

EGD URDU LOCALIZATION PROJECT

Parser Detailed Design (MT)

Oct 31, 2005

CENTER FOR RESEARCH IN URDU LANGUAGE PROCESSING
NATIONAL UNIVERSITY OF COMPUTER AND EMERGING SCIENCES, LAHORE

PAKISTAN

Table of Contents

1. High Level Design...1

1.1. System Architecture..1
1.2. List of Files: ..1

2. Detailed Design ..2
2.1. Classes Description..4
P_SemanticForm ...4
P_LexicalEntry ...4
P_Symbol ..4
P_Production ...5
Token...5
P_FDescription...5
P_Scanner ...5
P_Lexicon ..6
P_Grammar ...7
POSTagger ..9
P_ChartItem...10
P_ChartColumn..12
P_ChartParser ...14
TranslationManager ...28
2.2. Sequence Diagrams ...49
2.2.1. Initialization ..49
2.2.2. Parsing...50
2.3. Algorithms ..51

Revision History

Reference No: EGD/MT/

Name Change Date Version Description of Changes

MT Team Oct 31, 2005 Created

Huda Feb 13, 2006 Adding complete FS design

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 1

1. High Level Design

1.1. System Architecture

Description:

1.2. List of Files:

File Description Type Format

ELexicon.lex
It contains raw lexicon entries of English
Lexicon.

Text Unicode

EGRules.gr Text Unicode

EGMacros Text Unicode

Egrammar Text Unicode

Egrammar.dmp Binary

Elexicon.dmp Binary

POSes.txt Text Unicode

BigramProb.txt Binary

TrigramProb.txt Binary

SubcatFrames.txt Text Unicode

DummyLex.lex

fsTypeAttribute.txt

Contains list of attribute names that
require an f-structure as their value, e.g.,

“SUBJ”, “XCOMP” etc.
Text ANSI

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 2

2. Detailed Design

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 3

The following is the class diagram relevant to f-structure building.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 4

2.1. Classes Description

P_SemanticForm
struct P_SemanticForm

{

// Attributes:

};

P_LexicalEntry
struct P_LexiconEntry

{

// Attributes:

};

P_Symbol
struct P_CSymbol

{

// Attributes:

Name Type Description

Pred Short
The “Pred” is the Predicate of the Lexical Entry having the index

of the Symbol table

GFIndex vector<byte>

This is the vector of indices of all subcat frame vectors

attached with the Lexical entry. These indices correspond to the

indices of SubcatFrames vector of P_Lexicon

Name Type Description

POS int

A number representing the POS of the Lexical Entry.

The possible values of POS are in power of 2. for

each POS, this power is the position number of that

POS in POSes.txt.

FDescriptionIndices vector<short>

Indices of FDescriptions attached with the Lexical

Entry. Actual FDescriptions against these indices

can be retrieved from P_FDescriptionMap class.

probability Float The probability of the Lex Entry as “pos”

SemForm P_SemanticForm
Semantic Form of the Lexical Entry (Predicate +

Grammatical Function)

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 5

};

P_Production
struct P_CProduction

{

// Attributes:

Name Type Description

LHS short LHS Production LHS Symbol

RHS
vector<P_CSymbol*>

RHS
Production RHS Symbols

SelectionSet short SelectionSet

Bit Representation of Selection Set. For each POS in

the selection set of the production, corresponding

bit is turned on in the SelectionSet variable.

(recall that POSes’ values are in Power of two)

};

Token

struct Token

{

// Attributes:

Name Type Description

MT_POS int

lexeme string

CorpusPOSes vector<short>

};

P_FDescription

P_Scanner

Name Type Description

SymbolId short This is the Symbol Id

IsTerminal bool This Symbol is the Terminal or NonTerminal

FDescriptionIndices vector<short> Functional Description of each Symbol of the RHS

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 6

P_Lexicon

P_Lexicon

Lexicon : hash_multimap<string,P_LexicalEntry >

SubCatFrames : v ector<v ector<by te> >

GetLexicalEntry (word : wstring) : P_LexicalEntry *

GetSubcatFrame(index : by te) : * v ector<by te>

Attributes

Name Type Description

Lexicon hash_multimap<wstring,P_LexicalEntry> The Lexical Entries Hash_Map hashed on the lexeme

SubCatFrames vector<vector<byte> > All the possible Subcat frames vector: <SUBJ,OBJ>

Functions

GetLexicalEntry(word : wstring) : vector<P_LexicalEntry *>

It returns the list of the lexical entries corresponds to the “word”

GetSubcatFrame(index : byte) : vector<byte>*

Return a list of the Subcat frames corresponds to the “index”

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 7

P_Grammar

P_Grammar

ProductionTable : v ector<int,P_Production>

StartSy mbolID : short

GetProduction(LHS_Sy mbol : short, FirstSet : int) : v ector<P_Production*>

GetProduction(ProdId : int) : P_Production*

Conv ertLFGtoCFG()

DumpGrammartoDumpFile()

LoadGrammarFromDumpFile()

ReadGrammar()

GetStartSy mbolID() : short

init()

It is the data structure that contains the information of All Grammar

Rules. It also provides the functionality to convert the grammar rules to CFG format.

Attributes:

Name Type

ProductionTable multimap<int,P_CProduction*>

StartId Short //‘S’

Operations:

Name Signature

GetProduction
 vector<P-CProduction*> GetProduction(LHS_Symbol, int POS)

GetStartId Short GetStartId()

ReadLFGGrammar void ReadLFGGrammar()

ConvertLFG2CFG ConvertLFG2CFG (String InputFName, String OutputFName)

GetProductionList GetProductionList (String Lhs)

GetProduction P-CProduction* GetProduction(int ProdId)

WriteCFG void WriteCFG()

MergeProductions void MergeProductions()

LoadGrammarFromDumpFile void LoadGrammarFromDumpFile(string Path)

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 8

Cases:

1: OPTIONAL () and OR |

A -> B (D | E) F

// conversions:

 A -> B X2 F

 A -> B F

 X2 -> D

 X2 -> E

2: STAR (*)

 A -> B [D | E]* F

// conversions:

 A -> B X2 F

 A -> B F

 X2 -> [D | E] X2

 X2 -> [D | E]

3: PLUS (+)

A -> B [D | E]+ F

// conversions:

A -> B X2 F

X2 -> [D | E] X2
X2 -> [D | E]

4: No of times (#)

A -> B [D % E]#3 F

// conversions:

A -> B X2 F

A -> B X2 X2 F

A -> B X2 X2 X2 F
X2-> [D % E]

5: Shuffle (%)

 X -> [A%B]

// conversions:

 X -> A B
 X -> B A

*/

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 9

POSTagger

POSTagger

POStoIndex : map<int, int>

Conf usionMatrix : int **

Disambiguate(&v ector<v ector <P_LexicalEntry *> >)

PopulatePOStoIndex()

PopulateConf usionMatrix()

GetPathProb() : f loat

init()

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 10

P_ChartItem

P_ChartItem

Start : short

FSPtrs : v ector<P_FStructure *>

DotPosition : by te

IsFailed : bool

Production : P_Production *

BackPointers : v ector<v ector<P_ChartItem*>>

probability : v ector<f loat>

Mov eDot(CompleterItem : P_ChartItem *) : bool

AddBackPtrs(ItemPtrs : v ector<P_ChartItem *>)

GetBackPtrs(Sy mbolIndex : by te) : * v ector<P_ChartItem *>

GetFSIndices() : * v ector<P_FStructure *>

GetCurrentSy mbol() : short

IsComplete() : bool

IsFailed() : bool

GetProdPtr() : P_Production *

GetDotPos() : by te

SetFailed(Failed : bool)

ComputeProbability ()

GetProbability () : f loat

Attributes

Name Type Description

Start short Index of the chart column where the current P_ChartItem was
first placed

FSPtrs vector<P_FStructure *> Pointers of P_FStructure corresponding to the each possible tree
having current P_ChartItem as root.

DotPosition byte Indicates the position of dot in the production of current
P_ChartItem. It can have values from 0 to Number of right-hand-
side symbols in the production.

IsFailed bool Boolean value indicating whether the subtree having root at
current chart item was failed during F-Structure building or not.

Production P_Production * Pointer to a production in Grammar

BackPointers vector<vector<P_ChartItem *> > Conatains a separate vector of back pointers for each alternative
subtree with root on current chart item. For a single subtree the
corresponding vector contains a pointer of P_ChartItem for every
right-hand-side symbol of production, pointing to that completed
chart item that moved the dot over the symbol.

Probability vector<float> Contains a probability corresponding to every subtree rooted at
current chart item

Functions

MoveDot(CompleterItem : P_ChartItem *) : bool

Moves dot, adds one to the DotPosition, if possible. If the Dot can be moved then it first adds CompleterItem
pointer to all the BackPointers vectors on their Dot Position Index.

AddBackPtrs(ItemPtrs : vector<P_ChartItem *>)

Adds a new vector of P_ChartItem pointers (ItemPtrs) to the BackPointers vector. Back pointers are added from 0
th

symbol uptill the last element before DotPosition. Hence if the DotPosition is 0, no BackPointers are added.

GetBackPtrs() : vector<vector<P_ChartItem *> >

Returns BackPointers.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 11

GetFSIndices() : * vector<P_FStructure *>

Returns FSPtrs.

GetCurrentSymbol() : short

From among the right-hand-side symbols of the production attached with current chart item, the id of the one on the
DotPosition index is returned.

IsComplete() : bool

Returns true if the DotPosition is equaql to the number of right-hand-side symbols in the production attached with
the chart item.

IsFailed() : bool

Returns IsFailed.

GetProdPtr() : P_Production *

Returns Production.

GetDotPos() : byte

Returns DotPsition.

SetFailed(Failed : bool)

Sets IsFailed equal to Failed.

ComputeProbability()

For each vector of back pointers it adds the probabilities of all the chart items pointed by the back pointers and then
adds the probability of the Production to it. The sum is then assigned at proper index (corresponding to that subtree
whose back pointers were used for calculating probability) in probability vector.

GetProbability() : float

Returns Probability.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 12

P_ChartColumn

P_ChartColumn

Items : v ector<P_ChartItem>

LexItems : v ector<P_ChartItem>

CurrentIndex : short

ProductionsIndex : hash_map<short,v ector<by te> >

ProdsWithDotAt : hash_map<short,v ector<by te> >

ItemCount : short

GetLexEntries() : v ector<P_LexicalEntry *>

GetCurrentItem() : P_ChartItem *

LoadItem(item : P_ChartItem) : bool

GetItemsWithDotAt(pos : int) : * v ector<by te>

GetCurrentIndex() : short

GetItemCount() : short

Mov eNext()

GetItemAt(index : int) : P_ChartItem *

Attributes

Name Type Description

Items vector<P_ChartItem> Vector od items contained in the column.

LexItems vector<P_ ChartItem> Chart items corresponding to the lexical entries of the word
attached with the chart column.

CurrentIndex short Index of the chart item being currently processed.

ProductionsIndex hash_map<short,vector<byte> > A hash_map that has production id as key and against this key it
contains the indices of all those chart items which contain the
pointer of the grammar production having that production id.

ProdsWithDotAt hash_map<short,vector<byte> > A hash_map that has P_Symbol as key and against this key it
contains the indices of all those chart items which contain the
pointer of the grammar production having that symbol on
DotPosition on the right-hand-side of production.

ItemCount short Total number of items in the column.

