_A 741: ;OBJ= ;.
(38.28) NP_A 741 _NPB_755: 1= | ;.

(38.29) NPB_755 -jj; +ADJUNCTADJ = (:nni + = ;.
(38.30) PP_819 —vbg: 1= |;PP_A 848: 1 COMP = ;.
(38.31) PP _A 848 _to. 1= |:NP A 873 0OBJ= :.

(38.32) NP_A_873 —NPB_889: 1 = |;
VP_928: + ADJUNCT PARTICIPLE= | ;.

(38.33) NPB 889 —dt: y SPECDET = ,;nn: 1= ;.

(38.34) VP 928 _vbn: 1= |, 1INF=NEG;
PP_954: + ADJUNCT PREP = | ;.

(38.35) PP_954 -in: += | ;NP_A 976 0BJ= ;.
(38.36) NP_A 976 —NPB _989: + = ;.
(38.37) NPB_ 989 —nnp: 1= ;.

The LFG rule (38.19) makes th® come as early as next week’ as the
‘ASJUNCT PARTICIPLE’ of‘President Obama's Supreme Court pick’

We mark it as the type 2 error i.e. our systemihesrrectly annotated the symbols. The

94

original solution to this problem by looking ateul38.22) and (38.23) should look down
the tree hierarchy and decide on the basis of mntt. Following is the reference

solution for this wrong annotation.

(38.38) NP_A_496 - NPB_510: 1= | ;
SG_610: + ADJUNCT PARTICIPLE = |,
| INF =c NEG ; .

(38.39) NP_A_ 496 - NPB_510: L
SG_610: T= 0,
1 XCOMP INF =c POS ;.

The LFG rule (38.38) and (38.39) describes tha®’‘$s marked T ADJUNCT
PARTICIPLE =]’ if the SG has finite verb as predicate. If thé&sesome non-finite
clause below the ‘SG’, it is annotated with relatig=|". By looking the CFG rule
(38.22) and (38.23), the LFG rule (38.39) leads toorrect computable F-Structure in
this sentence. This problem adds count to the wiamgptations and is the reason to
decrease in ‘PRECISION’.

Example 39:

For me, as president of UEFA, now this year there i S even
greater expectation because the teams are playing v ery well,

but as president | look more at security than the g ame
sometimes.

The C-Structure is as follows.
(S
(S
(PP for/IN

(NP-A (NPB me/PRP)))

95

(PP as/IN
(NP-A
(NPB president/NN)
(PP of/IN
(NP-A (NPB UEFA/NNP)))))
(ADVP now/RB)
(NP (NPB this/DT year/NN))
(NP-A (NPB there/EX))
(VP is/VBZ
(NP-A
(NPB
(ADJP even/RB greater/JJR) expectati on/NN))
(SBAR because/IN
(S-A
(NP-A (NPB the/DT teams/NNS))
(VP are/VBP
(VP-A playing/VBG
(ADVP very/RB well/RB)))))))
but/CC

(S

96

(PP as/IN
(NP-A (NPB president/NN)))
(NP-A
(NPB I/PRP))
(VP look/VBP
(ADJP
(ADJP more/JJIR
(PP at/IN
(NP-A (NPB security/NN))))
(PP than/IN
(NP-A (NPB the/DT game/NN))))

(ADVP sometimes/RB))))

The corresponding LFG generated by our systemfisllasvs.

(39.1) ADVP_1067 —1b: 1= ;.

(39.2) NPB_1020 —.dt: ; SPECDET = | ;nn:

(39.3) NP_A_1006 — NPB 1020: 1= | :.

T= L.

(39.4) PP_981 —in: = ,;NP_A_1006: OBJ= ;.

(39.5) NPB 946 - nn: = | ;.

(39.6) NP_A 928 - NPB_946: 1= ;.

(39.7) PP_901 —in: 1= ,:NP_A 928 ;OBJ=

97

Ly

(39.8)

(39.9)

(39.10)

(39.11)
(39.12)
(39.13)
(39.14)
(39.15)

(39.16)

(39.17)

(39.18)

(39.19)

(39.20)

(39.21)

ADJP_879 _jjr:

1$1 ADJUNCT ;

PP_901: 1$1 ADJUNCT ; .

ADJP_864 - ADJP_879: ; =

L

PP_981: 1 ADJUNCT PREP =

VP_838 —~vbp: 1= |, 1+ INF=NEG;

ADJP_864:
ADVP_1067:

NPB_813 - prp: += ;.

NP_A 802 — NPB_813: ;

NPB 769 - nn: 1= ;.

NP_A 750 — NPB_769: ;

Ly

PP_722 —in: 1= | ;NP_A_750:

+ PREDLINK = | ;
1+ ADJUNCT ADV =

1 OBJ =

S 711 - PP_722: : ADJUNCT S_PREP =

NP_A_802:

ADVP _656 —rb: $+ ;rb:

VP_A 627 -vbg: 1= |,
ADVP_656:

1 SUBJ =

Ly

L

Ly

U

1 ; VP _838:
1+ CLAUSE_TYPE=DECLARATIVE ;.

1$1 5.

1 INF = NEG;

VP 599 _vbp: 1TNS_ASPSTNS_ASP;

VP_A_627: p =

Lo

NPB_562 - dt: SPECDET =

NP_A 547 — NPB 562: ; =

98

Ly

1 INF=NEG ; .

1, nns:

1 ADJUNCT ADV =

$ =

T =

Ly

Ly

Lo

(39.22) S A 531 - NP_A 547: 1 SUBJ= | ;
VP_599: =,
1+ CLAUSE_TYPE=DECLARATIVE ;.

(39.23) SBAR_505 -in: 1CONJ_FORM#HY_FORM ;
S A 531: T= L.

(39.24) ADJP_440 —rb: 1 ADJUNCT ADV = | ;jjr: 1= 1.

(39.25) NPB_422 _ ADJP_440: : ADJUNCT ADJ = | ;

nn: T= L.
(39.26) NP_A 401 —NPB_422: 1= | ;.

(39.27) VP_370 -vbz: 1 1, 1 INF=NEG;
NP_A 401: 1 OBJ= |
SBAR_505: t COMP = ;.

(39.28) NPB_344 . ex: 1

Ly

(39.29) NP_A_ 329 -NPB_344: 1 = | ;.

(39.30) NPB_ 289 -dt: y SPECDET = ,;nn: 1= ;.
(39.31) NP_275 - NPB_289: + = ;.

(39.32) ADVP_251 —1b:

Ly

(39.33) NPB_216 - nnp: 1

I
(39.34) NP_A 202 - NPB 216: 1= ;.
(39.35) PP_179 —in: 1= ,:NP_A 202 ;OBJ= ;.

(39.36) NPB_151 —nn: 1= ;.

99

(39.37) NP_A_132 _NPB_151: 1= | ;
PP_179: ADJUNCT PREP = | ;.

(39.38) PP_104 -in: 1= | ;NP_A 132: ;0BJ= ;.
(39.39) NPB_78 —prp: 1= ;.

(39.40) NP_A_ 66 —NPB_78: + = ;.

(39.41) PP_44 -in: 1= |;NP_A 66: 0BJ= ;.

(39.42) S_32 - PP_44: 1 ADJUNCT = | ;

PP_104: + ADJUNCTS_PREP = | ;
ADVP_251: + ADJUNCTS_ADV = | ;
NP_275: ; SUBJADJUNCT MOD = | ;
NP_A_329: +SUBJ= | VP 370: 1= |,

1 CLAUSE_TYPE=DECLARATIVE ;.

(39.43) S 22 S 32 $1:cc. 1CONJ_FORM=CONJ FORM :
S 711 1$1 ;.

In the LFG rule (39.8) ‘JJR’ and ‘PP’ are annotate®@JUNCT". This is because system
does not have sufficient coverage to annotate therardingly. This error is classified as
type 3 error. It is added to the coverage countraddces system’s coverage. Similarly,
system has been unable to annotate ‘PP’ in LFG(B9e12). This is because we have not
encountered any such example in the training ph>#hough, it is annotated
‘ADJUNCT’ which is partially correct, yet the LFGule (39.42) increases count of
‘insufficient coverage’ as 1. As a result, thistemce has incremented the total count of

un-covered LFG rules by 2.

Example 40:
The poll also indicates that 42 percent of people q uestioned
think the country's in a serious recession, up 10 p oints

from last October.

100

C-Structure of the sentence:
(S
(NP-A (NPB the/DT poll/NN))
(ADVP also/RB)
(VP indicates/VBZ
(SBAR-A that/IN
(S-A
(NP-A (NPB 42/CD percent/NN)
(PP of/IN
(NP-A (NPB people/NNS)
(VP questioned/VBN))))
(VP think/VBP
(SBAR-A
(S-A
(NP-A (NPB the/DT country/NN))
(VP 's/VBZ
(PP in/IN
(NP-A
(NPB a/DT serious/JJ recessi

(ADVP up/RB

101

on/NN)))

(NP (NPB 10/CD points/NNS))
(PP from/IN
(NP-A
(NPB last/JJ October/NNP))) M)
The corresponding LFG for above C-Structure isodlews.

(40.1) S_ 36 —NP_A 51: ; SUBJ= | ;
ADVP_103: + ADJUNCTS_ADV = | ;
VP_133: —
+ CLAUSE_TYPE=DECLARATIVE ;.

(40.2) NP_A 51 - NPB 65: 1+ = ;.
(40.3) NPB 65 - dt: SPECDET = |;nn: 1= ;.
(40.4) ADVP_103 —rb: 1= ;.

