
Urdu Localization of Open Source Software

Huda Sarfraz, Sarmad Hussain, Mahwish Bano, Asad Mustafa and Rahila Parveen
Center for Language Engineering, Al-Khawarizmi Institute of Computer Science, University of

Engineering and Technology, Lahore, Pakistan
firstname.lastname@kics.edu.pk

Abstract

This paper presents the process used to localize a
set of open source software applications for Urdu
speakers in Pakistan. The software applications were
selected for use by rural area secondary school
students and included OpenOffice.org (an office suite),
SeaMonkey, (an Internet suite), and Psi (an instant
messenger). This paper presents a survey of Urdu
localization for open source software, describes the
localization process used for the three software
applications listed and discusses issues and challenges
that came up during the localization process. The
paper concludes with a note work to be done in the
future in this area.

1. Introduction

Software localization is a process through which a
software application is customized for a specific
language-region pair, referred to as a locale [1]. This
involves translation of the graphical user interface
(GUI) text, adjustment of the GUI layout and
customizing definitions of multiple elements, for
example, date and time formats, spell checkers etc.,
such that it fulfills the needs and requirements of a
particular language region pair, for example Urdu-
Pakistan (ur-PK) or French-Canada (fr-CA) [2].

Software internationalization is a process that is
complementary to localization. It is the process through
which a software application is designed such that it
can be conveniently customized for other languages
[3].

Localized open source software has the potential to
make a significant impact on the accessibility of
information and communication technology for users
who are not literate in English. Localization is
becoming an increasingly important aspect of open
source software for the global community. Many

commonly used open source software applications are
available for users in multiple locales. Mozilla Firefox
for example, is available in over 60 locales.

This paper first presents a brief survey of currently
available Urdu-Pakistan versions of open source
software. After that, the complete process used to
localize three open source software applications, 1) an
office suite, 2) an Internet suite and 3) an instant
messaging client, will be presented. Notable issues that
were encountered during the process will be discussed.
The paper will conclude with a note on future
directions to be pursued in the context of Urdu
localization of open source software.

2. Current status of Urdu localization in
open source software

A brief survey of commonly used open source
software shows that none have been localized for Urdu,
with the exception of Ubuntu and OpenOffice.org,
which has an unofficial release available through the
work that is presented in this paper. A summary of the
survey is shown in Table 1.

Unofficial ur-IN (Urdu for India region) versions of
OpenOffice.org 2.0.3, Firefox 1.0.6 and Thunderbird
1.0.7 exist for the ur-IN locale, but these have not been
noted in Table 1, which only accounts for ur-PK
localizations.

Apart from popular open source software shown in
Table 1, Urdu versions of SeaMonkey and Psi, two
relatively low profile software applications, are
available. The Urdu localization process for these two
applications, along with OpenOffice.org is presented in
this paper.

In addition, sometimes Urdu versions of specialized
software are also available. For example, Poedit, a
localization tool, has an Urdu version available for use.

Table 1. Open source software localization status for
Urdu

Software Description No. of

Locales
Urdu (ur-
PK)
Localization

Firefox 3.6.12 Web browser 66 Locale owner
exists but no
work done.

Thunderbird
3.1.6

Email client 49 Locale owner
exists but no
work done.

OpenOffice.org
3.1

Office suite 19 Unofficial
release
available.

Pidgin 2.7.4 Instant
messenger

16 No work done

VLC Media
Player 1.1.4

Media player 48 No work done

7zip 4.65 Archive
manipulator

13 No work done

GIMP 2.6.11 Image Editor 13 No work done
Audacity 1.2 Audio editor 26 No work done
Ubuntu 10.10 Operating

system
28 Active

localization
team, work in
progress.

3. Internationalization and Localization
Technology

Internationalized software applications, as
mentioned earlier, allow for convenient localization
into multiple locales. Internationalization implies that
the portion of the software that needs to be adjusted for
different locales is available separately for localizers,
who can update this portion conveniently as per their
requirements without having to get into the
technicalities of the software itself. The bulk of this
portion is made up of GUI and help content strings
which are to be translated. Apart from the strings that
are to be translated, other constituents of the software
also need to be set as per the requirements of the locale
being localized. One example is spellcheckers, which
are inherently language specific, for software
applications that involve some form of word
processing.