Functions

GetLexEntries() : vector<P_LexicalEntry *>

gives the vector of pointers of P_LexicalEntry attached with column

GetCurrentItem() : P_ChartItem *

it returns the chart item locate at the CurrentIndex

LoadItem(item : P_ChartItem) : bool

Loads a chart item in the chart if it is not already there. It finds the item in the chart column using ProductionsIndex
hash_map. If the chart item with exactly the same production (with same dot position) is already there and
DotPosition is not 0 then it adds the back pointers’ vector of new comer chart item to the vector of back pointers’
vectors of existing chart item

GetItemsWithDotAt(symb : short) : * vector<byte>

Returns the indices of all those chart items whose production symbol at DotPosition is equal to the symb, this is

done by hashing into the ‘ProdsWithDotAt’ hash map.

GetCurrentIndex() : short

Return CurrentIndex

GetItemCount() : short

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 13

Returns ItemCount

MoveNext()

Increments CurrentIndex

GetItemAt(index : int) : P_ChartItem *

Returns the pointer of the chart item located at index.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 14

P_ChartParser

P_ChartParser

Chart : v ector<P_CChartColumn>

PTagger : POSTagger

ScannerPtr : P_Scanner *

GrammarPtr : P_Grammar *

LexiconPtr : P_Lexicon *

CurrentColumn : by te

TimeLimit : long

SpaceLimit : long

ChartSize : by te

StartTime : long

SpaceCount : long

P_ChartParser(Lexptr : P_Lexicon *, Gramptr : P_Grammar *, Scanptr : P_Scanner*) : bool

ParseSentence() : v ector<FSCSpair>

GenerateFStructure()

GetNextFS() : P_FStructure *

Parse()

Predict() : v oid

Scan() : v oid

Complete() : v oid

SetTimeLimit(time : long) : v oid

SetSpaceLimit(space : long) : v oid

Attributes

Name Type Description

Chart Vector<P_ChartColumn>

PTagger POSTagger

ScannerPtr P_Scanner

GrammarPtr P_Grammar

LexiconPtr P_Lexicon

CurrentColumn Byte

TimeLimit Long

SpaceLimit Long

ChartSize Byte

StartTime Long

SpaceCount long

Functions

P_ChartParser(Lexptr : P_Lexicon *, Gramptr : P_Grammar *, Scanptr : P_Scanner*) :

bool

Initializes LexiconPtr, GrammaerPtr, and ScannerPtr to Lexptr, Gramptr and Scanptr.

Parse() : void

This function gets the tokens of a complete sentence from ScannerPtr and for each token retrieves its lex entries
from LexiconPtr. Then it sends these entries to PTagger for POS-disambiguation. It resizes the Chart to the size
equal to sentense-length+1. To each column of the chart it assigns its corresponding lex entries and then calls
ParseSentence() function.

ParseSentence() : vector<FSCSpair>

This function is mainly responsible for parsing. It puts all productions of ‘S’ in the 0th chart column and begins
parsing. During parsing it traverses all chart columns using CurrentColumn variable and for each column it
sequentially traverses all its items. For each item it checks if the item is completed, if so then it calls Complete()

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 15

otherwise it checks the current symbol of the production attached to the item. If the symbol is terminal then it calls
Scan() otherwise it calls Predict(). During traversal of chart column, in each iteration it checks the times elapsed to
for and the memory occupied so far and if any of them exceeds its limit, it releases the memory allocated during
parsing and exits the function returning Null value.

Predict() : void

This function is called when the current symbol of the current chart item is a non terminal. It retrieves all those
production of the non-terminal symbol whose first set contains the POS of any of the lex entries attached to the
current chart item. It places each of these production in a new chart item in the current chart column. It uses
LoadItem() function of P_ChartColumn.

Scan() : void

Scan() is called when the current symbol of the current chart column is a terminal. It compares the terminal symbol
with the POSes of the lex entries of the current chart column and if it matches with any then It makes a copy of the
item, Moves its dot and puts it in the next column of the chart. It uses MoveDot function of the P_ChartItem.

Complete() : void

This function is called if the current chart item contains completed production (whose DotPosition is at the ends of
the RHS of production). It goes to the column where the production was first introduced by the predictor and from
that column it retrieves all those items whose current symbol matched the LHS of the production of the completed
item (these are the items who actually introduced the production). It moves the dot of all these production by one
step. it adds the pointer of completed item to the back pointers of the item and then loads this item to the current
column of the chart using LoadItem() function.

GenerateFStructure()

GetNextFS() : P_FStructure *

SetTimeLimit(long time) : void

SetSpaceLimit(long space) : void

bool buildFStructure(P_ChartItem* chart_item)

The dummy (S’) starting production (which leads to 1 or more S productions) from the grammar is sent as

parameter (chart_item) to start the f-structure building process. This consists of 3 main things, 1) allocate space

for a new P_Fstructure, set the chart_items’s FSPtr to it, and then send it as a parameter to the recursive

function builFStructures() so that the complete f-structure corresponding to the sentence can be built; 2)

checks the constrainst of the final f-structure that is built using the function checkConstarints(); and 3) check

the f-structure for completeness and coherence using the function CheckCompleteness().

bool buildFStructures(P_ChartItem* chart_item, P_FStructure* f_structure,

contextByte& context_offset)

This function builds the complete f-structure recursively. To do this 2 main steps are required for each RHS symbol

of chart_item:

1) by inspecting the back-pointers for the current symbol figure out the set of down-arrow values for each RHS
symbol fsitem; to do this, for each back-pointer that doesn't already have an f-structure assigned to it, call

buildFStructures().

2) instantiate the fs items of the RHS symbol and put them in the f-structure.

The pseudo-code of how this is done is as follows:

outgoing_offset = context_offset;

outgoing_offset = outgoing_offset + production->MAXCONTEXT;

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 16

for (all RHS production symbols)

{

firstly:

collect all unique back-pointers for RHS_symbol in curr_sym_bkptrs;

(back-pointers for an RHS symbol will be in a single column)

if (RHS_symbol is not a terminal)

{

 if (multiple back-pointers)

 {

 prepare the contexts that will arise due to multiple back-pointers;

 adjust outgoing_context accordingly;

 for (all curr_sym_bkptrs)

{

 if (curr_sym_bkptr has no FSPtr)

 {

 set it’s FSPtr to fs_RHS_symbol;

make recursive call to build fs_RHS_symbol;

buildFStructures(curr_sym_bkptr, fs_RHS_symbol,

outgoing_offset);

 }

 else

 set fs_RHS_symbol to the FSPtr;

prepare link_value to be used as a reference (i.e., a down-

arrow) to the curr_sym_bkptr as follows:

link_value->context = prepared context for curr_sym_bkptr

 link_value->link = fs_RHS_symbol;

 link_value->value = 0;

link_value->value_type = DOWNARROWVAL;

 add link_value to down_arrow_values;

}

 }

 else (i.e. single back-pointer)

 {

 if (curr_sym_bkptr has no FSPtr)

 {

 set it’s FSPtr to fs_RHS_symbol;

make recursive call to build fs_RHS_symbol;

buildFStructures(curr_sym_bkptr, fs_RHS_symbol,

outgoing_offset);

 }

 else

 set fs_RHS_symbol to the FSPtr;

 }

}

else (i.e., lexical items have been reached)

 {

 lexical item f-structures will be built here (end of recursion);

 get lex_entry from curr_sym_bkptrs;

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 17

 if (lex_entry has no FSPtr)

 {

 for (all fsitems of lex_entry)

{

inst_fsitem = fs_item->instantiate(outgoing_offset,

f_structure, NULL);

 determine what type inst_fsitem is:

fsitem_for_list = inst_fsitem->getItemForFS();

 constraint_for_list = inst_fsitem->getConstraintForFS();

 link_for_list = inst_fsitem->getLinkForFS();

out of the three function calls above only one will return a

non-NULL value;

 if (fsitem_for_list)

 fs_RHS_symbol->addItem(fsitem_for_list);

 if (constraint_for_list)

 {

to complete constraint instantiation, the up-arrow /

down-arrow next to the down-arrow has to be determined:

inst_const = new

P_FSItemComplexInstConst(constraint_for_list,

f_structure, fs_RHS_symbol);

 constraint_for_list = inst_const;

 fs_RHS_symbol->addConstraint(constraint_for_list);

 }

 if (link_for_list)

 fs_RHS_symbol->addLink(link_for_list);

 }

 if(lex_entry has a Pred)

 {

 create pred_item;

fs_RHS_symbol->addItem(pred_item);

 create index_item

 fs_RHS_symbol->addItem(index_item);

 }

 outgoing_offset = outgoing_offset + lex_entry->MAXCONTEXT;

 fs_RHS_symbol->resolveValueLinks();

 fs_RHS_symbol->unify();

 lex_entry->FSPtr = fs_RHS_symbol;

 }

 else

 fs_RHS_symbol = lex_entry->FSPtr;

 }

 secondly:

for (each RHS_symbol fsitem)

 {

 if (bkptr_size <= 1)

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 18

inst_fsitem = fs_item->instantiate(context_offset, f_structure,

fs_RHS_symbol);

 if (bkptr_size > 1)

inst_fsitem = fs_item->instantiate(context_offset, f_structure,

down_arrow_values);

determine what type inst_fsitem is:

 fsitem_for_list = inst_fsitem->getItemForFS();

 constraint_for_list = inst_fsitem->getConstraintForFS();

 link_for_list = inst_fsitem->getLinkForFS();

 if (fsitem_for_list)

 f_structure->addItem(fsitem_for_list);

 if (constraint_for_list)

 {

inst_const = new P_FSItemComplexInstConst(constraint_for_list,

f_structure, fs_RHS_symbol);

 constraint_for_list = inst_const;

 f_structure->addConstraint(constraint_for_list);

 }

 if (link_for_list)

 f_structure->addLink(link_for_list);

 }

}

f_structure->resolveValueLinks();

f_structure->unify();

context_offset = outgoing_offset;

list< list<contextByte> > prepareBkPtrContextList(short no_of_contexts)

This is exactly the same as the context preparation function in P_FSIntializer, except that here the contexts are

needed due to the presence of multiple backpointers for a chart_item.

bool vectorContainsItem(vector<P_ChartItem*>& item_vector, P_ChartItem* chart_item)

checks if the vector item_vector contains chart_item.

contextByte adjustBkPtrContextList(list< list<contextByte> >& prepared_context,

contextByte start_from)

Adjust the backpointer contexts so that they start from start_from and returns the maximum value assigned.

P_FSInitializer
This class serves to convert the f-descriptions associated with the grammar productions and lexicon entries from
their textual format into one that will be more efficient for processing purposes. Before the class is described in
detail, the following few sections describes f-descriptions and the different forms they may take.

F-Descriptions
This section describes f-descriptions and the different forms that they may take.

Each lexical item in the lexicon and each right-hand symbol in the grammar is associated with a comma-separated
list of f-descriptions, as shown in the examples below:

Grammar Production:

MULTP -> card: ^=!, !NUM =c PL;

 mult: ^=!, !MULT_FORM =c 'times';.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 19

Lexical Item:
a:art, ^NUM = SG, ^DEF = NEG, ^NCOUNT = POS.

Operators in f-descriptions
There are two types of operators that may be used in an f-description, conditions and constraints. Condition

operators include = and $, whereas constraint operators include =c and ≠.