(40.5) VP_133 —-vbz: 1= |, 1 INF=NEG;
SBAR_A_166: t COMP = ;.

(40.6) SBAR_A 166 - in: ;CONJ_FORM#PHY_FORM;
S A 191: =T

(40.7) S_A 191 ~NP_A_209: : SUBJ= | ;
VP_374: r= o,
+ CLAUSE_TYPE=DECLARATIVE ;.

(40.8) NP_A_209 ~NPB_226: 1= | ;
PP_260: ADJUNCT PREP = | ;.

(40.9) NPB 226 —.cd: { SPECCARD = :nn: 1= | ;.

(40.10) PP_260 —in: 1= | ;NP_A 285 ;0BJ= ;.

102

(40.11)

(40.12)
(40.13)

(40.14)

(40.15)

(40.16)

(40.17)
(40.18)

(40.19)

(40.20)
(40.21)

(40.22)

(40.23)

(40.24)

NP_A_285 - NPB_301: 1 = | ;

VP_335:

+ ADJUNCT PARTICIPLE= | ;.

NPB 301 - nns: 1= ;.

VP_335 - vbn: 1

VP_374 - vbp: 1
SBAR_A 401:

I
-

1, 1 INF=NEG;
+ COMP = ;.

SBAR_A 401 - S_A 413: 1= | ;.

S A 413 _NP_A 431: { SUBJ= | ;

VP_485:

=l
1+ CLAUSE_TYPE=DECLARATIVE ;.

NP_A 431 - NPB 448 1= | ;.

NPB_448 _dt: 1

VP_485 - vbz:
PP_505:
ADVP_606:

PP_505 -in: 1=

SPEC DET = 1 nn: t = .

= |, 1 INF=NEG;
+ ADJUNCT PREP = | ;
+ ADJUNCT ADV = | ;.

1 NP_A_533: 0BJ= ;.

NP_A 533 . NPB 552: := | ;.

NPB 552 _dt

SPECDET= ;

Jj: + ADJUNCTADJ = ;nn: 1 = ;.

ADVP_606 —rb: 1= | ;NP_629: 1 ADJUNCT = | ;

PP_683:

+ ADJUNCT PREP = | ;.

NP 629 . NPB 645: 1= | :.

103

(40.25) NPB 645 —-cd: y SPECCARD = ;nns: 1= ;.
(40.26) PP_683 —in: 1= |;NP_A 711: {OBJ= ;.
(40.27) NP_A 711 - NPB_728: 1= | ;.

(40.28) NPB_728 —jii 1 ADJUNCTADJ = ,:nnp: 1 = |;.

The ‘NP’ in LFG rule (40.23) is marked as ‘ADJUNCDur system has been unable to
find a proper template that can annotate the ‘N#&oike a ‘PP’ in an Adverbial phrase.
Hence, it has been annotated with system defawléber. This problem is also the

example of insufficient coverage and reason toeess ‘RECALL’.

The sectiorb.2.1 also shows the coverage of the Templdteste are three types of

Templates normally not selected by Annotation Syste

1 The template is too specific to occur frequentlgr Fstance, if there is no wild
card used in a Template, it become specific. Theengymbols occur in a
template, the more specific and rare to occur @obees. Consider the following
Template which doesn’t have a wild card used andcéehas became more
context specific than others.

NPB:npb > QP:q1 [NN:n1|[NNS:n1|[NNP:n1|NNPS:n1] POS:p 1
@ [n1:SPEC QUANT===q1,
nl: SPEC DET GEN_PRO===p2,
npb:*===p1,npb:"GENITIVE===n1]
@ [n1:* CASE=GEN,n1:* DEF=POS,
nl:* DTYPE=genitive] .

This Template can be used only if a Quantifier Béria followed by a noun and a
possessive marker. In our test sentences, thisfispaed precise case does not

occur and hence the template is not used.

2 The template contains symbols which are rare tarodéor instance, the FRAG

symbol shows the fragmentation in a C-Structuras Tlagmentation is the result

104

of inadequate parse from Collins’ parser. The fragtation is not like to occur
frequently and hence the Templates containing sychbols are not generally

used.

SBARQ:sbarqg > * WRB:w1 * FRAG:f1 *
@ [f1:ADJUNCT S_ADV$===w1,sbarqg:"===f1]
@ [f1:"CLAUSE_TYPE=INTERROGATIVE] .

The template has a symbol FRAG which has not oeduirr our tests and hence

the above template is not used.

A template has such LHS that has not been occunr€#G of test sentences. For
instance, a template that is specific with inteatoge sentences is not used for a

declarative sentence.

SQ:sq>* ADVP:al * VP:vl *
@ [V1:ADJUNCT S_ADV$===al,sq:*===v1]
@ [v1:"CLAUSE_TYPE=INTERROGATIVE] .

SQ:sq > * MD:m1 * [NP:n1|NP-A:n1] VP:v2 *
@ [v2:SUBJ===n1,sq:*===m1,sq:"===Vv2]
@ [v2:"CLAUSE_TYPE=INTERROGATIVE,
m1:*HelpVP TNS_ASP=ITNS_ASP] .

SQ:sq>*MD:m1*VP:vl *
@ [sg:*===m1l,sq:*===V1]
@ [V1:A"CLAUSE_TYPE=INTERROGATIVE] .

SQ:sq > * SBAR:sl1 * VP:v1 *
@ [v1:COMP$===s1,sq:"===V1]
@ [V1*"CLAUSE_TYPE=INTERROGATIVE].

SQ:sq > [VBP:v1|VBZ:v1|VBD:v1] * [NP:n1|NP-A:n1] *
VP:v2 *
@ [v2:SUBJ===n1,

105

v2:HelpVP TNS_ASP===v1.TNS_ASP,
sqQ:N===v2]

@ [v2"CLAUSE_TYPE=INTERROGATIVE,
v2:"HelpVP TNS_ASP=ITNS_ASP,
VLATNS ASP=ITNS_ASP].

None of the test sentences contains an interragaémntence so none of the above
templates is used.

The observation shows that the more generic tempatmore likely to occur unless it
contains a less frequent symbol. The less symbolsgbt hand side of a template lead to

a more generic template. Following is an exampléefmost generic template.
S-Ais-a>*PP:pl* @ [s-a:ADJUNCT S_PREP===p1] .

The template is applicable if there is a preposélgphrase (PP) under sentence symbol
(S-A). The occurrence of PP is independent ofriégslpcessor or successor symbols.

106

6 CONCLUSION

We have proposed and developed a system to autadhatgenerate LFG for English

language. The aim of the system is to enable thehMa Translation system to re-parse
and generate the F-Structures for English senterides results are encouraging and
induce us to use this system to build LFG. Possibjgrovements in tagging (the POS
tags) and parsing can even improve the accuracycawerage of the system. We have
also observed that development of templates haee faite easy than the development
of Lexical Functional Grammar for English. The perfiance of the generating English
F-Structure has also noticeably improved in terrhdiroe than the use of manually

crafted Lexical Functional Grammar based F-Strechuilding.

107

/ FUTURE WORK

The system can be enhanced by adding more itesatiorthe training phase and by
adding more template rules. This can probably imgrcecall of the system. We have
observed that development of these grammars isvalaeasy and consumes less time
than crafting large coverage, rich unification lmhggammar resources. The parallel
technique presented in Secti®13.4.2 can also be used and tested, whichaantsne
by avoiding the uncertainty (SectidB).

Another possible future work can be the use ofsy&em to build a large annotated
corpus to be used in the integrated model present8ection2.3.2 . However, as we
have used already trained statistical parser [23],[this addition will demand the
Collins’ parser to be retrained on the annotateghu® or probably will require a new

parser to be built and trained on our linguistialgsis.

A potential work is to identify the voice of senten We could not address this problem
because of the recursive nature of Collins’ pardervever, preprocessing can add some
heuristic that can be used for this purpose.

Section5.2.2 suggests that the technique like gramraarpaction [19] [3] can also
significantly change the results. The more recergitammars can possibly perform even

better as most of the coverage issues are therreddiatter rules.

108

8 REFERENCE

[1] Cahill A., McCarthy M., van Genabith J. and WAy (2002a), “Parsing with PCFGs
and Automatic F-Structure Annotation”, Proceedingfs the Seventh International
Conference on LF@ECSLI Publications, Stanford, CA., pp.76-95

[2] Kinyon A., Prolo Carlos A. (2002), “A classifition of grammar development
strategies”, in the Proceeding ©OLING-02 on Grammar engineering and evaluation

pp.1-7.

[3] Krotov, A., M. Hepple, R. Gaizauskas, and Y.IKgi (1998), “Compactinkg the Penn
Treebank Grammar”, In ProceedingsG®LING/ACL'98 pp 699-703.

[4] Charniak, E. (1996), “Tree-bank Grammars”. MAAI-96. Proceedings of the
Thirteenth National Conference on Atrtificial Inigénce pp:1031-1036. MIT Press.

[5] van Genabith, J., Way A., and Sadler L. (19998gmi-Automatic Generation of F-
Structures from Tree Banks”. In M. Butt and T. Kifids.),Proceedings of the LFG99
ConferenceManchester University, 19-21 July, CSLI OnlinebReations, Stanford, CA.
http://www-csli.stanford.edu/publications/.

[6] van Genabith, J., Sadler L., and Way A. (199%pata-Driven Compilation of LFG
Semantic Forms”. IEACL'99 Workshop on Linguistically Interpreted Cora (LINC-
99), pp: 69-76, Bergen, Norway, June 12th.