Three major localization technologies are widely
used within the open source software community
currently. These are briefly described in the following
subsections.

3.1. GNU gettext based internationalization

GNU gettext is the GNU internationalization and

localization library used for developing multilingual
software. It enables the production of a file that
contains all translatable strings from the source code of
a software application. These can then be translated for
different locales and used to compile localized versions
of the application.

3.2. XUL based internationalization

XUL (XML User Interface Language) is a

technology developed by Mozilla. It provides support
for localization, user interface layout and appearance
customization. Like GNU gettext, it enables the
isolation of translatable strings from source code.

3.3. Qt based internationalization

Qt is a cross-platform application and user interface

framework which is well known for facilitating the
development of applications across multiple platforms.
It also enables convenient development of localized
versions of applications as well, by isolating
translatable strings from the source code.

The localization procedure for any software

application is therefore dependent on the technology
that has been used for developing the internationalized
application.

4. Localization Process

The objective of the work presented in this paper
was to develop Urdu versions of some common types
of software to be used by rural area school students in
Pakistan. In particular, Urdu-Pakistan versions of the
following software applications were needed.

1. a web browser
2. an email client
3. an instant messaging client
4. a word processor
5. a graphics editor
6. a webpage development tool

The process used to develop localized versions of
the required software types is summarized in Figure 1
and will be presented in this section.

It should be noted again at this point that
localization is a process where translation of GUI
strings and help content makes up the bulk of the work
to be done. Due to this, any localization team should
ideally include a balance of both technical and

language experts. The work presented here was
completed by a team of three technical experts and
three language experts.

OSS

selection

String

extraction

Localization

registration

Localization

tools

selection Translation

review

Translation

incorporation

Translation

Testing and

QA

Translation

resources

compilation

Translation

resources

Build and

release

 Figure 1: Localization process

4.1. Selection of software

The first step of the process was the selection of
software to be localized. To select specific software
applications, four points were taken into consideration.

4.1.1. Localization support. The first and foremost
criterion for selection was that the application must be
internationalized. As discussed earlier,
internationalized development facilitates an efficient
and convenient localization process by separating all
the application elements that need to be customized for
a locale.

4.1.2. Encoding support. The application selected had
to support the character set encoding required by Urdu.
It was also necessary for the application to provide
proper bidirectional text support. This is because Urdu
is a bidirectional language, written mainly from right-
to-left, but also includes portions of text that are written
from left-to-right, e.g., numbers.

4.1.3. Cross-platform support. Software that was
supported across multiple platforms was preferred,
because its localized version would then be available to
a wider user base.

4.1.4. Active community. Software that had an
associated active community was preferred. An active
community ensures that technical assistance will be
available when needed. It also a good indicator that
development of the software will continue in the future,
which in turn means greater potential of use and
maintenance of the localized version that is developed.

Based on these criteria, and also taking the usability

of the software applications into account, two software
suites, OpenOffice.org (www.openoffice.org) and
SeaMonkey (www.seamonkey-project.org), and a
simple instant messenger, Psi (http://psi-im.org), were
selected. OpenOffice.org contains a full suite of office
applications including a word processor and a vector
based graphics editor. SeaMonkey is a complete
Internet suite available from the Mozilla Foundation. It
includes a web browser, an email client, and a simple
webpage development tool. This suite was given
preference over popular individual applications like
Firefox and Thunderbird because an integrated suite
was considered more usable for the user base being
targeted, and the localization effort was also
considerably decreased for a single suite as opposed to
multiple separate applications.

All selected software was internationalized and had
Unicode (UTF-8) and bidirectional language support
which was required for Urdu. All three were available
for multiple platforms. Finally, all three also had active
communities, which ensured that the localization effort
would be supported for some time.

4.2. Selection of localization tools

Localization tool selection was done on two levels.
Firstly, tools were selected for each application being
localized, in order to manage its localization file
formats and to create localized builds.