Different types of f-descriptions

Two types of variation may occur within an f-description: 1) the presence or non-presence of arrows next to the LHS
and the RHS, 2) a chain of items on the LHS or / and the RHS. These variations and their occurrence with the two
types described earlier are as follows:

An exhaustive list of all possibilities is:

^LHS

!LHS

LHS

^RHS

!RHS

RHS

^ (on LHS)

^ (on RHS)

! (on LHS)

! (on RHS)

LHS1 LHS2 LHS3 … CON RHS1 RHS2 RHS3 …

Out of these the legal forms that an f-description with a condition operator can take are:

^LHS

!LHS

LHS

^RHS

!RHS

RHS

^ (on LHS)

^ (on RHS)

! (on LHS)

! (on RHS)

LHS1 LHS2 LHS3 … COND RHS1 RHS2 RHS3 …

The legal forms for an f-description with a constraint operator are:

^LHS

!LHS

LHS

^RHS

!RHS

RHS

^ (on LHS)

^ (on RHS)

! (on LHS)

! (on RHS)

LHS1 LHS2 LHS3 … CONS RHS1 RHS2 RHS3 …

Now the following sections will describe the attributes and functions used by P_FSInitializer.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 20

Attributes
static P_FSItem** fsitem_lookup_table

This is a look-up table to keep all the unique f-descriptions as they’re read off the lexicon and the grammar. They
are stored in a generic manner so that they can be instantiated as required and put into f-structures. The ID for
each fs item is (its index in the array + 1) (this is done so that no fs item has the ID 0). Due to this storage, a single
entry in this table can be instantiated in different ways as and when required.

static PFSitemID fsitem_insertion_index

The index where the next newly created fs item is to be inserted.

static vector<PFSitemID>* fsitem_insert_acc

Serves to speed-up insertion of fs items into fsitem_lookup_table, the number of vectors will be equal to the

number of unique symbols (SUBJ, NUM, SG etc) that are being used in the f-descriptions. As the fs items are

inserted into fsitem_lookup_table, thier ID (PFSitemID) is inserted into fsitem_insert_acc such that it
goes into the ith vector where i is the ID of the symbol that is on the LHS of the f-decsription. So, the following f-
description,

^SUBJ = !

will be inserted into the vector number that is the ID for SUBJ. In this way when a new fs item is constructed and

has to be inserted fsitem_insert_acc aids in speeding up the search for an identical item (if an identical item
exists it is not inserted).

static PFSitemID lookup_table_temp_index

After the lexicon and grammar have been loaded any more entries in fsitem_lookup_table are temporary and

exist for that cycle only. lookup_table_temp_index indicates the index in fsitem_lookup_table where
these temporary entries begin.

static P_TempFSItemArray temp_fsitems

Keeps temporary versions of P_FSItems that need to be merged before they can be inserted into

fsitem_lookup_table. It exists for the construction of a single FDVector.

static P_TempFDStringItem* temp_FD_string_item

Keeps single f-descriptions with their corresponding P_FSItem so that copies can be made to put in temp_fsitems

(saves construction cost); exists for construction of all FDVectors. The structure for P_TempFDStringItem is as
follows:

struct P_TempFDStringItem

{

string f_desc_string;

P_FSItem* f_item;

};

static PFSitemID temp_FD_si_index

Insertion index for temp_FD_string_item.

static hash_map<string, PFSitemID> dummy_hash

A dummy hash map that exists purely to facilitate insertion into temp_FD_string_item.

static PFSitemID* fdesc_numeric

To store an f-description in numeric form in order to perform manipulations like adding contexts and moving the ~

operator to the literals. The following numbers are used to represent the f-descriptions:
-1: [

-2:]

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 21

-3: |

-4: ,

-5: ~

-10: end of the f-description

Other than these numbers an f-description itself is indicated by its ID in temp_FD_string_item.

static int fdesc_num_counter

To keep track of insertions into fdesc_numeric.

static list<contextByte>* fdesc_num_contexts

To build up the contexts such that they correspond to the f-description represented by fdesc_numeric. For each

index of fdesc_numeric where an fs item is expected, the correspoding index of fdesc_num_contexts will

have it’s context list.

static list< list<contextByte> > prod_context

To store the context that applies to a production that has multiple f-descriptions.

static contextByte max_assigned_context

The maximum context value that is assigned in a production or lexical entry f-description.

static list<string> fsTypeAttr

Is a list of the symbols (if they are representing an attribute) used in f-descriptions that will require an f-structure as
the value.

static bool initialization_complete

To indicate the end of the initializtion process after which entries in fsitem_lookup_table and the symbol table

for f-descriptions will be temporary.

static bool internal_call

To check whether the call to getFDVector() is external or from getFDVectors().

Functions
P_FSInitializer(void)

Constructor, does nothing because no object is meant to be instantiated.

~P_FSInitializer(void)

Destructor, does nothing because no object is meant to be instantiated.

static vector<PFSitemID> getFDVector(string f_desc, contextByte &max_context)

Processes an f-description (for a single grammar symbol) from it’s raw form (factorizes it (not implemented yet) and

applies the context), makes relevant entries in fsitem_lookup_table and returns a vector of numbers
representing the f-description.

For example, in the following production:

n -> boy: ^pred = ‘boy’, ^GEND = M.

the argument would be the string “^pred = ‘boy’, ^GEND = M”. This will be broken up in two and each

expression will be processed and assigned a number. The vector that is returned will contain the assigned

numbers for each expression. (note: f-descriptions of type pred will not be included in this scheme, it has only been
used here as an example.)

static vector< vector<PFSitemID> > getFDVectors(vector< vector<string> >

f_descriptions, contextByte &max_context)

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 22

Gets a whole set of f-descriptions that go with a production; the dimensions of the 2-dimensional vector

f_descriptions are (number of RHS symbols * number of different f-descriptions for the production);

max_context is not used here, it is assigned the maximum context number at the end so that it can be assigned to
the the grammar production.

static list< list<contextByte> > prepareProductionContextList(byte no_of_fdescs)

Calculates the context that has to be applied if a production has multiple f-descriptions associated wiith it. For
example, if there are six different f-descriptions associated with a production the context pattern that should be
constructed is as follows:

-5 -4 -3 -2 -1

-5 -4 -3 -2 1

-5 -4 -3 2

-5 -4 3

-5 4

 5

static bool preprocess(string f_desc)

Creates fdesc_numeric.

PFSitemID getFSItemID(P_FSItem* fs_item)

If the item already exists in fsitem_lookup_table, it returns it’s ID else it inserts it and returns it’s ID.

static P_FSItem* getFSItem(PFSitemID itemID)

Returns a copy of the fs item that is at the (itemID – 1)th index. This is done so that no fs item is assigned the ID
0. The item at index 0 will get the ID 1, and when it is rquired the value at index (1 - 0) = 0 is retrieved.

static void printDataStructures(ofstream &myfile)

Prints fsitem_lookup_table. For testing purposes only.

static void init(void)

Serves as the constructor which will never be called because no object of P_FSInitializer is instantiated.

static void deleteExtraInfo(void)

Frees memory (after lexicon and grammar have been processed) allocated to temp_FD_string_item and
assigns new memory (lesser than the previous) that is sufficient for working on a single cycle.

static void endInitialization(void)

To be called after the main initialization process (grammar and lexicon) has ended; after this all items sent to get
their FDVector constructed will have their items and symbols stored temporarily (will be deleted as soon as they're
useless - at the end of each sentence).

static void collectSelectiveGarbage(void)

Cleans up everything that is required for a single cycle only.

static string getNextToken(string input, int &index)

Takes the complete f-description associated with a symbol in a grammar production or a lexical entry and retrieves

the single f-description item that starts at index. The following are examples of tokens that can be retrieved: NUM

=c SG, SUBJ NUM = PL, ADV_TYPE = {V_MOD, N_MOD}. The following operators are also retrieved as a

token: [] , | ~

static string cleanUpToken(string token)

Removes redundant spaces from a token. Spaces in complex expressions like SUBJ NUM are not removed.

static string* reGetNextToken(string input)

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 23

Retrieves components of an f-description assuming that redundant white spaces have been cleaned up, e.g.,

"SUBJ", "=c", "NUM".

static list<PFSsymID> reReGetNextToken(string input)

Retrieves individual value IDs from a list e.g., {SG, PL}.

static bool fdNumInsert(PFSitemID op)

Inserts an element into fdesc_numeric.

static PFSitemID getTempFDStringItemID(string fdesc)

Checks if the string already exists in temp_FD_string_item; if it does return the ID, else construct the

P_FSItem, insert and then return the ID.

static P_FSItem* getTempFDStringItemCopy(PFSitemID item_id)

Returns a copy of the item corresponding to the ID.

static bool resolveNots(void)

Resolve the NOTs from the f-description in fdesc_numeric using DeMorgan's Law; expressions with upto 2

operands are handled, specifically the follwing three operations are carried out:

~[a|b] -> ~a,~b

~[a,b] -> [~a|~b]

~[a] -> ~a

static bool applyContexts(void)

Calculates what contexts are to be applied using fdesc_numeric. There are two types that may be applied, firstly

that context which arises due to grammar productions that have multiple f-descriptions associated with them,
secondly the context that arises when two expressions arebeing ORed.

static PFSitemID getCorrespondingOr(int index)

Used when applying contexts, index indicates the index of a [in fdesc_numeric. The function returns the index

of the OR (|) corresponding to it (if there is one) else it returns a 0.

static bool buildTempFSItemList(void)

Traverses fdesc_numeric; gets each item (from temp_FD_string_item) as it was originally constructed;

modifies item to accomodate the negations (change operator from ~ to !=) and the contexts; inserts final structure

in temp_fsitems.

static void fixFormat(string& fdesc)

Changes the format of the incoming string so that: 1) all "&&"s are changed to ","s, 2) all "||"s are changed to "|"s.

static void updateFSItemInsertAcc(PFSsymID attr, PFSitemID insert_index)

Adds new entry to fsitem_insert_acc.

static void removeFromAcc(PFSsymID attr, PFSitemID insert_index)

Removes temporary entry from fsitem_insert_acc.

static void changeSetToOrs(string& fdesc)

Used to change substrings in f-descriptions of the form

ATTRIBUTE = {VALUE1, VALUE2...}

to

[[ATTRIBUTE = VALUE1 | VALUE2]|...]

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 24

Implemented but not used.

P_TempFSItemArray
The purpose of this class is to hold the temporary fs items that are built during FDVector construction and to help
speed-up the building.

Attributes
vector<P_FSItem*>* temp_fsitem_array

Array of vectors of size equal to (the size of the fs symbol table + 1) – the +1 is necessary because symbol IDs start
from 1. Each fsitem is inserted into that array index which is equal to the symbol ID of that fsitem’s attribute (LHS),

e.g. that for GEND in GEND = SG. This helps to merge items that have the same attribute.

Functions
P_TempFSItemArray(void)

Default constructor.

~P_TempFSItemArray(void)

Default destructor.

bool insertFSItem(P_FSItem* fs_item)

Inserts the fsitem into the ith vector where i is the symbol ID for the attribute of the fsitem.

bool merge(void)

Merges the elements such that each item's attribute is it's index in the array; items with different operators will be in
different columns (separate vector elements). There will be six columns in all:

for all items with operator = (^attribute)

for all items with operator $ (^attribute)

for all items with operator =c (^attribute)

for all items with operator != (^attribute)

for all items with operator =c (!attribute)

for all items with operator != (!attribute)

void clear(void)

Clears temp_fsitem_array.

P_FSSymbolTable
This is the symbol table for the symbols that will be used during f-description and f-structure processing.

Attributes
static string* symbol_table

Keeps symbols e.g., NUM, GEND, SUBJ NUM, etc; the ID for a symbol is (the index of the array + 1) so that no

symbol is assigned the ID 0. It uses a hash function to enable 2-way access, i.e., using the ID we can directly get
the string, and by using a hash function we can get the index of the string.

static bool initialization_complete

To indicate the end of the initializtion process after which entries in symbol_table will be temporary.

static short* temp_entries

Will have the the indices of the entries in symbol_table that are temporary so that they can be removed during
the cleanup operation that takes place after each cycle.

static PFSsymID GFID

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 25

TAHIRA

static PFSsymID PredID

TAHIRA

static PFSsymID IndexID

TAHIRA

static list<PFSsymID> Subcats

TAHIRA

Functions
P_FSSymbolTable(void)

Constructor, does nothing because no object is meant to be instantiated.