[7] Sadler L., Genabith J. and Way A. (2000), “Autatic F-Structure Annotation from
the AP Treebank’Fifth International Conference on Lexical-Functidr@rammar, The
University of California at Berkeley, CSLI Publigats, Stanford, CA

[8] Cahill A., McCarthy M., van Genabith J. and WAay(2002c), “Evaluating Automatic
F-Structure Annotation for the Penn Il Treebank’ Aroceedings of th&reebanks and
Linguistic Theories (TLT'02) Workshp$ozopol. Bulgaria.

[9] Hutchins, W. J. and Somers, H. L. (1992) introduction to machine translatipn
Academic Press, London.

[10] Kaplan R., Bresnan J. (1982), Lexical Funailorammar: a formal system for
grammatical representation. In Bresnan, J. edi@@21The Mental representation of
Grammatical RelationdMIT Press, Cambridge Mass. 173-281

[11] Chrupala G. (2008),Towards a machine-learning architecture for Lexical
Functional Grammar Parsing?hD Dissertation, Dublin City University.

[12] Kaplan R. (1989), The formal architecture @xical-Functional Grammadournal
of Information Science and Engineering, val.pp: 305--322. Reprinted in Dalrymple,

109

Kaplan, Maxwell, and Zaenen (ed$jormal Issues in Lexical-Functional Grammar
pp:7-27. Stanford: Center for the Study of Language Information 1995.

[13] Butt M., King T.H., Nifio M.E., and F. Segondq1999), A Grammar Writer's
Cookbook CSLI Publications, Stanford, CA

[14] Kaplan R. M., Netter K., Wedekind J. & Zaeneh, (1989), “Translation by
structural correspondences”, iRrbceedings of the 4th Conference of the European
Chapter of the Association for Computational Lirggicis, UMIST, Manchester, pp:10-12
April 1989, Association for Computational Linguistics, pp:22281, New Brunswick,
NJ.

[15] Jurafsky D. and Martin J. H. (2000%peech and Language Processing: An
Introduction to Natural Language Processing, Comagiohal Linguistics and Speech
Recognition Prentice Hall Series in Atrtificial IntelligencBrentice Hall.

[16] Bresnan, J. 2001exical Functional SyntaBlackwells Publishers, Oxford.

[17] Kroeger, P. 1995Phrase Structure and Grammatical Relations in Tagal
Stanford: CSLI.

[18] Kroeger, Paul R. (2005)Analyzing grammar: an introductionNew York:
Cambridge University Press

[19] van Genabith, J., Sadler L., and Way A. (1999Btructure Preserving CF-PSG
Compaction, LFG and Treebanks”. In Proceedi®dALA Workshop - Treebanks,
Journ’ees ATALA, Corpus annot’es pour la syntgpe 107-114, Universite Paris 7,
France, 18-19 Juin 1999.

[20] Frank A. (2000), “Automatic F-Structure Annbtan of Treebank Trees”. In: M.
Butt and T.H. King editorsProceedings of the LFGO0 Conferenddniversity of
California at Berkeley, CSLI Online Publicationsa&ford

[21] Frank A., Sadler L., van Genabith J. and Way{2002), “From Treebank Resources
to LFG F-Structures”. In (ed.)Anne Abeill€reebanks: Building and Using Syntactically
Annotated CorporaKluwer Academic Publishers

[22] Collins M. J., (1999),Head-Driven Statistical Models for Natural Language
Parsing PhD Dissertation, University of Pennsylvania

[23] Collins, M. J. (1996). “A new statistical pars based on bigram lexical
dependencies”. In Proceedingsioé 34th Annual Meeting of the AGa. 1996.

[24] Khalid, U., Karamat, N., Igbal, S. and Hussé&m (2009) “Semi-Automatic Lexical
Functional Grammar Development”, Proceedings of Gloaference on Language and

110

Technology 2009 (CLTO9Q)FAST NU, Lahore, Pakistan, 22-24 Jan 2009 (URL:
http://www.crulp.org/clt09/index.htm)

[25] Quirk, R., Svartvik, J., Leech, G. (1988) Comprehensive Grammar of the English
Language Addison-Wesley Publications, .

[26] Karamat, N., (2006)Nerb Transfer for English to Urdu Machine Transtati(Using
Lexical Functional Grammar (LFG))National University of Computer and Emerging
Sciences, Lahore, Pakistan, 2006.

[27] Tsuruoka Y. and Tsujii J. (2005), “Bidirect@ninference with the Easiest-First
Strategy for Tagging Sequence Data”, Proceedingi 3TEMNLP, pp. 467-474.

[28] Cahill A., McCarthy M., van Genabith J. and W&. (2002b), “Automatic
Annotation of the Penn-Treebank with LFG F-Struetinformation”,LREC.

[29] Bod R. and Kaplan R., (1998), “A probabilistorpus-driven model for lexical-
functional grammar”. IflProceedings of Coling/ACL’'9&p: 145-151.

[30] Kay M. (1999), “Chart Translation”. IProceedings of the Machine Translation
Summit VII. “MT in the great Translation Erapp: 9-14.

[31] Cahill, A., M. Burke, R. O’Donovan, J. van Gdnth, and A. Way. (2004a), “Long-
Distance Dependency Resolution in Automatically éoedWide-Coverage PCFG-
Based LFG Approximations”. IRroceedings of 42nd Conference of the Association f
Computational Linguisticgpages 319-326, Barcelona, Spain. printed.

[32] Burke, M., Cahill, A., O'Donovan, R., van Géita, J., and Way, A., (2004),
“Treebank-Based Acquisition of Wide-Coverage, Philistic LFG Resources: Project
Overview, Results and Evaluation”, IAroceedings of The First International Joint
Conference on Natural Language Processing (IJCNAR-Workshop "Beyond shallow
analyses - Formalisms and statistical modelingdeep analyses'March 22-24, 2004

Sanya City, Hainan Island, China.

[33] Burke, M., Cahill, A., O'Donovan, Ruth., vare@bith, J., and Way, A., (2004),
“The Evaluation of an Automatic Annotation Algonith against the PARC 700
Dependency Bank”. IrProceedings of the Ninth International Conferenae Id-G,
Christchurch, New Zealand, pages 101-121.

[34] Bies, A., Ferguson, M., Katz, K., and MaclmtyR. (1995)Bracketing guidelines
for Treebank Il style Penn Treebank projectechnical report, University of
Pennsylvania.

[35] Dalrymple, M. (1999)Semantics and syntax in Lexical Functional Gramnidre
Resource Logic ApproacRambridge Mass, MIT Press.

111

APPENDIX A

Penn Treebank POS Tag-set

Tag Description

$ dollar

h opening quotation mark
closing quotation mark

(opening parenthesis
) closing parenthesis
, comma

-- dash

sentence terminator
colon or ellipsis

CcC conjunction, coordinating

CD numeral, cardinal

DT determiner

EX existential there

FW foreign word

IN preposition or conjunction, subordinating
JJ adjective or numeral, ordinal
JIR adjective, comparative

JJS adjective, superlative

LS list item marker

MD modal auxiliary

NN noun, common, singular or mass
NNP noun, proper, singular

NNPS noun, proper, plural

NNS noun, common, plural

PDT pre-determiner

POS genitive marker

PRP pronoun, personal

PRP$ pronoun, possessive

RB adverb

RBR adverb, comparative

RBS adverb, superlative

RP particle

SYM symbol

TO to as preposition or infinitive marker
UH interjection

VB verb, base form

VBD verb, past tense

VBG verb, present participle or gerund

112

VBN
VBP
VBZ
WDT
WP
WP$
WRB

verb, past participle
verb, present tense, not 3rd person singular

verb, present tense, 3rd person singular
WH-determiner

WH-pronoun

WH-pronoun, possessive
Wh-adverb

113

APPENDIX B

Syntax of Annotation Rules

Lhs

Lhs

Rhs

Rhs

Rhs

- Rhs'@ [Annol T (‘@ [Anno2) .

- Symbols ' f_var

Symbols - CFG_NT_Symbol | Symbols ‘,; CFG_NT_Symbol
- *1‘C Rhs ‘) | RhsStatement

— Rhs Rhs

- ‘[RhsStatement ‘| RhsStatementsRec ‘]’

RhsStatementsRec - RhsStatement
RhsStatementsRec - RhsStatement '|' RhsStatementsRec
RhsStatement - CFG_NT_Symbol ' f_var

Annol-. LFGAnnotation (‘, Annol)

LFGAnnotation - f var ‘.’ LFGRelation ‘==="f var (‘’
LFGRelati

Anno2-. f_var ‘' LFGAttribute (‘,” Anno2)

114

on)

APPENDIX C

Templates

Following are the Templates used by Annotation &yst

ADJP:adjp > *[JJ:al|ADJP:al] (CC:cl)
[JJ:a2|ADJP:a2] * @
[a2:$===al1,a2:CONJ_FORM===c1,adjp N===a2]

ADJP:adjp > * [RB:r1|RBR:r1] * [VBG:v1|VBN:v1|JJ:v1]
@ [v1:ADJUNCT ADV$===r1,adjp:"===v1] .

ADJP:adjp > *[RBRirl|RB:r1|RBS:rl]* @
[adjp:*ADJUNCT ADV$===rl].
ADJP:adjp > *[VBG:v1|VBN:v1|JJ:vl] PP:pl @

[v1:ADJUNCT PREP$===p1,adjp:"===v1] .

ADJP:adjp > *ADJP:al*PP:pl* @ [al:ADJUNCT
PREP$===pl,adjp:"===al] .

ADJP:adjp > *CC:icl1*JJj2 @
[[2:CONJ_FORM===cl,adjp:*===}2] .