Secondly, in order to keep translations across
applications consistent and to keep the translation
interface uniform for translators, a tool was selected
purely to aid linguists in translation. These are
described in the following subsections.

4.2.1. Qt Linguist. Psi is a Qt based application and Qt
Linguist was used to obtain the strings which had to be

translated for it and create its installable Urdu language
pack.

4.2.2. Mozilla Translator. Similarly, for SeaMonkey,
Mozilla Translator was used to obtain the strings which
had to be translated for it and create its installable Urdu
language pack.

4.2.3. OmegaT. OmegaT is an open source, cross-
platform computer aided translation (CAT) tool. It
facilitates the translation process by maintaining a
translation memory of previous translations.
Translation memory can be defined as source and
target language pair obtained from a previously
completed translation. This is made available to
translators to aid in future similar translations.

OmegaT is a versatile tool and one of its key
features is that it can handle the translation of multiple
file formats including plain text, HTML and
OpenDocument formats. Due to this feature, it played a
role at both levels in the localization process.

Firstly, it provided a uniform translation interface
for translators. Files from both Mozilla Translator and
Qt Linguist could be transformed and handled in it.

Secondly, it could handle OpenOffice.org files (PO
format) natively, without any transformation. So these
were translated directly in OmegaT, and then used for
building the Urdu installer for OpenOffice.org

Another key feature of OmegaT is the support of
terminology glossaries, which also aid in keeping
translations consistent. A core terminology glossary
was used during the localization process through
OmegaT.

OmegaT maintains translation memories in TMX
(Translation Memory eXchange) format which is an
XML standard for the exchange of translation memory
between different CAT applications. OmegaT is a
single user application but allows for manual sharing of
translation memory between multiple projects. So,
during the localization process, translators had access
to translation memories of each others’ projects, which
were updated manually, at least on a daily basis. As a
result, all translators had access to all the translation
memory that was developed over the course of time.
This helped especially in keeping the translations
consistent across the application set, which would not
have been easily possible if an individual tool had been
used for each application.

OmegaT also provides Unicode (UTF-8) support
and bidirectional support for right-to-left languages so
it was very convenient to use for English to Urdu
translations.

Figure 2 shows a sample OmegaT project for
English to Urdu translation. One source file from the
project has been opened for translation, and a string
“Minimum font size” has been selected (in the main
window on the left). As soon as a string is selected,
matches from the translation memories and glossaries
are displayed in the windows on the right.

Figure 2: Sample OmegaT project

The bottom window on the right shows matches

from the glossary, along with the name of the glossary
where the match was found.

The top window titled “Fuzzy Matches” shows
similar translations from translation memories. The
“Fuzzy Matches” window shows five matches. The
translation memory files in this case have been named
after the translators they were obtained from, and this
name can be seen at the end of each match along with
the match percentage.

4.3. Localization registration

When starting an open source software localization,
it is best to contact the software community and
coordinate with them, so that localization efforts aren’t
duplicated and so it can be released through the
community as an official build. This is usually done
through a registration procedure, which varies for
different software.

Urdu-Pakistan (ur-PK) localization teams were
officially registered for SeaMonkey and Psi. The ur-PK
locale for OpenOffice.org was already registered to a
community member, so an effort was made to
collaborate with the existing team.

4.4. Compilation of translation resources

A survey was conducted to collect resources that
would help in the translation process. These included
dictionaries, terminology glossaries and previous
localization work done for Urdu. Some of the major
resources used during the localization process are
presented in detail next.

4.4.1. NLA Glossary. This is a computer terminology
glossary based on the “Electronic Dictionary of
Localization of Computer Applications (English -
Urdu)”, by the National Language Authority
Islamabad, Pakistan. This is the main glossary that was
referred to during the translation process as it
represents the recommended standard for Pakistan. It
has also been used by Microsoft for Urdu localization
of its software products, so using it also ensured a
uniform terminology for users across applications.
Additional entries were made to this glossary during
the translation process, as described ahead.