~P_FSSymbolTable(void)

Destructor, does nothing because no object is meant to be instantiated.

static void init(void)

Serves as a constructor (allocates memory etc.)

static PFSsymID getSymID(string symbol)

If the symbol exists returns its ID, else it inserts the symbol and return it's ID, making the necessary updations
incase the entry is meant to be temporary.

static string getSym(PFSsymID symbol)

Returns the symbol that has the indicated ID.

static PFSsymID hash(string key, int size = FSSYMBOLTABLESIZE)

Hash function that is to be used for making insertions into symbol_table.

static void endInitialization(void)

Indicates end of initialization and makes preparations for the temporary entries.

static void addTempIndex(int index)

When an entry is made that should be temporary it adds it’s index to temp_entries.

static void collectSelectiveGarbage(void)

Deletes all the temporary entries from symbol_table and re-initializes temp_entries.

static void printSymbolTable(ofstream& myfile)

Prints symbol_table. For testing purposes only.

static void LoadSubcats(void)

TAHIRA

P_FSItem
P_FSItem is the abstract base class which will be used to keep the different types of fs items (attribute-value pairs)
that are possible in an f-structure or an f-description.

Attributes
PFSsymID attribute

Stores the ID of the attribute (LHS) such as GEND, NUM, SUBJ NUM etc.

Functions

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 26

P_FSItem(void)

Constructor; does nothing.

virtual ~P_FSItem(void)

Destructor, does nothing.

virtual P_FSItem* makeOpNotEq(void) = 0

Changes the operator of the P_FSItem to != (not equal). Required when creating the fs items because

expressions like:

~[GEND =c M]

should convert to

GEND != M

virtual P_FSItem* insertContext(list<contextByte> context_list) = 0

Adds the contextlist to the P_FSItem.

virtual P_FSItem* makeCopy(void) = 0

Makes a copy of the P_FSItem.

virtual bool addContextedValue(P_ContextedValue* cont_val) = 0

Adds a contexted value to the P_FSItem.

virtual int numberOfValues(void) = 0

Returns the number of values that the P_FSItem has.

virtual bool operator==(P_FSItem* right_item) = 0

Overloaded operator to check if two P_FSItems are equal.

virtual PFSsymID getSimpleValue(void) = 0

Gets a particular type of value from the P_FSItem if it has it.

virtual byte getAttributeType(void) = 0

Returns a byte that indicates the type of the attribute that the P_FSItem has.

virtual bool containsContextedValue(P_ContextedValue* contexted_val) = 0

Tells if the P_FSItem has contexted_val as a value.

virtual void printItem(ofstream &myfile) = 0

Prints the P_FSItem. Exists only for testing purposes.

virtual bool eqMergeInto(P_FSItem* fs_item) = 0

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

^attribute =

Knowing this, this function checks itself to see if it is of the same type then merges itself into fs_item, i.e., adds it’s

values to fs_item.

virtual bool setMergeInto(P_FSItem* fs_item) = 0

This function should only be used when it is ensured that the parameter fs_item contains an item of the following
form:

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 27

^attribute $

Knowing this, this function checks itself to see if it is of the same type then merges itself into fs_item, i.e., adds it’s

values to fs_item.

virtual bool eqcMergeInto(P_FSItem* fs_item) = 0

This function should only be used when it is ensured that the parameter fs_item contains an item of the following
form:

^attribute =c

Knowing this, this function checks itself to see if it is of the same type then merges itself into fs_item, i.e., adds it’s

values to fs_item.

virtual bool noteqMergeInto(P_FSItem* fs_item) = 0

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

^attribute !=

Knowing this, this function checks itself to see if it is of the same type then merges itself into fs_item, i.e., adds it’s

values to fs_item.

virtual bool eqcDownMergeInto(P_FSItem* fs_item) = 0

This function should only be used when it is ensured that the parameter fs_item contains an item of the following
form:

!attribute =c

Knowing this, this function checks itself to see if it is of the same type then merges itself into fs_item, i.e., adds it’s

values to fs_item.

virtual bool noteqDownMergeInto(P_FSItem* fs_item) = 0

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

!attribute !=

Knowing this, this function checks itself to see if it is of the same type then merges itself into fs_item, i.e., adds it’s

values to fs_item.

virtual P_FSItem* instantiate(contextByte context_offset, P_FStructure* up_arrow,

P_FStructure* down_arrow) = 0

To instantiate when there is only a single option for the down arrow.

virtual P_FSItem* instantiate(contextByte context_offset, P_FStructure* up_arrow,

vector<P_ContextedValue*> down_arrows) = 0

To instantiate when there are multiple options for the down arrow.

bool operator<(P_FSItem* right_item)

Overloaded operator made to help with sorting that does not actually work because it sorts the pointers. The
following is used instead:

struct forSort

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 28

{

 bool operator()(P_FSItem* item1, P_FSItem* item2)

 {

 return (item1->attribute < item2->attribute);

 }

};

The call to sort is now made in the following manner:

fs_items.sort(forSort());

where fs_items is a list of items. Using this the fs items can be sorted by attribute.

virtual P_FSItem* getItemForFS(void) = 0

Checks if the item is of a specific type (the type is termed ’item’) and if it is returns a copy of itself.

virtual P_FSItem* getConstraintForFS(void) = 0

Checks if the item is of a specific type (the type is termed ’constraint’) and if it is returns a copy of itself.

virtual P_FSItem* getLinkForFS(void) = 0

Checks if the item is of a specific type (the type is termed ’link’) and if it is returns a copy of itself.

virtual list<P_ContextedValue*> getContextedValues(void) = 0

Returns its list of contexted values.

virtual list< list<contextByte> > isConsistent(void) = 0

Checks if the item is consistent within itself and sends back a list of nogoods as the result.

virtual list< list<contextByte> > isConsistentWithItem(P_FSItem* in_item) = 0

Checks if the item is consistent with in_item and sends back a list of nogoods as the result.

virtual P_FSItem * getSolution(list<contextByte> & solution) = 0

NAYYARA?

virtual P_FStructure* getInstConstAttrLink(void) = 0

Returns the P_FStructure* link from a specific type of P_FSItem.

virtual void makeLinksNull(void) = 0

Makes all the links null. This is required because we may need to get rid of the item itself but the links that it
contains may be in use elsewhere.

virtual void removeAllValues(void) = 0

Removes all ths values from an item (meant to remove the values from a P_FSItemComplex, a

P_FSItemComplexInstConst in particular).

P_FSItemSimple : P_FSItem
P_FSItemSimple is the simplest form that a P_FSItem can take. It is used to hold f-description / f-structure items

such as ^GEND = F, ^NUM = PL etc. The only information that needs to be specified is the attribute (GEND) and

the value (F). It will be assumed: 1) that there is an up-arrow (^) next to the attribute, 2) that the operator used is ‘=’
and 3) that the context for this value is 0.

Attributes
PFSsymID value

This is the ID of the value (e.g. F, PL).

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 29

Functions
P_FSItemSimple(void)

Default constructor, does nothing.

P_FSItemSimple(P_FSItemSimple* simple_item)

Constructor, makes object identical to the one passed in the parameter.

~P_FSItemSimple(void)

Destructor, does nothing.

P_FSItem* makeOpNotEq(void)

Has to change the operator of the P_FSItemSimple from = to !=. Since a P_FSItemSimple assumes that the

operator is a =, this function creates a new P_FSItemComplex such that it is identical to the P_FSItemSimple

except that it’s operator is a != and returns it.

P_FSItem* insertContext(list<contextByte> context_list)

Used during the construction of fs items. If the context list contains only a zero, then a new identical

P_FSItemSimple is constructed and returned. If the context list contains something other than a zero then a

P_FSItemComplex is created that is identical to the P_FSItemSimple, except that it has the context list, and

returned. In the first case a copy is made because when the function call is made we know that we will always get a
new object and will safely be able to get rid of the old one.

P_FSItem* makeCopy(void)

Makes a copy of the P_FSItemSimple and returns it.

bool addContextedValue(P_ContextedValue* cont_val)

Does nothing because it is not expected to add anything; returns false to indicate that it hasn't added incase it is
called; it is not expected that this will ever be called.

int numberOfValues(void)

Always returns 1 because it only contains one value (since it is a P_FSItemSimple).

bool operator==(P_FSItem* right_item)

Overloaded operator to check if two P_FSItemSiimples are equal.

PFSsymID getSimpleValue(void)

Returns it’s value because it is a P_FSItemSimple and the function needs to return a simple value.

byte getAttributeType(void)

Always returns a zero because a zero defines the type of attribute that is contained within a P_FSItemSimple. (for

details see explanation for attribute_type in P_FSItemComplex)

bool containsContextedValue(P_ContextedValue* contexted_val)

Always returns false because a P_FSItemSimple does not contain a contexted value.

void printItem(ofstream &myfile)

Prints the item; for testing purposes only.

bool eqMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

^attribute =

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 30

Knowing this, this function will merge itself into fs_item by first creating a P_ContextedValue which corresponds

to the value that the P_FSItemSimple (itself - this pointer) contains, and then adding this value to fs_item.

bool setMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

^attribute $

Knowing this, this function does nothing because a P_FSItemSimple does not correspond to the form defined

above, so there will be no merging.

bool eqcMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

^attribute =c

Knowing this, this function does nothing because a P_FSItemSimple does not correspond to the form defined
above, so there will be no merging.

bool noteqMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

^attribute !=

Knowing this, this function does nothing because a P_FSItemSimple does not correspond to the form defined
above, so there will be no merging.

bool eqcDownMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

!attribute =c

Knowing this, this function does nothing because a P_FSItemSimple does not correspond to the form defined

above, so there will be no merging.

bool noteqDownMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

!attribute !=

Knowing this, this function does nothing because a P_FSItemSimple does not correspond to the form defined

above, so there will be no merging.

P_FSItem* instantiate(contextByte context_offset, P_FStructure* up_arrow,

P_FStructure* down_arrow)

Instantiated version will be the same therefore just makes a copy and returns it.

P_FSItem* instantiate(contextByte context_offset, P_FStructure* up_arrow,

vector<P_ContextedValue*> down_arrows)

Instantiated version will be the same therefore just makes a copy and returns it.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 31

P_FSItem* getItemForFS(void)

A P_FSItemSimple is always of type ’item’ therefore returns a copy of itself.

P_FSItem* getConstraintForFS(void)

A P_FSItemSimple is never of type ’constraint’ therefore always returns NULL.

P_FSItem* getLinkForFS(void)

A P_FSItemSimple is never of type ’link’ therefore always returns NULL.

list<P_ContextedValue*> getContextedValues(void)

Gets the value of the P_FSItemSimple and, makes a P_ContextedValue out of it, puts in in a list, and then

returns the list. (note: there is only one value in P_FSItemSimple, but in P_FSItemComplex there is a list of
values)

list< list<contextByte> > isConsistent(void)

A P_FSItemSimple is always consistent therefore an empty list of nogoods is returned.

list< list<contextByte> > isConsistentWithItem(P_FSItem* in_item)

Checks if the P_FSItemSimple is consistent with in_item and sends back a list of nogoods as the result.

Because the actual consistency checking mechanism works at the value level, first a P_ContextedValue is

required that corresponds to the value of the P_FSItemSimple (this). When the P_ContextedValue is created,

all the values in in_item are checked with it for consistency. For each value from in_item, if it is a link then it is

known to be inconsistent because the P_FSItemSimple value will never be a link, and a link cannot be consistent
with a non-link, in this case the union of the context for both values is added to the list of nogoods. If the value is

not a link, then a call to isConsistent() is made, and if it returns false then the union of the context of both

values is added to the list of nogoods.