ADJP:adjp > *CD:c1* [NN:n1|NNS:n1|NNP:n1|[NNPS:n 1]
PRN:pl @ [n1:ADJUNCT
MOD$===p1,n1:SPEC CARD$===c1,adjp:*===n1]

ADJP:adjp > *CD:c1* [NN:n1|NNS:n1|NNP:n1|NNPS:n 1]
@ [n1:SPEC CARD$===cl,adjp:"===n1] .

ADJP:adjp > *JJjl*[SG:s1|SG-Asl]* @
[[1:XCOMP===s1,adjp:===j1] @ [j1:"XCOMP
SUBJ PRED = 'pro',j1:"XCOMP SUBJ PRONTYPE
= NULL] .

ADJP:adjp > *JJ;jl1*PP:pl @ [j[1:ADJUNCT
PREP$===pl,adjp:"===j1] .

ADJP:adjp > *JJ;j1*SBAR:'S1* @
[[1:COMP===s1,adjp:*===}1] .

ADJP:adjp > *JJS:j1*VBN:v1 @
[v1:$===j1,adjp:"===v1].

ADJP:adjp > * NP:nl* [JJj1[dJR;j1] @ [jL:ADJUNC T
MOD$===n1,adjp:"===j1] .
ADJP:adjp > *RBirl* [JJj1[dJR;j1] @ [jL1:ADJUNC T

ADV$===r1,adjp:"===}1] .

ADJP:adjp > *VBN:jl1l (CC:cl) VBN:j2 @
[[1:CONJ_FORM===c1,j1:$===j2,adjp:"===]1]

115

ADJP:adjp > *VBN:v1CC:clJJjl @
[[1:$===v1,j1.CONJ_FORM===cl ,adjp:*===}1]

ADJP:adjp > ADJP:al SBAR:s1 @
[al:COMP===sl,adjp:*===al] .

ADJP:adjp > ADVP:al SBAR:s1l @
[a1l:COMP$===s1,adjp:"===al] .

ADJP:adjp > DT:d1 QP:ql @ [q1:SPEC
DET$===d1,adjp:"===q1] .

ADJP:adjp > JJj1NN:n1JJj2 @
[[2:$===]1,j2:$===n1,adjp:"===j2] .

ADJP:adjp > JJR:1CC:clJJR:j2 @
[[2:CONJ_FORM===cl,j2:$===]1,adjp:"===|2]

ADJP:adjp > RBirl JJ;j1 RB:r2 @ [j[1:ADJUNCT
ADV$===r1,j1:ADJUNCT
ADV$===r2,adjp:"===}1] .

ADJP:adjp > RBS:rl JJ:j1 @ [j1:ADJUNCT
ADV$===r1,adjp:===1] .

ADVP:advp > *[RB:r1JADVP:rl]* PP:pl* @
[r1:ADJUNCT PREP$===p1,advp:*===r1] .

ADVP:advp > * ADVP:l (CC:cl) PP:pl* @
[r1:CONJ_FORM===c1,rl:$===pl,advp:*===rl]

ADVP:advp > * ADVP:rl * SBAR:s1* @ [r1:ADJUNCT
SBAR===sl,advp:*===rl] .

ADVP:advp > *CC:c1*RBirl @
[r1:CONJ_FORM===cl,advp:"===r1] .

ADVP:advp > *NP:nl*[RBR:rl|RB:r1] @
[r1:SPEC===n1,advp:*===rl] .

ADVP:advp > *NPB:nl1IN:il1PP:pl* @
[(1:0BJ===p1,n1:ADJUNCT
PREP$===i1,advp:"===n1] .

ADVP:advp > *RBirl*RB:rr2*@
[r2:$===r1,advp:*===r2] .

ADVP:advp > *RB:rl*VBN:vl @ [V1.:ADJUNCT
ADV$===r1,advp:"===r1] .

ADVP:advp > *RB:r1CC:cl *RB:r2* @
[r1:CONJ_FORM===c1,r1:$===r2,advp: ===r1]

ADVP:advp > RB:rl1 NP:n1 @ [n1:ADJUNCT
ADV$===r1,advp:*===n1] .

CONJP:conjp > *RB:r1 RB:r2 IN:il* @
[conjp:*===r1,r1:ADJUNCT
ADV$===r2,r1:ADJUNCT $===i1] .

NAC:nac > *NNP:nl*PP:pl* @ [n1:ADJUNCT

116

PREP$===pl,nac:"===n1] .

Vv

NP,NP-
ANPB:np

PP:pl @ [np:* ADJUNCT PREP$===p1] .

NP,NP-A:np > *[NPB:n1|NP:n1] (CC:cl)(*)
[NP:n2|NPB:n2] @
[n2:$===n1,n2:CONJ_FORM===c1,np:*===n2] .

NP,NP-Anp > *[NPB:n1|NP:nl]* [SBAR:S1|SBAR- g:s1]*
@ [n1:ADJUNCT REL_CL===s1,np:===n1] .

NP,NP-A:np > *NPB:nl1*PP:pl* @ [n1:ADJUNCT
PREP$===p1,np:*===n1] .

NP,NP-Anp > *PP:pl* PP:p2 * @ [np:* ADJUNCT
PREP$===p1,np:* ADJUNCT PREP$===p2] .

NP:np > *[JJj1)IIR:j1] *
[NN:n1|[NNS:n1|NNP:n1|NNPS:nl1] * @
[n1:ADJUNCT ADJ$===j1,np:"===n1].

NP:np > *[JJj1|3IR:j1] *
[NN:n1|[NNS:n1|NNP:n1|NNPS:nl1] @
[N1:ADJUNCT ADJ$===j1,np:"===n1] .

NP:np > * [NN:n1|NNS:n1|NNP:n1|[NNPS:n1|NAC:n1] *
[NN:n2|NNS:n2|NNP:n2|NNPS:n2] * @
[n2:$===n1,np:*===n2] .

NP:np > *[NP:n1|NPB:nl1] * NP:n2 @
[n2:$===n1,np:*===n2] .
NP:np > *[VB:vl|VBD:v1|VBG:Vv1|VBN:v1|VBP:v1] *
NN:n2 @ [n2:ADJUNCT ADJ$===v1,np:*===n2]
NP:np > *CD:cl * [NN:n1|NNS:n1|[NNP:n1|NNPS:n1]
@ [n1:SPEC CARD$===c1,np:"===n1] .
NP:np > *DT:d1 * [NN:n1|NNS:n1|NNP:n1|NNPS:n1]
@ [n1:SPEC DET$===d1,np:*===n1] .
NP:np > *NNP:nl* [N N:n2|NNS:n2|NNP:n2|NNPS:n2]
@ [n2:$===n1,np:*===n2] .
NP:np > NP:nl1* NP:n2 @ [n2:$===n1,np:*===n2] .
NP:np > NP:n1 CONJP:c1 @
[n1:CONJ_FORM===cl,np:*===n2] .
NP- > *
A,NP,NPB:np [NP:n1INPB:n1|NN:n1|NNS:n1|NNP:n1|NNPS:n1
-a] *[SG:s1|VP:s1|VBZ:s1] * @ [n1:ADJUNCT

PARTICIPLE===s1,np-a:*===n1] .

NP-A,NP:np- > *NPB:n1 CONJP:c1 NPB:n2 @
a [n2:$===n1,n2:CONJ_FORM===cl,np- a:*===n2]

NP-A:np-a > NPB:n1 ADVP:al @ [n1:ADJUNCT
ADV===al,np-a:*===n1] .

NP-A:np-a > *[NP:n1|NPB:nl1] * ADJP:al* @
[N1:ADJUNCT ADJ$===al,np-a:"===n1].

117

NP-A:np-a

* [NPB:n1|NP:n1] * NP:n2 * @
[n2:$===n1,np-a:*===n2] .

NP-A:np-a * NP:nl1 (CC:cl) [NPB:n2|NP:n2] @
[n2:$===n1,n2:CONJ_FORM===cl,np- a:*===n2]
NP-A:np-a *NP:n1 * UCP:ul * @ [n1:ADJUNCT

UCP$===ul,np-a:*===n1] .

NP-A:np-a

* NPB:nl * [SBAR:s1|SBAR-g:sl] * @
[n1:ADJUNCT REL_CL===sl1,np-a:*===n1] .

NP-A:np-a *NPB:nl * PP:pl * @ [n1:ADJUNCT
PREP$===p1,np-a:*===n1] .
NP-A:np-a *NPB:nl * PRN:pl* @ [n1:ADJUNCT

PRN$===p1,np-a:*===n1] .

NP-A:np-a *NPB:nl * RRC:rl @ [n1:ADJUNCT
REL_CL===r1,np-a:*===nl] .
NP-A:np-a NPB:nl1* ADVP:al @ [n1:ADJUNCT

ADV$===al,np-a:*===n1] .

NP-A:np-a

NPB:n1 NP:n2 @ [n1:ADJUNCT
NOUN_MOD===n2,np-a:*===n1] .

NPB,NP-
A:npb

> *[ADVP:al|RB:al] * [NP:n1|NPB:n1] @
[n1:ADJUNCT ADV$===al,npb:A===n1] .

NPB,NP-
A:npb

> *PRPS:pl*
[NN:n1|NNS:n1|NNP:n1|NNPS:n1|NP:nl1] * @
[n1:$===n2,n1:SPEC DET
GEN_PRO===p1,npb:*===n1] @ [n1:"SPEC DET
DEF=POS,n1:ASPEC DET DTYPE=gen_pro] .