4.4.2. Localized software for Urdu. The following
Urdu language versions of software were found during
the survey.

1. Mozilla Suite 1.5 ur-PK
2. Firefox 1.0.6 ur-IN
3. Thunderbird 1.0.7 ur-IN
4. OpenOffice.org 2.0.3 ur-IN

Translations from these were extracted and used as
reference glossaries during the translation process. The
ur-PK translation was more useful as compared to the
ur-IN translations because the ur-IN locale used
translations of a slightly different style than the one
adopted for the ur-PK localization. One example was
the level of respect used when referring to the user.

4.4.3. Online technical terminology translations
(English to Urdu): Two significant English to Urdu
technical technology translations were available online.
The first was the Urdu Word Bank
(http://l10n.urduweb.org/dictionary/), which has user
generated translations of technical terms. Users can
look up translations for technical terminology, edit
existing translations, add new translations, or put up
requests for translations. The second was an Urdu
technical terms glossary
(http://www.qern.org/it/dict/urdu/dict_main.cgi) which
also allows users to enter their own translations, but it
is not as active as the first one.

4.4.4. Dictionaries: All major English to Urdu
translation dictionaries were also been consulted in the
process, e.g. Qaumi English-Urdu Dictionary published
by the National Language Authority of Pakistan.

4.4.5. Miscellaneous: Other than the resources listed
above, frequently consulted resources included: 1)
WordNet (http://wordnet.princeton.edu/), an English
lexical database; this is helpful when there is confusion
about the sense or part-of-speech of a word being
translated, 2) specialized terminology translations
compiled by the National Language Authority Pakistan
(e.g., mathematical terms, scientific terms etc.), and 3)
various other online dictionaries and online
documentation for the applications being localized.

4.5. String extraction

The next step of the process was the extraction of
strings to be translated from each application such that
they could be translated using OmegaT. Strings were
extracted and divided into batches for management
purposes. Each batch contained about 600-700 words.
The number of strings in each batch varied according
to the number of words per string. One translator
completed the translation of four batches in about a
week on average. Strings to be translated come from
three sources in the application: 1) the GUI, 2) the
application help, and 3) any other application
documentation.

4.6. Translation

Each translator had an OmegaT project for
translation and each subsequent file to be translated
was added to the project. Each project contained a
core glossary, reference glossaries and also the
translation memory of all the linguists in the team
(updated on a daily basis or as required).

For translation purposes each word in a string was
first classified as either a functional or a content word.
All nouns, verbs, adjectives and adverbs are content
words; words that fall into any other category, e.g.,
prepositions, conjunctions etc. are functional words.
For each string to be translated, the translation of
functional words was left to the discretion of each
individual linguist, but translations of content words
were taken from the core glossary only (which was
developed with the mutual consent of translators and
developers).

For example, in the following strings, the content
words are in bold: “Failed to remove this account.”;
“Filters associated with this folder will be updated.”;
“Horizontal scrolling”; “ New languages can be
configured using the Languages Panel.”

Keeping the above rule in mind, the translators
would proceed with the translation in four stages as

described in the following sections, and shown in
Figure 3.

Figure 3: Translation process

4.6.1. Initial translation. At the beginning of each
week, translators were given a set of four translation
batches. Translators would initially go through these,
translating those strings for which all content words
have appropriate entries in the core glossary. The NLA
glossary, described earlier was used as the core
glossary, and was extended through the process being
described here. Strings which had a content word
which was not included in the core glossary were
skipped and the missing word was entered into a list of
new terms.

4.6.2. New terminology lookup. After the translation
stage, translators looked up appropriate translations for
the new terms. Translators had access to the translation
resources described earlier during this step, and
developers are also consulted when the context of a
term could not be determined.

4.6.3. Glossary extension. After the compilation of
new terminology lists, a team meeting was held
including both translators and developers. During the
meeting, new translations were finalized and added to
the core glossary. Issues could be raised from both
linguistic and technical perspectives. From the
linguistic perspective, more appropriate translations
were sometimes suggested, and from the technical
perspective, incorrect senses and parts-of-speech for
words used during translation were sometimes
identified.

4.6.4. Translation completion. The translators would
then use the updated glossary to complete the set of
translations for the week.

This process was repeated on a weekly basis.