The incoming item, in_item will always be an fs item from the list fs_items, it will not be a constraint or a link.

Also opposing contexts are not check for before because a P_FSItemSimple value always has the context 0.

virtual P_FSItem * getSolution(list<contextByte> &solution)

NAYYARA?

P_FStructure* getInstConstAttrLink(void)

A P_FSItemSimple can never be a constraint so returns NULL.

void makeLinksNull(void)

Has no links so does nothing.

void removeAllValues(void):

Does nothing, should never be called (cannot actually remove the value from a P_FSItemSimple).

P_FSItemComplex : P_FSItem
P_FSItemComplex is for all the complex forms that a P_FSItem can take.

Attributes
byte attribute_type

This indicates the type of f-description that is stored with the helps of bits. As described earlier, there can be
several types of f-descriptions, all of these will be stored using the same structure, however as the type changes the

method of storage will change and attribute_type will tell what type is stored.

The bit pattern is described below starting from the leftmost bit.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 32

1 bit is reserved to indicate whether the attribute requires a plain value (GEND), (0) or an f-structure (SUBJ),
(1).

1 bit is reserved to indicate whether the LHS (attribute) is simple (GEND), (0) or complex (SUBJ NUM),
(1). The difference for complex expressions is that they have to be looked up and tokenized at run time
before they can be processed. Since expressions of this type are very infrequent, the string tokenization
will be feasible.

1 bit is reserved to indicate whether the attribute has an up-arrow (^NUM), (0) or down-arrow (!NUM), (1)
beside it. (Note: This is relevant in the case of constraints only, for condition operators it is assumed that
there is always an up-arrow. The actual values of these arrows when they’re instantiated will not be
required. Whenever there is a down-arrow, it will be resolved while unification is taking place, because any
node that is being unified will have all its children complete; the value of the up-arrow is not required, it is
already present.)
2 bits are reserved to indicate the type of operators (where the total number of operators is 4):

= 00
$ 01
=c 10
≠ 11

list<P_ContextedValue*> contexted_values

This is a list of values that the attribute can take labeled with the appropriate contexts.

static short element_no

To keep track of the number of elements that have been added to a set and to change the name of the element
accordingly, i.e., ELEMENT1, ELEMENT2...

Functions
P_FSItemComplex(void)

Default constructor, does nothing.

P_FSItemComplex(P_FSItemComplex* complex_item)

Constructor, makes object identical to the one passed in the parameter.

~P_FSItemComplex(void)

Destructor, does nothing.

P_FSItem* makeOpNotEq(void)

Changes the bits (see table above) in attribute_type so that the operator becomes !=.

P_FSItem* insertContext(list<contextByte> context_list)

When this function is called we know for sure that there is only one value in the list of P_ContextedValues (this
is because it is called at that stage of FDVector building when items have not been merged). It adds the context list
to that single value.

P_FSItem* makeCopy(void)

Makes a copy and returns it.

bool addContextedValue(P_ContextedValue* contexted_value)

Adds a value to the item.

int numberOfValues(void)

Returns the number of values that the item has.

bool operator==(P_FSItem* right_item)

Overloaded operator to check if two items are equal.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 33

PFSsymID getSimpleValue(void)

Returns a zero to indicate that it is a P_FSItemComplex and is not a P_FSItemSimple and therefore does not

contain simple value.

byte getAttributeType(void)

Returns attribute_type.

bool containsContextedValue(P_ContextedValue* contexted_val)

Checks if the list of values contains contexted_val.

void printItem(ofstream &myfile)

Prints the item, for testing purposes only.

bool eqMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following
form:

^attribute =

Knowing this, this function ensures that the P_FSItemComplex itself is of the type shown above and then it takes

its values and puts them into fs_item.

bool setMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

^attribute $

Knowing this, this function ensures that the P_FSItemComplex itself is of the type shown above and then it takes

its values and puts them into fs_item.

bool eqcMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

^attribute =c

Knowing this, this function ensures that the P_FSItemComplex itself is of the type shown above and then it takes

its values and puts them into fs_item.

bool noteqMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following
form:

^attribute !=

Knowing this, this function ensures that the P_FSItemComplex itself is of the type shown above and then it takes

its values and puts them into fs_item.

bool eqcDownMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following
form:

!attribute =c

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 34

Knowing this, this function ensures that the P_FSItemComplex itself is of the type shown above and then it takes

its values and puts them into fs_item.

bool noteqDownMergeInto(P_FSItem* fs_item)

This function should only be used when it is ensured that the parameter fs_item contains an item of the following

form:

!attribute !=

Knowing this, this function ensures that the P_FSItemComplex itself is of the type shown above and then it takes

its values and puts them into fs_item.

P_FSItem* instantiate(contextByte context_offset, P_FStructure* up_arrow,

P_FStructure* down_arrow)

Five specific cases are dealt with during instantiation:

1) when the attribute is complex (has a space, e.g., "SUBJ NUM") and the operator is "=": here instantiation should

take place such that the head of the complex attribute is removed and used as the attribute for the item and a new f-
structure should be created which will be it's value (i.e., a link), and this should be constructed by making a call to

the recursive function makeFStructure(), also sending the remaining attribute string as a parameter.

2) when the attribute is complex (has a space, e.g., "SUBJ NUM") and the operator is "$": here the operator "$" is

changed to an "=". This is done by first actually changing the operator that is represented in attribute byte, and then

by appending the string " SET ELEMENT", and whatever the current element number (element_no) is to the
attribute (which is actually an ID so we need to retrieve the string using the ID, modify the string and get a new ID).
After the item has been instantiated a call is made to the function itself so that it can be instantiated (using option 1
described above).

3) when the attribute is complex (has a space, e.g., "SUBJ NUM") and the operator is "=c" or "!=": if the attribute for
a constraint is complex it is left as it is. The values are then instantiated one by one.

4) when the attribute is non-complex (has no space, e.g., "NUM") and the operator is "$": is the same as option 2.

5) when the attribute is non-complex (has no space, e.g., "NUM") and the operator is "=", "=c" or "!=": the list of

values is traversed and each is instantiated.

P_FSItem* instantiate(contextByte context_offset, P_FStructure* up_arrow,

vector<P_ContextedValue*> down_arrows)

This is exactly the same as the instantiate() above except that when he values are instantiated the call is
made to an overloaded function that can handle multiple values for the down-arrow.

P_FSItem* getItemForFS(void)

If the P_FSItemComplex itself is not a constraint, and it's not an link, returns a copy else returns NULL.

P_FSItem* getConstraintForFS(void)

Checks if the operator is a constraint ("=c" or "!="), if it is makes a copy and returns it, else returns NULL.

P_FSItem* getLinkForFS(void)

Checks if the operator is a link ("^=!"), if it is makes a copy and returns it, else returns NULL.

list<P_ContextedValue*> getContextedValues(void)

Returns contexted_values.

void makeFStructure(P_FStructure* fs, string attr, P_ContextedValue* in_value)

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 35

This function is used during the instantiation of items that have complex attributes, i.e., attribute names that are

separated by spaces, e.g., ”SUBJ NUM”, ”XCOMP SUBJ PRONTYPE” etc. The parameters inlcude fs, the f-structure

into which the value has to be inserted, attr, the attribute in string format (can be complex or non-complex, i.e.,

with or without spaces) and in_value, the value that the attribute will eventually have assigned to it, e.g., for

”SUBJ NUM” the value could be SG, and will be the eventual value when the breakdown is complete and the

attribute is NUM.

Depending on whether attr still contains spaces or not, two things can happen. If there is a space in attr, then an

fs item is constructed whose value is the head of attr (e.g. SUBJ from ”SUBJ PRONTYPE”) and it’s value is an

empty f-structure. This empty f-structure and the remaining string, along with the value are sent as parameters to

recursive call to the same function. This goes on until attr loses all it’s spaces, then an fs item is made where the

attribute is the ID for attr and it’s value is in_value (this is the second thing from the two menioned earlier, when

there are no spaces in attr).

list< list<contextByte> > isConsistent(void)

All values are checked with each other for consistency and a list of nogoods is returned as the result.

list< list<contextByte> > isConsistentWithItem(P_FSItem* in_item)

Checks if the item itself and in_item are consistent, to do this each value of in_item is checked for consistency

against each value of this item. The incoming item, in_item, here is always an item from fs_items (i.e. not a

^=!); the attributes have already been matched so only values need to be checked.

virtual P_FSItem * getSolution(list<contextByte> & solution)

NAYYARA?

P_FStructure* getInstConstAttrLink(void)

Its purpose is to get a link when it is in an instantiated version of a P_FSItem, i.e., P_FSItemComplexInstConst

which is derived from P_FSItemComplex.

virtual P_FStructure* getAttrLink(void)

Is meant to get the link mentioned above but since P_FSItemComplex does not have it, the class that is derived
from it does, this function returns a NULL.

void makeLinksNull(void)

Goes through its list of values and makes any links that they have NULL.

void resetElementNo(void)

This is used to set the variable element_no back to 1 after each cycle so that the numbering of elements in a set
can start from 1 in the new cycle.

void removeAllValues(void)

Empties the list contexted_values.

P_FSItemComplexInstConst : P_FSItemComplex
This class exists for instantiated versions of P_FSItems that are constraints (=c or !=).

Attributes
P_FStructure* link

Is the P_FStructure that the up-arrow or down-arrow is supposed to point to after instantiation.

Functions
P_FSItemComplexInstConst(void)

Default constructor.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 36

~P_FSItemComplexInstConst(void)

Default destructor.

P_FSItemComplexInstConst(P_FSItem* fs_item, P_FStructure* up_arrow, P_FStructure*

down_arrow)

When a constraint is uninstantiated it is in a P_FSItemComplex. This constructor takes the uninstantiated

constraint and makes an instantiated constraint by inserting the P_FStructure that is the link.

P_FStructure* getAttrLink(void)

Returns link.

P_ContextedValue
This is the base class that is used for the list of contexted values for each attribute.

Attributes
list<contextByte> context

Different contexts will be represented by numbers; to denote two opposite contexts, a number and its negative
value will be used, e.g., b and ⌐b can be represented by 1 and -1. Each element in the list will be a conjunct, e.g.,
for the expression a & b & c, each of a, b and c will be in a list element.

Functions
P_ContextedValue(void)

Constructor, does nothing.

virtual ~P_ContextedValue(void)

Destructor, does nothing.

virtual bool operator==(P_ContextedValue* right_value) = 0

Overloaded operator to see if two values are equal.

virtual PFSsymID getPlainVal(void) = 0

To return a specific type of value, there are four types that will be inherited from P_ContextedValue (all four are
described in the four following sections), in the virtual function for the correct type the ID for the value will be
returned, the rest will return 0 to indicate that there is no value of the type required i.e. a plain value.

virtual PFSsymID getFDLinkVal(void) = 0

To return a specific type of value, there are four types that will be inherited from P_ContextedValue (all four are
described in the four following sections), in the virtual function for the correct type the ID for the value will be
returned, the rest will return 0 to indicate that there is no value of the type required i.e. an f-description with link
(FDLink) value.

virtual byte getValueType(void) = 0

Returns value_type (byte describing the type of the value, does not exist in all four value types, see the following
four sections for details).

virtual int getNoInPlainValList(void) = 0

One class derived from P_ContextedValue actually has a list of values. This function is required to get the
number of values in that list.

virtual bool containsVal(PFSsymID value) = 0

Only used when the value is a value list , e.g., {SG, PL}, checks if the value in the parameter matches one of the

list values.

virtual void printValue(ofstream& myfile) = 0

Prints all the values, for testing purposes only.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 37

virtual P_ContextedValue* instantiate(P_FStructure* up_arrow, P_FStructure*

down_arrow, contextByte offset) = 0

Instantiates the values.

virtual list<P_ContextedValue*> instantiate(P_FStructure* up_arrow,

vector<P_ContextedValue*> down_arrows, contextByte offset) = 0

Instantiates the values when there are multiple options for the down-arrow.

virtual bool zeroValue(void) = 0

To check if the values side is zero (i.e., has no value, e.g., in cases like ^=!).

void setContext(contextByte offset)

Sets the context according to the offset sent as the parameter.

virtual void setFSLinkValue(PFSsymID value) = 0

Sets value for fs link type objects.

virtual void setFSLinkValueType(byte value_type) = 0

Sets value_type for fs link type objects.

void addContexts(list<contextByte> add_context)

Adds add_context to the value context.

virtual P_FStructure* getFSLinkLink(void) = 0

Gets link from a link type object.

virtual bool isConsistent(P_ContextedValue* cont_value) = 0

Checks if the P_ContextedValue is consistent with cont_value.

virtual list<PFSsymID> getPlainValList(void) = 0

Returns value if the P_ContextedValue is a plain value, returns 0 otherwise.

virtual PFSsymID getFSLinkValue(void) = 0

Gets value for fs link type objects.

virtual P_FStructure* getFSLink(void) = 0

TAHIRA

virtual P_ContextedValue* makeCopy(void) = 0

Returns a copy of the P_ContextedValue.

virtual void makeLinksNull(void) = 0

Makes all the links NULL, this is required because when copies are made, or new versions are made they will be
pointing to the same links and we don’t want the links to disappear when we get rid of the originals.