NPB:npb

> *(DT.d1*) QJj1 %

(INN:n2|NNS:n2|NNP:n2|NNPS:n2] *)
[NN:n1|NNS:n1|NNP:n1|NNPS:n1] POS:pl * @
[N1:ADJUNCT ADJ$===j1,n1:SPEC DET
===d1,n1:ADJUNCT TITLE===n2,nl: SPEC DET
GEN_PRO===p2,npb:*===p1,npb:*
GENITIVE===n1] @ [n1:* CASE=GEN,n1:"
DEF=POS,n1:* DTYPE=genitive] .

NPB:npb

> *(DT.d1 %

[NN:n1|NNS:n1|NNP:n1|NNPS:n1] POS:pl * @
[n1l: SPEC
DET===d1,npb:*===p1,npb:*GENITIVE===n1] @
[n1:A CASE=GEN,n1:* DEF=POS,n1:*
DTYPE=genitive] .

NPB:npb

> * (PRPS:p2 ¥

[NN:n1|NNS:n1|NNP:n1|NNPS:n1] POS:pl * @
[n1l: SPEC DET
GEN_PRO===p2,npb:*===p1,npb:*"GENITIVE===n
1] @ [n1:* CASE=GEN,n1:* DEF=POS,n1:"
DTYPE=genitive] .

118

NPB:npb

* (PRPS:p2 *)
[NN:n2|NNS:n2|NNP:n2|NNPS:n2|NP:n2] *
[NN:n1|[NNS:n1|NNP:n1|NNPS:n1] POS:pl * @
[n1:ADJUNCT TITLE===n2,n1: SPEC DET
GEN_PRO===p2,npb:*===p1,npb:*
GENITIVE===n1] @ [n1:* CASE=GEN,n1:"
DEF=POS,n1:* DTYPE=genitive] .

NPB:npb

* [ADVP:al|RB:al] [QP:q1|CD:ql] @
[q1:ADJUNCT ADV$===al,npb:*===q1] .

NPB:npb

* [JIR:j1|IIS:j1] *
[NN:n1|[NNS:n1|NNP:n1|NNPS:nl1] @
[N1:ADJUNCT ADJ$===j1,npb:*===n1].

NPB:npb

* [NN:n1|NNS:n1|NNP:n1|[NNPS:n1] *
[NN:n2|NNS:n2|NNP:n2|NNPS:n2] * @

[n2:$:::

nl,npb:*===n2] .

NPB:npb

* [NN:n1|NNS:n1|NNP:n1|NNPS:n1] CC:cl *
[NN:n2|NNS:n2|NNP:n2|NNPS:n2] @

[n2:CONJ_FORM===c1,n2:$

nl,npb:*===n2]

NPB:npb

* [NN:n1|NNS:n1|NNP:n1|NNPS:n1] CC:cl
[NN:n2|NNS:n2|NNP:n2|NNPS:n2] @

[n2:$===n1,n2:CONJ_FORM

cl,npb:*===n2]

NPB:npb

* [NN:n1|NNS:n1|NNP:n1|NNPS:n1] RB:r1 @
[N1:ADJUNCT ADV$===r1,npb:*===n1] .

NPB:npb

* [NPB:n1|NP:n1] *
[NN:n2|NNS:n2|NNP:n2|NNPS:n2] @ [n2:SPEC

DET=

==nl,npb:"==

=n2].

NPB:npb

*ADJP:al *
[NN:n1|NNS:n1|NNP:n1|NNPS:n1] @
[n1:ADJUNCT ADJ$===al,npb

N===nl].

NPB:npb

*CD:c1 * [NN:n1[NNS:n1|NNP:n1|NNPS:n1]
@ [n1:SPEC CARDS$===c1,npb:*===n1] .

NPB:npb

*DT:d1 * [NN:n1|NNS:n1|NNP:n1|NNPS:n1]

@ [n1:SPEC DET$

d1,npb:A===n1].

NPB:npb

*DT.d1 *VBG:vl @ [V1:SPEC
dl,npb:A===v1].

DET$

NPB:npb

DT:d1 @ [npb:===d1] .

NPB:npb

*DT:j1 * CD:c1 @ [c1:ADJUNCT

ADJ$===

j1,npb:A===cl] .

NPB:npb

* IN:i1 * [NN:n1|[NNS:n1|NNP:n1|NNPS:n1]

@ [npb:~

n1l,nl:PHY_FORM

===i1:PHY_FORM]

NPB:npb

*IN:i1 DT:d1 JJ:j1 @ [j1:SPEC

DET$

di,npb:~

===i1,i1:0BJ

1] .

NPB:npb

*IN:i1 DT:d1 JJ:j1 @ [j1:SPEC

119

DET$===d1,npb:"===i1,i1:0BJ===]1] .

NPB:npb *JJ:;j1 (CC:cl) JJ;j2 *
[NN:n1|NNS:n1|NNP:n1|NNPS:n1] @
[n1:ADJUNCT ADJ CONJFORM===c1,n1:ADJUNCT
ADJ$===j1,n1:ADJUNCT
ADJ$===j2,npb:*===n1] .
NPB:npb *JJ:j1 * [NN:n1|[NNS:n1|NNP:n1|NNPS:n1]
@ [n1:ADJUNCT ADJ$===j1,npb:*===n1] .
NPB:npb *JJ:;j1 * [NN:n1INNS:n1|NNP:n1|NNPS:n1]
POS:pl @ [n1:ADJUNCT
ADJ$===j1,npb:*===p1,npb:"GENITIVE===n1]
@ [n1:* CASE=GEN,nl1:* DEF=POS,n1:*
DTYPE=genitive] .
NPB:npb *JJ:j1 * CD:c1l @ [c1:ADJUNCT
ADJ$===j1,npb:*===cl] .
NPB:npb *JJ:j1 [NN:n1|NNS:n1|NNP:n1|NNPS:n1] *
@ [n1:ADJUNCT ADJ$===j1,npb:*===n1] .
NPB:npb * NAC:n1 * [NN:n2|NNS:n2|NNP:n2|NNPS:n2]
@ [n2:ADJUNCT NAC$===n1,npb:*===n2] .
NPB:npb * NPB:nl (CC:cl) NPB:n2 @
[n2:$===n1,n2:CONJ_FORM===c1,npb:*===n2]
NPB:npb * NPB:nl * [NN:n2|NNS:n2|NNP:n2|NNPS:n2]
@ [n2:SPEC DET===n1,npb:*===n2] .
NPB:npb *PDT:pl*
[NN:n1|NNS:n1|NNP:n1|NNPS:n1|NAC:n1] @
[n1:SPEC PRE-DET===p1,npb:*===n1] .
NPB:npb * QP:gl * [NN:n1|NNS:n1|NNP:n1|[NNPS:n1]
@ [n1:SPEC QUANTS$===q1,npb:*===n1] .
NPB:npb *RB:rl * @ [npb:*ADJUNCT ADV$===rl].
NPB:npb *RB:rl * [JJ:j1|JJS:j1] @ [j1:ADJUNCT
ADV$===r1,npb:"===j1] .
NPB:npb *RB:rl * [NN:n1|[NNS:n1|NNP:n1|NNPS:n1]
@ [n1:ADJUNCT ADV$===r1,npb:*===n1] .
NPB:npb *VBG:vl * [NN:n1INNS:n1|NNP:n1|NNPS:n1]
@ [n1:ADJUNCT PARTICIPLE$===v1,np:*===n1]
NPB:npb *VBG:v1 * [NN:n1|NNS:n1|NNP:n1|NNPS:n1]
@ [npb:* ADJUNCT PARTICIPLE===v1] .
NPB:npb *VBN:v1 * [NN:n1|NNS:n1|NNP:n1|NNPS:n1]
@ [n1:ADJUNCT
PARTICIPLE$===v1,npb:"===n1] .
NPB:npb CD:c1 NNP:n1 CD:c2 @ [c2:$===c1,
c2:$===n1, npb:*===c2] @ [c2:"DATE=Yes] .
NPB:npb CD:c2 * CD:c1 @ [cl:$===c2,npb:*===cl] .
NPB:npb DLR:d1 CD:c1 @

120

[c1:CURRENCY===d1,npb:*===cl] @
[c1:A"DOLLER = TRUE] .

NPB:npb > DT:d1 @ [npb:*===d1].

NPB:npb > DT:d1JJ:;j1 @ [j1:SPEC
DET===d1,npb:*===j1] .

NPB:npb > DT:d1JJS:;j1 @ [j1.SPEC
DET===d1,npb:*===j1] .

NPB:npb > NN:nl1 CD:cl1 @ [n1:SPEC
QUANT===c1,npb:*===n1] .

NPB:npb > NNP:nl1 CD:c1 @ [n1:SPEC
CARD$===c1,npb:*===n1] .

NPB:npb > QP:g1 [NN:n1|NNS:n1|[NNP:n1|NNPS:n1]
POS:pl1 @ [n1:SPEC QUANT===q1,n1l: SPEC DET
GEN_PRO===p2,npb:*===p1,npb:*"GENITIVE===n
1] @ [n1:* CASE=GEN,n1:* DEF=POS,n1:*
DTYPE=genitive] .

NPB:npb > RBR:rl JJ;j1
[NN:n1|[NNS:n1|NNP:n1|NNPS:nl1] @
[[1:ADJUNCT ADV$===r1,n1:ADJUNCT
ADJ===]1,npb:*===n1] .

NP-PRD:np- > *NP:n1*PP:pl @ [n1:ADJUNCT

prd PREP$===p1,np-prd:*===n1] .
NP-TMP:np- > *NNP:nl*CD:cl* @ [n1l:SPEC
tmp CARD$===c1,np-tmp:"===n1] .