4.7. Translation review and incorporation

Translations were reviewed and finalized by
developers and incorporated into the applications,
using the application specific tools.

Control and accelerator keys were also assigned
during this phase. Control and accelerator keys are
shortcut keys for menus and menu items indicated to
the user by underlining a character in a menu or menu
item. For example the “File” menu in most
applications has the “F” underlined, and it can be
accessed by pressing Alt+F. In this case, “F” is the
accelerator key. An example of a control key is Ctrl+S
for the “Save” item (in the “File” menu), where the “S”
is underlined. Control and accelerator keys both need
to be set appropriately according to the translations.

Most translation errors detected during this phase
were caused due to misinterpretation of the source
string. This misinterpretation was usually caused by
one of the following reasons. Firstly due to limited
exposure to software in general, translators were not
familiar with some types of sentence structures used in
software GUIs. Secondly because the linguists had not
used the software being localized, they could not
understand concepts specific to the software (e.g., the
notion of tabbed browsing), and might translate them
inappropriately.

4.8. Quality assurance

A quality assurance process was used to ensure that
the final localized product was free of errors. Some of
the individual applications had their own quality
assurance procedures as well which were followed
where needed, but an overall quality assurance process
was devised as well.

After translation incorporation, some preliminary
tests were conducted by developers to identify
commonly occurring errors, e.g., placeholders in
strings not being displayed as expected. An example of
this is shown in Figures 4, where the source string to be
translated is “The web site %S does not support
encryption for the page you are viewing.”. Here “%S”
is a placeholder, and may be misplaced during
translation, as shown in Figure 4. The string inserted
for the placeholder “www.google.com.pk” is appearing
at an incorrect position. Errors of this type can occur

due to linguistic (lack of knowledge about the nature of
the placeholder may cause incorrect placement) or
technical reasons, specifically, due to insufficient
bidirectional support – only in the case of left-to-right
languages - the placeholder in the translated string may
appear in a different position in the localization tools
and in a different position within the application being
localized.

Figure 4: Misplacement of placeholder in translated string.

Another common error was the use of Urdu

translation strings that were too long as compared to
their English counterparts and did not fit in their
designated position in the GUI. This would either cause
some GUI components to expand and cause problems
in the overall application, or it would cause the text to
appear in truncated form. This had to be solved by
developing an alternate, shorter translation.

Interim versions of the localized applications were
also frequently deployed within the team for user
testing.

4.9. Release

After translation and quality assurance was
completed for Psi and SeaMonkey, Urdu language
packs were released as per the process and release
schedule for the software. An unofficial localized build
was released for OpenOffice.org because the registered
ur-PK localization team was inactive.

A total of about 26,000 strings were translated for
OpenOffice.org. Figure 5 shows the Urdu version of
OpenOffice.org Writer. The unofficial ur-PK installer,
corresponding to OpenOffice.org 2.4.0 is available at
http://panl10n.net/english/Outputs%20Phase%202/CCs
/Pakistan/Software/2008/OpenOffice.org(unofficial).zi
p.

A total of around 2000 strings were translated for
the instant messenger, Psi. The language pack for the
current version, 0.14, released in collaboration with the
Psi team is available at http://psi-
im.org/download/lang/ur_PK.

The localized software was deployed in 10 rural
area secondary schools as part of Project Dareecha,
more details for which can be found at
www.crulp.org/dareecha/.

5. Localized software

As a result of the process described in this paper,
localized versions of the selected software applications
were released.

A total of around 10,000 strings were translated for
the SeaMonkey suite, and installable Urdu language
packs were released in collaboration with the
SeaMonkey team for versions 1.1.5 through 1.1.19.
Release 1.1.19 is available at www.seamonkey-
project.org/releases/1.1.19.

A total of about 26,000 strings were translated for
OpenOffice.org. Figure 5 shows the Urdu version of
OpenOffice.org Writer. The unofficial ur-PK installer,
corresponding to OpenOffice.org 2.4.0 is available at
http://panl10n.net/english/Outputs%20Phase%202/CCs
/Pakistan/Software/2008/OpenOffice.org(unofficial).zi
p.