P_ConValPlainVal : P_ContextedValue
Used to store simple values like SG, PL etc. (Is not the same thing as P_FSItemSimple because these values will
have contexts attached to them.)

Attributes
PFSsymID value

Is the ID of the value (e.g. ID for the value “PL”).

Functions

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 38

P_ConValPlainVal(void)

Constructor, does nothing.

~P_ConValPlainVal(void)

Destructor, does nothing.

bool operator==(P_ContextedValue* right_value)

Returns true if value and context match, else returns false.

PFSsymID getPlainVal(void)

Returns value.

PFSsymID getFDLinkVal(void)

Is not an FDLink type value therefore returns zero.

byte getValueType(void)

Returns a bit pattern that indicates that it has no value_type.

(NOVALTYPE = 63 = 00111111, see description of value_type for details.)

int getNoInPlainValList(void)

Returns zero because it is not a PlainValList type P_ContextedValue.

bool containsVal(PFSsymID value)

Returns zero because this function is meant to be called only for P_ConValPlainValList type objects.

void printValue(ofstream& myfile)

Prints the value, for testing purposes only.

P_ContextedValue* instantiate(P_FStructure* up_arrow, P_FStructure* down_arrow,

contextByte offset)

Makes a copy of itself, sets it’s context using offset and returns it (in a P_ConValPlainVal there is no up-arrow

or down-arrow that needs to be set during instantiation).

bool zeroValue(void)

Should always return false because an "^=!" type item is being searched for when this is called.

list<P_ContextedValue*> instantiate(P_FStructure* up_arrow, vector<P_ContextedValue*>

down_arrows, contextByte offset)

Is no different from the instantiate() described before, except that the instantiated value is put in a list and
returned. This is because this overloaded version is for cases when there are multiple options for the down-arrows,

but since there are no down-arrows in a P_ConValPlainVal, nothing needs to be done here.

void setFSLinkValue(PFSsymID value)

Does nothing, should never be called because it is a P_ConValPlainVal, not a P_ContValFSLink.

void setFSLinkValueType(byte value_type)

Does nothing, should never be called because it is a P_ConValPlainVal, not a P_ContValFSLink.

P_FStructure* getFSLinkLink(void)

Has no FSLink value so returns NULL.

bool isConsistent(P_ContextedValue* cont_value)

Checks for consistency. This type of object can only be consistent if the cont_value in the parameter is either a

P_ConValPlainVal or a P_ConValPlainValList. If cont_value is a P_ConValPlainVal and value for

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 39

both of them are the same, then they’re consistent. If cont_value is a P_ConValPlainValList, and if any one

of the values in the list is equal to value then it is consistent. Examples:

SG & {SG, PL} consistent

SG & SG consistent

SG & PL not consistent

PL & {X, Y} not consistent

list<PFSsymID> getPlainValList(void)

Returns an empty list because it has no list.

PFSsymID getFSLinkValue(void)

Returns -1 because it has no FSLinkValue, a zero is not returned because that is a valid value for an FSLinkValue.
Here we need to indicate that this is a type that does not have an FS link.

P_FStructure* getFSLink(void){return 0;}

TAHIRA

P_ContextedValue* makeCopy(void)

Makes a copy and returns it.

void makeLinksNull(void)

Has no links so does nothing.

P_ConValPlainValList : P_ContextedValue
Used to store a list of simple values, e.g., {SG, PL}.

Attributes
list<PFSsymID> values

List of IDs representing the values in the list.

Functions
P_ConValPlainValList(void)

Constructor, does nothing.

~P_ConValPlainValList(void)

Destructor, does nothing.

bool operator==(P_ContextedValue* right_value)

Checks three things: 1) that the context is the same, 2) that the number of values in both value lists is the same and

3) that the list in right_value contains all the elements that the list of the object itself contains.

PFSsymID getPlainVal(void)

Is not a plain value so returns 0.

PFSsymID getFDLinkVal(void)

Has no FDLink values so returns 0.

byte getValueType(void)

Returns a bit pattern that indicates that it has no value_type.

(NOVALTYPE = 63 = 00111111, see description of value_type for details.)

int getNoInPlainValList(void)

Returns the number of values in the values.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 40

bool containsVal(PFSsymID value)

Checks if value is one of the elements of the list values.

void printValue(ofstream& myfile)

Prints the value, for testing purposes only.

P_ContextedValue* instantiate(P_FStructure* up_arrow, P_FStructure* down_arrow,

contextByte offset)

Makes a copy of itself, sets it’s context using offset and returns it (in a P_ConValPlainValList there is no up-

arrow or down-arrow that needs to be set during instantiation).

bool zeroValue(void)

Should always return false because an "^=!" type item is being searched for when this is called.

list<P_ContextedValue*> instantiate(P_FStructure* up_arrow, vector<P_ContextedValue*>

down_arrows, contextByte offset)

Is no different from the instantiate() described before, except that the instantiated value is put in a list and
returned. This is because this overloaded version is for cases when there are multiple options for the down-arrows,

but since there are no down-arrows in a P_ConValPlainValList, nothing needs to be done here.

void setFSLinkValue(PFSsymID value)

Does nothing, should never be called because it is a P_ConValPlainValList, not a P_ContValFSLink.

void setFSLinkValueType(byte value_type)

Does nothing, should never be called because it is a P_ConValPlainValList, not a P_ContValFSLink.

P_FStructure* getFSLinkLink(void)

Has no FSLink value so returns NULL.

bool isConsistent(P_ContextedValue* cont_value)

If the incoming cont_value is a P_ConValPlainVal and one of the element is values matches it’s value then

returns true, otherwise false. If the incoming cont_val is a P_ConValPlainValList and any one of thier values

match then returns true, otherwise false. Examples:

A & {A, B} consistent

{A, B} & {B, C} consistent

A & {B, C} not consistent

{A, B} & {C, D} not consistent

list<PFSsymID> getPlainValList(void)

Returns values.

PFSsymID getFSLinkValue(void)

Returns -1 because it has no FSLinkValue, a zero is not returned because that is a valid value for an FSLinkValue.
Here we need to indicate that this is a type that does not have an FS link.

P_FStructure* getFSLink(void){return 0;}

TAHIRA

P_ContextedValue* makeCopy(void)

Makes a copy and returns it.

void makeLinksNull(void)

Has no links so does nothing.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 41

P_ConValFDLink : P_ContextedValue
P_ConValFDLink will be used to keep only f-descriptions and not f-structures and therefore will always be

uninstantiated. When this type is instantiated it will be converted into P_ContValFSLink.

Attributes
PFSsymID value

Is the ID assigned to the value (SUBJ, SUBJ NUM).

byte value_type

Uses bits to show what type of value is stored. The bit pattern is described below starting from the leftmost bit.

1 bit is reserved to tell whether there is an ^ (0) or a ! (1) next to the value.

1 bit is reserved to tell if a complex expression is stored (SUBJ NUM), the difference for complex

expressions like these is that they have to be looked up and tokenized at run time before they can be
processed. Since expressions of this type are very infrequent, the string tokenization will be feasible.

Functions
P_ConValFDLink(void)

Constructor, does nothing.

~P_ConValFDLink(void)

Destructor, does nothing.

bool operator==(P_ContextedValue* right_value)

Returns true if context, value and value_type match.

PFSsymID getPlainVal(void)

Returns zero because it does not have a plain value.

PFSsymID getFDLinkVal(void)

Returns value (because this is a P_ConValFDLink).

byte getValueType(void)

Returns value_type.

int getNoInPlainValList(void)

Returns zero because it does not have a list.

bool containsVal(PFSsymID value)

Returns zero because this function is meant to be called only for P_ConValPlainValList type objects.

void printValue(ofstream& myfile)

Prints the value, for testing purposes only.

P_ContextedValue* instantiate(P_FStructure* up_arrow, P_FStructure* down_arrow,

contextByte offset)

Makes a new P_ContValFSLink type object (because this is the tye that the P_ConValFDLink will become when

it is instantiated) that has the same context, value and value_type as the P_ConValFDLink. After this using

value_type, the type of arrow next to the value (up-arrow or down-arrow) is determined, if it is found to be an up-

arrow, link (in P_ContValFSLink) is pointed to up_arrow, if it is a down-arrow, then to down_arrow. After this

context is adjusted according to offset.

bool zeroValue(void)

Returns true if value is zero, false otherwise.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 42

list<P_ContextedValue*> instantiate(P_FStructure* up_arrow, vector<P_ContextedValue*>

down_arrows, contextByte offset)

The essence here is the same as the instantiate() above except that instead of the down_arrow

P_FStructure* we get a set a P_ContextedValues which have their down-arrows already pointing to the

required postions. So if value_type shows that we have a down-arrow next to the value, this function, for each

down-arrow value, makes a copy of it and then sets the copy’s value, value_type and context such that it is

the same as it’s own. This results in a list of instantiated values.

In case there is an up-arrow next to the value the function proceeds like the earlier version, except that the
instantiated value is inserted into a list.

In both cases context is adjusted using offset.

void setFSLinkValue(PFSsymID value)

Does nothing, is not expected to be called (is not an FSLink value).

void setFSLinkValueType(byte value_type)

Does nothing, is not expected to be called (is not an FSLink value).

P_FStructure* getFSLinkLink(void)

Returns NULL because it does not have an FS link.

bool isConsistent(P_ContextedValue* cont_value)

Should never be called because only instantiated values need to be checked for consistency, but returns true to be
on the safe side.

list<PFSsymID> getPlainValList(void)

Returns an empty list (has no list to return).

PFSsymID getFSLinkValue(void)

Returns -1 because it has no FSLinkValue, a zero is not returned because that is a valid value for an FSLinkValue.
Here we need to indicate that this is a type that does not have an FS link.

P_FStructure* getFSLink(void){return 0;}

TAHIRA

P_ContextedValue* makeCopy(void)

Makes a copy and returns it.

void makeLinksNull(void)

Has no links so does nothing.

P_ContValFSLink : P_ContextedValue
P_ContValFSLink will be used to store items of f-structures only (not f-descriptions) and will therefore always be

in instantiated form. Values like !NUM and !SUBJ NUM will be stored in this.

Attributes
PFSsymID value

Is the ID assigned to the value (SUBJ, SUBJ NUM).