PP,PP-A:pp > (RB:rl) *[IN:i1|TO:i1] * [SG:s1|SG-
A:sl|S-A:sl] * @ [s1:ADJUNCT
ADV$===r1,51:CONJ_FORM===i1:PFORM,pp:"===

sl].
PP:pp > *[IN:i1|TO:i1] * [NPB:n1|NP-A:n1|ADJP-
A:nl]* @ [i1:0BJ===n1,pp:"===i1] .
PP:pp > *ADVP:al IN:il * @ [i1:ADJUNCT
ADV$===al,pp:r===i1] .
PP:pp > *IN:il * [PP:pl|PP-A:pl] * @
[(1:ADJUNCT PREP===p1,pp:"===i1] .
PP:pp > *IN:il* SBAR-A:s1 @
[s1:CONJ_FORM===i1:PFORM,pp:"===81] .
PP:pp > *IN:il IN:i2 NP-A:nl* @

[(2:0BJ===n1,i1:ADJUNCT
PREP===i2,pp:"===i1] .

PP:pp > *JJj1 * [IN:i1|TO:i1] * @ [i1:ADJUNCT
ADJ$===j1,pp: ===i1]

PP:pp > *PP:pl* @ [pp:* $===p1].

PP:pp > *PP:pl* @ [pp:*===pl].

PP:pp > *PP:pl CC:cl PP:p2 @
[p2:$===p1,p2:CONJ_FORM===cl,pp:"===p2] .

PP:pp > *PUNC:pl* @ [pp:ADJUNCTS===p1] .

121

PP:pp > RB:rl * PP:pl * @ [p1:ADJUNCT ADV$===rl]
PP:pp > vbg:vl PP-A:pl @
[v1:0BJ===p1,pp:"===vl].
PP:pp > VBG:vl * NP-A:nl @
[v1:OBJ===n1,pp:*===v1].
PP:pp > VBG:vl * PP-Apl* @

[v1:COMP$===p1,pp:"===vl].

PP-A:pp-a > [IN:i1|TO:i1] * [NP-
A:n1|NP:n1|NPB:n1|PP-A:nl] * @
[(1:0BJ===n1,pp-a:*===i1] .

PP-CLR:pp- > IN:i1NP:n1* @ [i1:0BJ===n1,pp-
clr clr:A===i1] .

PRN:prn > *[LRB:I1|RRB:I1] * @
[prn:*ADJUNCTS$===I1] .

PRN:prn > *NP:nl* @ [prn:*===n1] .

QP:gp > *[IN:i1|RB:i1] * CD:c1 @ [c1:ADJUNCT
ADV$===i1,gp:"===cl] .

QP:gp > *[JJS:j1|3JR:j1] * CD:c1l @ [c1:ADJUNCT
ADJ===1,gp:"===cl] .

QP:qp > *CD:cl (CC:c3)CD:c2 @
[c2:$===c1,c2:CONJ_FORM===c3,qp:"===c2] .

QP:qp > *CD:cl @ [gp:"===c1] .

QP:gp > *DLR:d1*CD:cl* @ [gp:®
CURRENCY===d1,qp:"$===c1] @ [c1:* DOLLAR
= TRUE] .

QP:gp > *DLR:d1*CD:cl @ [c1:®
CURRENCY===d1,qp:*===c1] @ [c1:* DOLLAR =
TRUE].

QP:gp > *IN:i1 PDT:pl @ [p1:COMPARITIVE
COMP_FORM===i1,qp:*===p1] .

QP:gp > *IN:i1TO:t1 DLR:d1*CD:cl* @

[gp:_===i1,qp:_===t1,qp:"*
CURRENCY===d1,qp:"$===c1] @ [c1:* DOLLER
= TRUE] .

RRC:rrc > * ADVP:al* PP:pl @ [p1:ADJUNCT
ADV$===al,rrc:*===p1] .

S,S-A's > *[NP:n1|NP-A:nl] * NP-A:n2 * VP:vl * @
[n2:ADJUNCT MOD$===n1,s:"
SUBJ===n2,s:*===v1] @
[VIACLAUSE_TYPE=DECLARATIVE] .

S,S-As > *[SBAR:s1|SBAR-A:sl] * VP:vl1* @
[v1:COMP$===s1,s:"===v1] @
[VIACLAUSE_TYPE=DECLARATIVE] .

S's > *[ADVP:al|INTJ:al] * VPVl * @
[VI:ADJUNCT S_ADV$===al,s:*===v1] @

122

[VI:ACLAUSE_TYPE=DECLARATIVE] .

S:s

\Y

*[LRB:I1|RRB:I1] * @ [s:"ADJUNCT$===I1]

S:s

* [NPB:n1|NP:n1] [NPB:n2|NP-A:n2] *
VPVl * @
[v1:SUBJ===n1,n1:SPEC$===n2,s:"===v1] @
[VIACLAUSE_TYPE=DECLARATIVE] .

S:s

*[S-A:sl|S:s1] * VPVl * @
[v1:COMP$===s1,s:"===v1] @
[VIACLAUSE_TYPE=DECLARATIVE].

S:s

*CCicl*VPwl*@
[v1:CONJ_FORM===cl,s:*===v1] @
[VIACLAUSE_TYPE=DECLARATIVE] .

S:s

CC:cl1 S:s1S:s2 @ [s:CONJ_FORM===cl]

S:s

*IN:il NP-A:n1 VP:v1 * @
[v1:SUBJ===n1,v1:CONJ_FORM===il1,s:*===v1]

S:s

*NP-A:n1 *VP:v1* @
[v1:SUBJ===n1,s:*===v1] @
[VIACLAUSE_TYPE=DECLARATIVE] .

S:s

*NP-A:n2 * NP:n1*VP.v1* @
[n2:ADJUNCT MOD$===n1,s:"
SUBJ===n2,s:*===v1] @
[V1I:ACLAUSE_TYPE=DECLARATIVE] .

S:s

*NPB:n1*VP:vl* @
[v1:SUBJ===n1,s:"===v1] @
[VIACLAUSE_TYPE=DECLARATIVE] .

S:s

*PP:pl * VP:v1 * @ [v1:ADJUNCT
S_PREP$===pl,s:A===v1] @
[V1:ACLAUSE_TYPE=DECLARATIVE] .

S:s

*RRB:rl * @ [s:* ADJUNCT ADV$===r1] .

S:s

S:s1 (CCicl) Sis2 @
[s2:CONJ_FORM===c1,s2:$===s1,s:"===52] .

S:s

*SG:s1*VPwv1*@
[VI:XADJUNCT===s1,s:"===v1] @
[V1I:ACLAUSE_TYPE=DECLARATIVE,v1:"XADJUNCT
SUBJ PRED = 'pro',v1:AXADJUNCT SUBJ
PRONTYPE = NULL] .

S:s

>

NP:n1l SG:s1l @ [n1:ADJUNCT
PARTICIPAL===s1,s:*===n1] .

S:s

>

NP-A:n1 ADJP:al @ [n1:ADJUNCT
ADJ===al,s:*===nl].

S-A:s-a

> *[NPB:n1|NP-Annl]* VPVl * @

[v1:SUBJ===nl,s-a*===v1] @
[V1:ACLAUSE_TYPE=DECLARATIVE] .

123

S-Ais-a * ADVP:al * VP:vl * @ [v1:ADJUNCT
S_ADV$===al,s-a*===v1]| @
[VIACLAUSE_TYPE=DECLARATIVE] .

S-As-a *CC:icl* @ [s-a"CONJ_FORM===cl].

S-A:s-a *MD:m1* VP.vl* @ [s-a:*===ml,s-
a*===vl1] @ [V1:*"CLAUSE_TYPE=DECLARATIVE]

S-Ais-a * NBP:n1 NP-A:n2 @ [n1:ADJUNCT
MOD$===n2,s-a:*===n1] .

S-As-a *NP_A:nl (ADJP:al) SBAR:s1* @
[s1:SUBJ===n1,s1:ADJUNCT S__ ADJ$===al,s-
ar===gl].

S-Ais-a * NP-A:n1 ADVP:al @ [n1:ADJUNCT
S_ADV$===al,s-a:*===n1] .

S-Ais-a *PP:pl* @ [s-a:ADJUNCT S_PREP===p1].

S-Ais-a *PP:pl* VP:vl * @ [V1:ADJUNCT
S _PREP$===pl,s-a*===vl1] @
[VIACLAUSE_TYPE=DECLARATIVE] .

S-As-a *S:s1*S:s2* @ [s2:$===5s1,s- a:r===s2]

S-As-a *S-Aisl *VP.vl * @ [v1:.COMP$===s1,s-
ar===vl].

S-As-a [NBP:n1|NP-A:n1] NP-A:n2 @ [n2:$===n1,s
ar===n2] .

S-A:s-a S:is1*S:s2 @
[s2:$===51,52:CONJ_FORM===cl,s-a:"===s2]

SBAR,S- > *ADVP:al * @ [sbar:*ADJUNCT

A:sbar S_ADV$===al].

SBAR,SBARQ:> * WHNP:w1 * [SG-A:s1|SQ:s1|S-A:sl] * @

sbar [s1:SUBJ/OBJ===wl,sbar:*===s1] @ [wl:*
WHQ = POS] .

SBAR:sbar *IN:il * NN:nl [S-A:s1|SG-A:sl] * @
[(1 :0BJ===nl,i1:COMP$===s1,sbar:"===i1] .

SBAR:sbar *IN:il* SINV:sl* @
[s1:CONJ_FORM===il,sbar:*===s1] .

SBAR:sbar * IN:il [S-A:s1|SG-Asl] * @
[s1:CONJ_FORM===il,shar:*===s1] .