Figure 5: OpenOffice.org Writer in Urdu

A total of around 2000 strings were translated for
the instant messenger, Psi. The language pack for the
current version, 0.14, released in collaboration with the
Psi team is available at http://psi-
im.org/download/lang/ur_PK.

The localized software was deployed in 10 rural
area secondary schools as part of Project Dareecha,
more details for which can be found at
www.crulp.org/dareecha/.

6. Translation issues

Translation was a critical part of the localization
process. Inappropriate translations would have
rendered the localized software unusable, so a
meticulously planned translation process was used to
ensure high quality translations, as described in earlier.
This section covers some translation selection issues,
and describes a problem specific to Urdu translation, in
order to illustrate the types of problems that are
encountered during localization.

6.1. Translation selection

When available, technical terms were translated as

per the NLA glossary described in 5.3.1. This is the
nationally recommended standard, also in use by
Microsoft. The advantage of using it as the core
reference was that users would be seeing the same,
familiar, terminology if they switched from proprietary
to open source software.

If a terminology translation could not be found
within the core glossary, a translation was coined using
the conventions followed by the NLA glossary. If there
was a conflict, preference was given to the simplest
option. Because all new terminology was coined
through a collaborative process including both
developers and translators, it was ensured that
translations were both linguistically and technically
appropriate.

There were a few cases where the NLA
recommended terminology was inappropriate and
therefore not followed. An example is the English word
“Beep”. The translation recommended by the NLA in
this case is “پيں”. There is no equivalent word for
“Beep” in Urdu and it seems to be translated using the
concept of onomatopoeia where a word itself suggests
the sound that it describes [4]. During the localization
of Psi, the following string had to be translated: “Beep
twice”. If the NLA recommendation had been
followed, it would have had to be translated as either
“ پيں کریںدو دفعہ ” or “پيں پيں کریں”, both of which
would have been equally awkward. A decision was

therefore made to not use the NLA recommendation
and simply transliterate the word in Urdu script instead.

6.2. No capitalization in Urdu

When a button is being referred to in an English
string, the capitalization of the first letter and the
syntax makes it clear that a button is being referred to.
For example, in the text from SeaMonkey “Click Finish
to create new profile,” it is clear that “Finish” refers to
a button due to capitalization. However, Urdu does not
have capitalization so there is not easy way to identify
the button in the translated text. The decision to make
the translation unambiguous was to use single quotes to
indicate a button name. So the sentence given above
was translated as:

 کلک کریں۔' تکميل کریں'نئی پروفائل بنانے کے ليے

7. Conclusion and future work

This paper presented the process used to localize
three open source software applications for Urdu-
Pakistan. These particular three applications were
aimed for use by rural area school children, where they
would aid in eliminating the language barrier in
information and communication technology access.
The survey presented at the start of the paper showed
that there are still numerous software applications that
can be localized to serve the same purpose. Therefore
efforts like this must be extended and improved, as
they play a crucial role in enabling information and
communication technology access for the average
citizen of Pakistan, who is not literate in English.

8. Acknowledgements

This work was carried out at the Center for
Research in Urdu Language Processing
(www.crulp.org), National University of Computer and
Emerging Sciences, Lahore (www.nu.edu.pk), and was
funded the PAN Localization Project
(www.panl10n.net). Software specific technical support
was provided by the user and development
communities of OpenOffice.org (www.openoffice.org),
SeaMonkey (www.seamonkey-project.org), Psi
(http://psi-im.org/) and OmegaT (www.omegat.org)
open source projects.

9. References

[1] A. Souphavanh and T. Karoonboonyanan, Free/OpenS
Source Software: Localisation, Elsevier and UNDP, India,
2005.

[2] M.P. Pustakalaya, Guide to Localization of Open Source
Software, Center for Research in Urdu Language Processing
and the International Development Research Center.

[3] S. Hussain and R. Mohan, “Localization in Asia Pacific”,
in Digital Review of Asia Pacific 2007-2008, Orbicom and
the International Development Research Center 2008.

[4] F. Katamba, Morphology, Palgrave Macmillan, 1993.