P_FStructure* link

Is the f-structure that the up-arrow or down-arrow next to the value is pointing to. The direction of the arrow is not

signifcant at this point but it can be obtained through value_type.

byte value_type

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 43

Uses bits to show what type of value is stored. The bit pattern is described below starting from the leftmost bit.

1 bit is reserved to tell whether there is an ^ (0) or a ! (1) next to the value.

1 bit is reserved to tell if a complex expression is stored (SUBJ NUM), the difference for complex
expressions like these is that they have to be looked up and tokenized at run time before they can be
processed. Since expressions of this type are very infrequent, the string tokenization will be feasible.

Functions
P_ContValFSLink(void)

Default constructor, initializes link to NULL.

P_ContValFSLink(P_FStructure *link, PFSsymID value)

Constructor, sets link and value to those sent as parameters.

~P_ContValFSLink(void)

Destructor, deletes link (if it is not NULL), and then sets it to NULL. This is done to ensure that single

P_FStructures that are pointed to by multiple links are only deleted once.

bool operator==(P_ContextedValue* right_value)

Always returns false because no items of this type are instantiated when this operator is used.

PFSsymID getPlainVal(void)

Has no plain value, returns zero.

PFSsymID getFDLinkVal(void)

Has no FDLink value, returns zero.

byte getValueType(void)

Returns value_type.

int getNoInPlainValList(void)

Returns zero because it has no list.

bool containsVal(PFSsymID value)

Returns false because this function is meant to check if the value list contains a specific element, but there is no list
here.

void printValue(ofstream& myfile)

Intended for testing purposes but not implemented because it isn’t needed yet.

P_ContextedValue* instantiate(P_FStructure* up_arrow, P_FStructure* down_arrow,

contextByte offset)

Returns NULL, it should never be called because a P_ContValFSLink is already instantiated.

bool zeroValue(void)

Returns true if value is zero, false otherwise.

list<P_ContextedValue*> instantiate(P_FStructure* up_arrow, vector<P_ContextedValue*>

down_arrows, contextByte offset)

Returns an empty list, it should never be called because a P_ContValFSLink is already instantiated.

void setFSLinkValue(PFSsymID value)

Sets value.

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 44

void setFSLinkValueType(byte value_type)

Sets value_type.

P_FStructure* getFSLinkLink(void)

Returns link.

bool isConsistent(P_ContextedValue* cont_value)

Returns true, but should never be called. All consistency checking for values only takes place with

P_ConValPlainVals and P_ConValPlainValLists. This works because to check a link for consistency we

have to check it’s values, and in essence the actual concrete values are P_ConValPlainVals and

P_ConValPlainValLists.

list<PFSsymID> getPlainValList(void)

Has no list so returns an empty list.

PFSsymID getFSLinkValue(void)

Returns value.

P_FStructure* getFSLink(void){return link;}

TAHIRA

P_ContextedValue* makeCopy(void)

Makes a copy and returns it.

void makeLinksNull(void)

Sets the value of link to NULL.

P_FStructure
Represents a single f-structure, where P_FSItems are used to represent attribute-value pairs. If the value of an

attribute is an f-structure itself, it will be stored in another P_FStructure, and in the place of the value, a pointer to
that f-structure will be given. An example of this representation is shown, where the following f-structure:

┌ ┌ ┐ ┐
| SUBJ |NUM SG| |

| |GEND M | |

| └ ┘ |
| ABC abc |

└ ┘

is represented below:

0 1
SUBJ 1 NUM SG
ABC abc GEND M

Attributes
list<P_FSItem*> fs_items

A list to keep all fs items that are 1) NOT constraints, and 2) NOT ^=! type fs items.

list<P_FSItem*> constraints

A list to keep all the fs items that are constraints, e.g., ^NUM =c SG, ^NUM != M etc.

P_FSItem* links

A P_FSItem where all fs items of type ^=! are kept (multiple values fot the down-arrow will be kept when required).

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 45

list< list<contextByte> > nogoods

List of nogood expressions.

list<contextByte> first_solution

NAYYARA

bool conts_checked

TAHIRA

bool cc_checked

TAHIRA

bool failed

NAYYARA

bool nogoods_extracted

NAYYARA

Functions
P_FStructure(void)

Default constructor, initializes links by pointing to it to a P_FSItemComplex that has the attribute ^= and no

values, as a result links can be used to keep fs items of the form ^=!. TAHIRA.

~P_FStructure(void)

Default destructor, deletes links and all the items in fs_items and constraints.

void addItem(P_FSItem* fs_item)

The main idea behind adding an item to an f-structure is to add them such that an attribute occurs only once in the
f-structure. This means that when adding an fs item, if there isn’t already an item in the f-structure with the same
attribute then the whole item can be added in. If an item with the same attribute already exists then the values from
the incoming item need to be removed and added to the previous item. In this way, items will be constructed that
will have multiple values.

Also, this function is only called when the incoming item, fs_item, is definitely an fs item, not a link and not a
constraint.

If an attribute is such that it requires a link on the value side then that attribute should have a link as it's value, and
the f-structure that is pointed to by that link will contain the actual link values in the links variable; this implies that

items such as ”^SUBJ = !SUBJ” will get stored such that the value link will be in the links of the newly created f-

structure but the value part ("SUBJ") of ”!SUBJ” will not be placed anywhere explicitly.

The following are examples that qualify for this special treatment:
1) ^SUBJ = !SUBJ

2) ^SUBJ NUM = SG (which will have been transformed to ”^SUBJ = !” at this point)

(if there is a long chain like the one above then only the head will be treated this way, the rest of it will remain as
originally built in instantiate)

The following are examples that DO NOT qualify for this special treatment:

1) ^NUM = !NUM

2) ^NUM = SG

void addConstraint(P_FSItem* constraint)

This is only called when the P_FSItem constraint is definitely a constraint, not an item or a link; if an item with

the same attribute type exists, adds only the new values to that, else puts the whole item in; constraints can be of
two types: 1) ^attribute =c and 2) ^attribute !=. Constraints that have the same attribute and the same

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 46

operator will be put into one item. So if for example we get a ”^NUM =c SG” to add and we already have a ”^NUM

=c PL”, then we add the value SG to the item that is already present. If there is no ”^NUM =c” type constraint
present that the whole fs item is added.

void addLink(P_FSItem* link)

This is only called when the P_FSItem sent as parameter is definitely a link ("^=!" only), not an item or a
constraint; if an item with the same attribute type exists, adds only the new values to that, else puts the whole item
in; here since the attribute is always the same (i.e. nothing), the value will always be added to the item.

void unify(void)

3 things are to be done here:
1. check if each fsitem from the list fs_items is consistent within itself;

2. check if each item in the list fs_items is consistent with each link in the list links;

3. check if each link in list links is consistent with all the other links in the list.
NAYYARA

void addNogood(list<contextByte> nogood)

Adds a nogood. TAHIRA

void CheckCompleteness()

TAHIRA

list<P_FSItem*> SearchInItemsLinks(PFSsymID Att)

TAHIRA (search Att(SUB OBJ NUM etc) in This FS)

bool SearchItemsDeepWithContext(PFSsymID att,list<P_FSItem*> &ResultList,

list<list<contextByte> > &exContList, list<contextByte> extCont)

TAHIRA

P_FSItem* SearchInItemsUnordered(PFSsymID att)

TAHIRA (does not search in links and constraints, does not assume any order of fs-

items)

P_FSItem* SearchInConstraintsUnordered(PFSsymID att)

TAHIRA

list<P_FSItem*> GetItemsDeep()

TAHIRA

list<P_ContextedValue*> FindValuesDeep(PFSsymID att, list<list<contextByte> >

&nogoodsbelow)

TAHIRA (can find values with nogoods, deep down in links (only one level of depth is

assumed))

list<P_ContextedValue*> FindComplextValuesDeep(string long_att,

list<list<contextByte> > &nogoodsbelow,list<contextByte> & ext_context)

TAHIRA (can find complex values deep down in links (only one level of depth is

assumed))

void resolveValueLinks(void)

TAHIRA (puts actual values in the place of !featurename like !NUM)

list<list<contextByte> > SearchSubcatsDeepWithContext(vector<list<P_ContextedValue*>

> &ResultList, vector<list<list<contextByte> > > &exContList)

TAHIRA

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 47

list<list<contextByte> > SearchSubcatsDeepWithContext2(vector<list<P_ContextedValue*>

> &ResultList)

TAHIRA

bool inNogoods(list<contextByte> context)

TAHIRA

P_FStructure* extractSolutionDeep(list<contextByte> & ext_solution)

TAHIRA

list<list<contextByte> > GetNogoodsDeep()

TAHIRA

list<P_ContextedValue*> FindValuesDeepWithContext(PFSsymID att,

list<list<contextByte> > &nogoods_below, list<contextByte> & ext_context)

TAHIRA

list< list<contextByte> > isConsistentWithItem(P_FSItem* in_item)

Checks itself for consistence with in_item and sends back a list of nogoods as the result. To do his it does the
following:

1. check the fs_item with the element of list fs_items that matches it's attribute

2. checks the fs_item with all the f-structures in links

void checkItemsConsistency(void)

Iterates through all the items in fs_items and checks if they’re consistent. It also checks which of the items have

a dummy f-structure (see previous sections for details on the dummy f-structure), and if they do it calls unify() for

them because the current path is the only one through which they can be traced and unified.

void checkItemsLinksConsistency(void)

Each item in fs_items is checked with all the f-structures in links.

void checkLinkLinksConsistency(void)

Checks all the f-structures in links for consistency with each other. Here, as a result of inconsistency, nogood

expressions are added to nogoods, but before adding each nogood, the union of contexts of the two links (that

were being checked for consistency) is added to the nogood.

list< list<contextByte> > isConsistentWithFS(P_FStructure* in_fs)

All items and links in one f-structure are to be checked for consistency with all the items and links in the other f-
structure.

void checkConstraints(P_FStructure *FS, list<contextByte> ext_context)

For each constraint, get the attribute link, e.g., in ”^NUM =c SG”, the attribute link will be the f-structure pointed to

by the up-arrow next to ”NUM”. For this f-structure, call checkConstraint(), sending constraint as the

parameter. Also, this function itself is called for all the values in links and all the fsitems that have links as

values.

list< list<contextByte> > checkConstraint(P_FSItem* constraint,list<bool*>

&FoundFlags)

3 things are done here:
1) check the constraint with all the items (different from consistency checking because

a. if attribute not there then fail;
b. attributes like "SUBJ NUM" have not been resolved;)

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 48

2) check the constraint with all the links (need a function here that gets the constraint as a parameter and checks if

it's ok with the f-structure) - also call checkConstraints() for all the links;

3) for all the pure links in the items list (like ”^SUBJ = !”) - those which are stored within a dummy f-structure - call

the consistency check for all the down-arrows (these will have the FSATTR bit set).

P_FStructure* extractSolution(list<contextByte> & ext_solution)

NAYYARA

list<P_ContextedValue*> getComplexValues(string string_trace)

string_trace is a string that represents an attribute with the head removed, e.g., ”NUM”, which is the result when

the head (”SUBJ”) is removed from ”SUBJ NUM”, or ”Y Z” from ”X Y Z”. This f-structure (which calls this function)
is the dummy f-structure that is the value of the head, and it will have the relevant links inserted in it. This function

is a recursive function that traces out the required P_ContextedValues and returns them, e.g., for ”Y Z” it will

retrieve the values for Z, and in the case of ”NUM” it will retrieve it’s values.

list< list<contextByte> > getNogoods(void)

Returns nogoods.

list<P_FSItem*> getConstraintsFromLinks(void)

Is a recursive function that collects all the constraints of this f-structure, and all the constraints that it finds in f-

structures that it’s links point to, and all the f-structures that their links point to and so on.