SBAR:sbar *RB:rl * IN:il * @ [i1:ADJUNCT
ADV$===r1,sbar:"===i1] .

SBAR:sbar * SBAR:s1 (CC:cl) SBAR:s2 * @
[s2:$===51,52:CONJ_FORM===c1,sbar:"===s2]

SBAR:sbar * WHADVP:wl * [S-A:s1|SG-Asl] * @

[s1:ADJUNCT S_ADV$===w1l,sbar*===s1] @
[w1lA WHQ = POS] .

124

SBAR-A:sbar

SBAR:sl1 CC:cl SBAR:s2 @
[s2:$=== s1,52:CONJ_FORM===c1,sbar:*===s2]

*INGil*S-Asl*@

SBAR-

A:sbar-a [s1:CONJ_FORM===i1:PFORM,sbar- a:*===s1].

SBAR- * WHADVP:wl * S-A:s1 * @ [s1:ADJUNCT

A:sbar-a S_ADV$===wl,sbhar-a:*===s1] .

SBAR- * WHNP:w1 * [SG-A:s1|S-A:sl] * @

A:sbar-a [s1:SUBJ/OBJ===wl,sbhar:"===g1] .

SBAR-A- *WHNP:wl * S-A-g:sl * @

g:sbar [s1:SUBJ/OBJ===w1,sbar:*===s1] .

SBAR-g:sbar *WHNP:w1 * S-A-g:s1 * @
[s1:SUBJ/OBJ===wl,sbhar:*===g1] .

SBAR- *WHNP:w1 * S-A-G:s1l * @

G:sbar-g [s1:SUBJ/OBJ===w1l,sbar-g:*===s1] .

SBAR- *WHNP:w1 * S-A-G:s1 * @

G:sbar-g [s1:SUBJ/OBJ===w1l,sbar-g:*===s1] @ [w1:"
WHQ = POS] .

SBAR- WHNP:wl S-A-g;sl @

G:sbar-g [s1:SUBJ/OBJ===w1l,sbar-g:*===s1] @ [w1:"
WHQ = POS] .

SBARQ:sbarq * [SBAR-ADV:r1|RB:r1|INTJ:r1|ADVP:r1] *
SQ:s1* @ [s1:ADJUNCT
S ADV$===rl,sbarg:*===s1] @
[S1ACLAUSE_TYPE=INTERROGATIVE] .

SBARQ:sbarq *CC:c1*SBARQ:s1* @
[s1:CONJ_FORM===cl,sharq:"===s1] .

SBARQ:sbarq * PRN:pl * SQ:s1* @ [s1:ADJUNCT
PRN$===p1,sbarq:"===s1] @
[S1ACLAUSE_TYPE=INTERROGATIVE] .

SBARQ:sbarq * SBARQ:s1 * SBARQ:s2 * @
[s2:$===s1,sbarq:*===s2] .

SBARQ:sbarq * WHADVP:wl * SQ:s1 * @ [s1:ADJUNCT
S _ADV$===wl,sharq:*===s1] @ [wl:* WHQ =
POS,s1:*"CLAUSE_TYPE=INTERROGATIVE] .

SBARQ:sbarq * WHNP:w1 * [SQ:s1|S:s1] * @
[s1:SUBJ===wl,sbarq:"===s1] @
[S1ACLAUSE_TYPE=INTERROGATIVE,wl1:* WHQ =
POS] .

SBARQ:sbarq * WHNP:wl * SQ:s1* @
[s1:0BJ===w1l,sbarg:*===s1] @
[S1ACLAUSE_TYPE=INTERROGATIVE] @ [w1:"
WHQ = POS] .

SBARQ:sbarq *WHPP:wl * SQ:s1* @ [s1:ADJUNCT

S PREP$===pl,sharq:*===s1] @
[s1:ACLAUSE_TYPE=INTERROGATIVE] .

125

SBARQ:sbarq > * WRB:wl * FRAG:f1 * @ [f1:ADJUNCT
S_ADV$===wl,sbarq:*===f1] @
[VIACLAUSE_TYPE=INTERROGATIVE] .

SBARQ- > *WHNP:w1l * [SQ:s1|S:s1] * @
TPC,SBARQ:s [s1:SUBJ===wl,sbarg-tpc:*===s1] @ [w1l:*
barg-tpc WHQ = POS] .

SG:sg > (CC:cl) *ADVP:al *VP:v1* @

[v1:CONJ_FORM===c1,v1:ADJUNCT
S _ADV$===al,sg:"===v1] .

SINV:sinv

\%

(PP:pl) VBZ:v2 NP:n1 VP:v1 @ [v1:ADJUNCT
S _PREP$===p1,v1:SUBJ===n1,v1:TNS_ASP===v
:TNS_ASP,sinv:*===v1] .

SINV:sinv > (S:s1]*) VP.v1NP:nl1* @
[v1:COMP===s1,v1:SUBJ===n1,sinv:*===v1] @
[VI:ACLAUSE_TYPE=DECLARATIVE] .

SINV:sinv > *(S:s1) VP.v1NP:n1* @
[v1:COMP===s1,v1:SUBJ===n1,sinv:*===v1] @
[VI:ACLAUSE_TYPE=DECLARATIVE] .

SINV:sinv > * ADVP:al *VP:vl* @ [v1:ADJUNCT
S ADV$===al,sinv:*===v1] @
[VI:ACLAUSE_TYPE=DECLARATIVE] .

SINV:sinv > *md:ml*VPwv1l*@
[sinv:A===m1,sinv:*===v1] @
[VIACLAUSE_TYPE=DECLARATIVE] .

SINV:sinv > *PP:pl* VPl * @ [v1:ADJUNCT
S _PREP$===p1,sinv:*===v1] @
[VIACLAUSE_TYPE=DECLARATIVE] .

SINV:sinv > *VBD:v2
[VB:v1|VBD:v1|VBG:Vv1|VBN:v1|VBP:v1|VBZ:v1
INP:n1* @
[v1:SUBJ===n1,v1:TNS_ASP===v2:TNS_ASP,sin
viA===v1] @ [V1"CLAUSE_TYPE=DECLARATIVE]

SINV:sinv > *VBD:v2 NP:n1 VPv1* @
[v1:SUBJ===n1,v1:TNS_ASP===v2:TNS_ASP,sin
v:A===v1] @ [V1:"CLAUSE_TYPE=DECLARATIVE]

SINV:sinv

\%

S:s1 VP:v1 NP:nl* @
[v1:COMP===s1,v1:SUBJ===n1,sinv:*===v1] @
[VIACLAUSE_TYPE=DECLARATIVE] .

SQ,SINVisqg > *[ADVP:al|RB:al]* @ [sq:" ADJUNCT
S _ADV$===al] .

SQ:sq > * ADVP:al *VP:vl* @ [v1:ADJUNCT
S_ADV$===al,sq:===v1] @
[VIACLAUSE_TYPE=INTERROGATIVE] .

SQ:sq > *MD:ml * [NP:n1|NP-A:n1] VP:v2 * @

126

[v2:SUBJ===n1,sq:"===m1l,sqQ:"===v2] @
[V2A"CLAUSE_TYPE=INTERROGATIVE,m1:"HelpVP
TNS_ASP=ITNS_ASP] .

SQ:sq *MD:m1*VP.vl* @

[sg:*===m1l,sq:*===Vv1] @
[V1I:ACLAUSE_TYPE=INTERROGATIVE].

SQ:sq * SBAR:s1 * VP:v1 * @

[v1:COMP$===s1,sq:"===vl] @
[VIACLAUSE_TYPE=INTERROGATIVE] .

SQ:sq [VBP:v1|VBZ:v1|VBD:v1] * [NP:n1|NP- A:nl]
*VP:v2 * @ [v2:SUBJ===n1,v2:HelpVP
TNS_ASP===v1.TNS_ASP,sq:*===v2] @
[v2:ACLAUSE_TYPE=INTERROGATIVE,v2:*HelpVP
TNS_ASP=ITNS_ASP ,V1LATNS_ ASP=ITNS_ASP].

SQ:sq [VBZ:v1|VBD:v1l] [NP:n1|NP-A:n1]

(INP:n2|NP-A:n2]) @
[v1:SUBJ===n1,v1:0BJ===n2,5q:*===v1] @
[V1I:ACLAUSE_TYPE=INTERROGATIVE] .

SQ:sq VB:v1 [NP:n1|NP-A:n1|NPB:n1] VP:v2 * @
[v2:SUBJ===n1,s1:"
_AUX_FORM_===v1:PRED,sq:*===v2] @
[v2:ACLAUSE_TYPE=INTERROGATIVE,v2*TNS_AS
P TENSE=PRES] .

SQ:sq VBP:v1 [NP:n1|NP-A:n1] [NP:n2|NP- A:n2] @
[v1:SUBJ===n1,v1:0BJ===n2,5q:*===v1] @
[V1I:ACLAUSE_TYPE=INTERROGATIVE] .

UCP:ucp * ADJP:al CC:c1NP:n1* @
[n1:$===a1,n1:CONJ_FORM===cl,ucp:*===n1]

VP,VP-A:vp *

[VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
] (PRT:al) [NP:n1|NPB:n1|NP-A:nl] * @
[v1:0BJ===n1,vp:*===v1] .

VP,VP-Avp > *
[VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
] (PRT:al) [NP-A:n1|NPB:n1|NP:n1]
[NBP:n2|NP:n2|NP-A:n2] * @
[v1:0BJ===n1,v1:0BJ2===n2,vp:"===v]] .

VP,VP-Avp > *
[VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
1 * [VP-A:v2|VP:v2] * (SBAR:S1) @
[v2:COMP$===51,v2:TNS_ASP===v1:TNS_ASP,vp
N===v2] .

VP,VP-Avp > *

[VB:v1|VBD:v1|VBG:Vv1|VBN:v1|VBP:v1|VBZ:v1
]1*S-Aisl* @ [v1:XCOMP===s1,vp:"===v1]

127

@ [v1:AXCOMP SUBJ PRED = 'pro',v1:*XCOMP
SUBJ PRONTYPE = NULL] .

VP,VP-A:vp

>

*[VBZ:v1|VBD:v1] [ADVP:al|RB:al]
[NP:n1|NP-A:n1] @ [v1:ADJUNCT
ADV$===al,v1:PREDLINK===n1,vp:*===v1] @
[V1:'PRED =c 'be_V'].

VP,VP-A:vp

>

*VP:vl*CC:icl*VPv2* @
[v2:$===v1,v2:CONJ_FORM===cl,vp:"===v2] .

VP,VP-A:vp

>

*VPv1*VP:v2 * @
[v2:$===v1,v2:CONJ_FORM===cl,vp :===v2].

VP:vp

> *[ADVP:al|RB:al] *

[VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
[VP:v1] * @ [v1:* ADJUNCT
ADV$===al,vp:"===vl].

VP:vp

> *[ADVP:al|RB:al] * VP-Avl* @

v1:ADJUNCT ADV$===al,vp:*===v1].
[P

VP:vp

> *

[VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
] [ADVP:al|PRT:al]) NP-PRD:n1 * @
[V1:PREDLINK===n1,vp:*===v1] .

VP:vp

[VB:v1|VBD:v1|VBG:Vv1|VBN:v1|VBP:v1|VBZ:v1
] (PRT:al) NP-A:n1 NPB:n2 * @
[v1:0BJ===n1,v1:0BJ2===n2,vp:"===v]] .

VP:vp

[VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
] (PRT:al) NPB:n1* @
[v1:0BJ===n1,vp:"===v1] .

VP:vp

[VB:v1|VBD:v1|VBG:Vv1|VBN:v1|VBP:v1|VBZ:v1
] *[S:s1|SBAR:s1] * @
[v1:COMP$===s1,vp:"===v1] .

VP:vp

[VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
] * [SBAR:s1|SBAR-A:s1|SBAR-A-g:sl] * @
[v1:COMP$===s1,vp:"===v1] .

VP:vp

[VB:v1|VBD:v1|VBG:Vv1|VBN:v1|VBP:v1|VBZ:v1
]*ADVP:al * @ [v1:ADJUNCT
ADV$===al,vp:"===vl].

VP:vp

[VB:v1|VBD:v1|VBG:V1|VBN:v1|VBP:v1|VBZ:v1
]*NP-TMP:n1* @
[VI:ADJUNCT$===n1,vp:*===vl].

VP:vp

[VB:v1|VBD:v1|VBG:V1|VBN:v1|VBP:v1|VBZ:v1

128

]* PP:pl* (PP:p2 *) @ [V1:ADJUNCT
PREP$===p1,v1:ADJUNCT
PREP$===p2,vp:*===vl] .

VP:vp > *
[VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
]ADJP:al * @
[v1:PREDLINK===al,vp:*===v1] .

VP:vp > *
[VB:v1|VBD:v1|VBG:V1|VBN:v1|VBP:v1|VBZ:v1
] SG- Aisl* @ [v1:XCOMP===s1,vp:*===v1] @
[v1:AXCOMP SUBJ PRED = 'pro’,v1:AXCOMP
SUBJ PRONTYPE = NULL].

VP:vp > *MD:ml* [VP-A:V1|VP.V1] * @
[vp:A===m1l,vp:"===v1] .

VP:vp > *RB:rl*VP-Avl* @ [v1:ADJUNCT
ADV$===r1,vp:===v1] .

VP:vp > [VBZ:v1|VBD:v1l] SBARQ:s1 @
[v1:COMP===s1,vp:"===v1] .

VP:vp > TOt1*VP-Avli*@
[vp:A===v1,v1:INF===t1l:INF] .

VP:vp > VBP:vl ? * ADJP:al @ [vp:* ADJUNCT
ADJ$===al].

VP:vp > VP:vl * SBAR:sl1 * @ [vp:* COMP$===s1] .

VP-AVP:vp- > *[ADVP:al|RB:al]* @ [vp-a:* ADJUNCT

a ADV$===al].

VP-A\VP.vp- > *

a [VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
] (PRT:al) NPB:n1 * @ [v1:0BJ===n1,vp-
ar===vl].

VP-AVP:vp- > *

a [VB:v1|VBD:v1|VBG:Vv1|VBN:v1|VBP:v1|VBZ:v1
] (PRT:al) NPB:n1 * @ [v1:0BJ===n1,vp-
ar===v1].

VP-AVP:vp- > *

a [VB:v1|VBD:v1|VBG:Vv1|VBN:v1|VBP:v1|VBZ:v1
] (PRT:al) NPB:n1l NP-A:n2 * @
[v1:0BJ===n2,v1:0BJ2===nl,vp-a:*===v1] .

VP-A\VP.vp- > *

a [VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
] * [SBAR-A:s1|SBAR:s1] * @
[v1:COMP===s1,vp-a*===v1] .

VP-A\VP.vp- > *

a [VB:v1|VBD:v1|VBG:Vv1|VBN:v1|VBP:v1|VBZ:v1
]* ADVP:al * @ [v1:ADJUNCT ADV$===al,vp-
ar===vl].

VP-A\VP:vp-> *

129

a [VB:v1|VBD:v1|VBG:V1|VBN:v1|VBP:v1|VBZ:v1
]1*PP:pl* @ [v1:ADJUNCT PREP$===p1,vp-
ar===v1].

VP-AVP:vp- > *

a [VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
]*PRT:p1* @ [V1:PART===p1,vp- ar===v1]

VP-AVP:vp- > *

a [VB:v1|VBD:v1|VBG:Vv1|VBN:v1|VBP:v1|VBZ:v1
]*SG:sl* @ [v1:XCOMP===s1,vp- a:r===v1]
@ [v1:AXCOMP SUBJ PRED = 'pro',v1:AXCOMP
SUBJ PRONTYPE = NULL].

VP-A\VP.vp- > *

a [VB:v1|VBD:v1|VBG:V1|VBN:v1|VBP:v1|VBZ:v1
]*SG:s1 SG:s2 * @ [vp-a®
XCOMP===s1,vp-a:*XADJUNCT===s2,vp-
a*===vl] @ [v1:*XCOMP SUBJ PRED =
'pro’,v1:AXCOMP SUBJ PRONTYPE =
NULL,v1:AXADJUNCT SUBJ PRED =
'pro’,v1:AXDJUNCT SUBJ PRONT YPE = NULL].

VP-AVP:vp- > *

a [VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
]*SG-Aisl * @ [v1:XCOMP===s1,vp-
a*===vl] @ [v1:*XCOMP SUBJ PRED =
'pro’,v1:AXCOMP SUBJ PRONTYPE = NULL].

VP-A\VP.vp- > *

a [VB:v1|VBD:v1|VBG:v1|VBN:v1|VBP:v1|VBZ:v1
1 [VP-A:V2|VP:V2] * @
[V2:TNS_ASP===v1:TNS_ASP,vp-a:*===v2] .

VP-AVP:vp- > *

a [VB:v1|VBD:v1|VBG:V1|VBN:v1|VBP:v1|VBZ:v1
] PRT:pl* @ [V1:PART===pl,vp- ar===vl].

VP-AVP:vp- > *PP:pl*PP:p2* @ [vp-a:* ADJUNCT

a PREP$===p2,vp-a:* ADJUNCT PREP$===p1] .

VP-Avp-a > *

[VB:v1|VBD:v1|VBG:Vv1|VBN:v1|VBP:v1|VBZ:v1
] ADJP:al * @ [v1:PREDLINK===al,vp-
ar===vl].

VP-A:vp-a > *

[VB:v1|VBD:v1|VBG:V1|VBN:v1|VBP:v1|VBZ:v1
]CC:cl
[VB:v2|VBD:v2|VBG:v2|VBN:v2|VBP:v2|VBZ:v2
]1* @ [vp-a:"$===v2,vp-a:*
CONJ_FORM===c1,vp-a:"$===v1] .

VP-A:vp-a > *ADVP:al*

[VB:v1|VBD:v1|VBG:V1|VBN:v1|VBP:v1|VBZ:v1
]* @ [v1:ADJUNCT ADV$===al,vp-a:*===v1]

130

VP-Aivp-a > * ADVP:al * SBAR:sl* @ [vp-a:*
COMP$===s1,vp-a:*===al] .

VP-A:vp-a > VB:vl CC:.cl VB:v2 NP:n1 @
[v2:CONJ_FORM===c1,v2:$===v1,v2:0BJ===n1,

vp-a:i===v2] .
WHADJP:whad> * WRB:w1 * JJ:j1 * @ [w1:ADJUNCT
ip ADJ$===j1,whadjp:*===w1] .

WHNP:whnp > *WHADJP:wl * JJR:j1 * @ [w1:ADJUNCT
ADJ$===j1,whnp:"===w1] .

WHNP:whnp > * WHNP:wl * PP:pl* @ [wl1l:* ADJUNCT
PREP$===pl,whnp:*===w1] .

WHNP:whnp > *WPS:wl * [NNS:n1|NN:n1] @ [n1:DET
GENITIVE===w1,whnp:*===n1] .

131