TranslationManager

TranslationManager

Parser : P_ChartParser

Scanner : P_Scanner

Lexicon : P_Lexicon

Grammar : P_Grammar

Translate(input : wstring) : wstring

init()

NewFS2OldFS(NewFS : P_FStructure) : CFStrucutre

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 49

2.2. Sequence Diagrams

2.2.1. Initialization

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 50

2.2.2. Parsing

Primary Scenario

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 51

2.3. Algorithms

P_ChartParser:: P_ChartParser(P_Lexicon * lexptr, P_Grammar * gramptr,
 P_Scanner * scanptr, long Time, long Space)

LexiconPtr := lexptr
ScannerPtr := scanptr
GrammarPtr := gramptr
TimeLimit := Time
SpaceLimit := Space

End Function

P_FStructure * P_ChartParser:: Parse()

StartTime : = now
SpaceCount := 0

While Token POS is not se
 Get Token from scanner
 If Token has some POS
 Get its Lex Entry from LexPtr
 Else (POS is unknown)
 Get Lex entry for lexeme from LexPtr
 If Lex Entry not found
 Give it POSes and Dummy Lex entries of adj, adv, n, v

Chart.resize(sentense-length+1)
//disambiguate POSes
//convert all lex entries to lex items (of type P_ChartItem with BackPointers
containing Null)
//Give every chart Column its lex items
//call ParseSentence

End Function

P_FStructure * P_ChartParser:: ParseSentence()

CurrentTime : long
CurrentColumn := 0
int FirstSet := 0

For each lexical entry in the current chart column
 FirstSet |= (POS of the lexical entry)

vector<P_Production *> prod_vector
prod_vector := GrammarPtr.GetProduction(GrammarPtr.GetStartSymbolId(),FirstSet)

for each prodptr in prod_vector
 ChartItem citem(0,prodptr)
 Chart[CurrentColumn].LoadItem(citem)

P_Symbol sym

While(CurrentColumn<=ChartSize)

 While Chart[CurrentColumn].GetCurrentIndex()<Chart[CurrentColumn].GetItemCount()

 citemptr := Chart[CurrentColumn].GetCurrentItem()

 if citemptr->IsComplete()

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 52

 Complete()
 Else

 sym := citemptr->GetCurrentSymbol()
 if sym.IsTerminal
 Scan()
 Else
 Predict()
 End if

 End if

 Chart[CurrentColumn].MoveNext();

 CurrentTime = now

 If CurrentTime-StartTime>TimeLimit

 Release chart memory
 Return Null

 If SpaceCount>SpaceLimit

 Release chart memory
 Return Null

 End While

End While

End Function

void P_ChartParser:: Predict()

P_Symbol sym
sym:=Chart[CurrentColumn].GetCurrentItem()->GetCurrentSymbol()

For each lexical entry in the current chart column
 FirstSet |= (POS of the lexical entry)

vector<P_Production *> prod_vector
prod_vector := GrammarPtr.GetProduction(sym,FirstSet)

for each prodptr in prod_vector
 ChartItem citem(0,prodptr)
 LoadInChart(citem, CurrentColumn)

End Function

void P_ChartParser:: Scan()

P_Symbol sym := current symbol of current item of current chart column

For each lexical entry item in the current chart column
 If POS of lexical entry == sym
 citem := current item of current chart column
 citem.MoveDot(pointer to lexical entry item)
 LoadInChart(citem, CurrentColumn+1)
 break

End Function

void P_ChartParser:: Complete()

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 53

Chart[CurrentColumn].GetCurrentItem->ComputeProbability()

int StartColIndex = start index of current item of current chart column
P_Symbol sym := LHS of production of current item of current chart column

vector<byte> *indices := Chart[StartColIndex].GetProdsWithDotAt(sym)

for each index in indices
 citem := Chart[StartColIndex].GetItemAt(index)
 citem.MoveDot(pointer of current item of current chart column)
 LoadInChart(citem, CurrentColumn)

End Function

bool P_ChartParser::LoadInChart(P_ChartItem &item, int col)

return Chart[col].LoadItem(item)

End Function

bool P_ChartColumn::LoadItem(P_ChartItem &item)

vector<int> indices:=ProductionIndex.find(prod id of item’s production)

for each index in indices
 if items[index].GetDotPos()==item.GetDotPos()
 items[index].AddBackPtr(item.GetBackPtrs())
 return false

items.pushback(item)

ProductionIndex[item.GetProdPtr().LHS].pushback(ItemCount)
ProdsWithDotAt[item.GetCurrentSymbol()].pushback(ItemCount)
ItemCount++

return true

End Function

void CGrammar::lfg2cfg()

//input: a list of LFG productions

//output: a list of CFG productions

{

 stack<symbol> stk1

 stack<symbol> stk2

for(k=0;k<vlist.size();k++)

{

 prod=vlist[k]

 len=prod.RHS.size()

 for(p=0;p<len;p++)

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 54

 {

 symb=prod.RHS[p]

stk1.push(symb)

 if(symb.isop==TRUE and symb.lexeme==”]”)

{

// A -> B [D | E]+ F

stk1.pop() //pop ‘]’

while((symb= stk1.pop())!=’[‘)

stk2.push(symb)

// now stk2 have D | E

symb=prod.RHS[p+1]

if(symb!=NULL && (symb.lexeme[0]==’*’||

symb.lexeme[0]==’+’ ||

symb.lexeme[0]==’#’))

{

p++

if(symb.lexeme[0]==’*’ || symb.lexeme[0]==’+’)

{

// A -> B [D | E]* F

// conversions:

// A -> B X2 F

// A -> B F

// X2 -> [D | E] X2

// X2 -> [D | E]

////////////////////////////

// A -> B [D | E]+ F

// conversions:

// A -> B X2 F

// X2 -> [D | E] X2

// X2 -> [D | E]

 //creating X2

nsymb=CreateNewSymbol(false,”^=!”) // see param

//creating: X2 -> [D | E]

tprod=new Production()

tprod.LHS=nsymb

tprod.RHS=stk2.GetList()

vlist.add(tprod)

//creating: X2 -> [D | E] X2

tprod=new Production()

tprod.LHS=nsymb

tprod.RHS=stk2.GetList()

tprod.RHS.Add(nsymb)

vlist.add(tprod)

//creating: S -> B F

//for * operator only

if(symb.lexeme[0]==’*’)

{

prod3=new Production()

prod3.LHS=prod.LHS

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 55

prod3.RHS=stk1.GetList()

prod3.RHS.AddList(prod.GetRHSList(p))

/*

 prod.GetRHSList(p) function returns list of

Symbols after the p- index

incase of A -> B [D | E]* F E and p=6
it returns {F E}

Now Prod3 has prod3 = A -> B F

*/

vlist.add(prod3)

}

stk1.push(nsymb) // Push X2

break // WHY THIS
}

else if(symb.lexeme[0]==‘#’)

{

// A -> B [D % E]#1#3 F

// conversions:

// A -> B X2 F

// A -> B X2 X2 F

// A -> B X2 X2 X2 F

// X2-> [D % E]

p++ //at number1

 min=prod.RHS[p]

p++ //at number2

 max= prod.RHS[p]

 //creating X2

 nsymb=CreateNewSymbol(false,”^=!”)

prod2=new Production

prod2.LHS=nsymb

prod2.RHS=“[“+stk2.GetList()+“]“

vlist.add(prod2)

left_symb_list = stk1.GetList()

right_symb_list = prod.GetRHSList(p+1)

symb_list=GetAllCasesList(nsymb,min,max)

/*

Sym_list contains..

 1. X2

 2. X2 X2

 3. X2 X2 X2

*/

for(n=0;n<symb_list.size();n++)

{

tprod=new Production()

tprod.LHS=prod.LHS

tprod.RHS=left_symb_list

tprod.RHS.AddList(symb_list[n])

tprod.RHS.AddList(right_symb_list)

vlist.add(tprod)

}

stk1.push(nsymb)

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 56

break

} //end else if

}

 else

// productions enclosed in [XYZ DS DSD] with no

 // outer-operator *, + or #

{

 ///////////////////////////X->[[A%[A|B]]|D]

// X -> [A%B]

// X -> A B

// X -> B A

nsymb=CreateNewSymbol(false,”^=!”)

tprod=new Production()

tprod.LHS=nsymb

tprod.RHS=stk2.GetList()

vlist.add(tprod)

tprod=new Production()

tprod.LHS=nsymb

tprod.RHS=stk2.GetListReverse()

vlist.add(tprod)

prod_list=GetResolvedProdList(tprod)

vlist.addList(prod_list)

stk1.push(nsymb)

}

}

 prod.RHS=stk1.GetList()

}//end for

}

P_Grammar::GramarReader()
{

 Read First Production Rule

 While(!eof())

{
 RawProduction * Aprod;

 wstring LHS = assign LHS String for current production

Aprod->Lhs = SymbolMap:: getSymbol(LHS)

 For each RHSs
 {

// Fdescription are attached with each symbol of the RHSs symbol
 Aprod->insertSymbol(SymbolMap:: getSymbol(CurrSymbol)
}
 Assign probability to the production

Read Next Rule

}
}
vector<P_CProductions *> PurifyProductions(vector<RawProductions *> prod)

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 57

{
P_Cproduction * temp

 for(for each RawProduction [say rprod])
 {
 temp=new P_CProduction();

 temp->LHS = rprod->LHS ;

 temp->SelectionSet = FormatSelectionSet(rprod->SelectionSet)
/*
 Selection sets are formated in Bit format
 Every terminal symbol is taken as 2^n where n is a the terminal symbol number
*/

 for(for each RHS of rprod [currSymb])
 {
 psymb=new CProductionSymbol();

 Assign SymbolId

 Assign IsTerminal that the symbol is terminal or nonterminal

Assign FdescriptionsIndices for each Fdescription mapped from FdecriptionMap::GetMapFDesc(FDesc)

 temp->RHS.push_back(psymb);
 }
 prod_table->pushback(temp)
 }

Return prod_table;
}

void ReadLexicon()
{
// Read First Entry in wstring

 While(!eof())

{
 LexicalEntry* ALexEntry = new LexicalEntry;

// assign ALexEntry probably if there.
// separate all FDescriptions

vector<string> FDescriptions = All the FDescriptions of that entry

for all same entries with only different in Fdescriptions, All Fdescriptions are Ored for these entries and then
their Fdescriptions are converted to FdescriptionsIndices

In case of same entries with different Subcat Frames, a vector of indeces of subcat frame is attached with
Lexical Entry

Assign Subcat Frames by taking index from
Byte fdindex = P_F_DescriptionMap::GetIndex(vector<wstring> SubCat)

ALexEntry.SemForm.Gfindex = fdindex

MT Design Document for EGD Urdu Localization Project
Version: 0.0.0.0 58

/*
Format of ORed FDescriptions:

[[Fdescription1 || Fdescription2] || Fdescription3]

*/

AlexEntry->FDescriptionsIndices =P_F_DescriptionMap:: GetFDescriptions(FDescriptions)
Wstring pred = assign pred of the entry
 ALexEntry.SemForm.pred = CsymbolTableManager::getNum(pred) // How to assign SemForm

wstring SurfaceForm = assign Surface form

Hash_Multimap[SurfaceForm]= ALexEntry // How to insert LexEntry in HashMap

// ReadNextEntry

}

}
ReadSubcatFrame()
{
/* File Format “SubCats.txt”
Subj
Subj Obj
Subj Obj Obj2
*/

Read in SubCatFrames from File “SubCats.txt”

}

GetSubcatFrameIndex(vector<byte> Subcats): byte index
{
}

GetSubcatFrame (byte index): vector<byte> Subcats
{
}

