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Machine Translation

• Problem: Automatic translation the foreign text:
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• Ambiguity in translation

– He deposited money in a bank account with a high interest rate

– Sitting on the bank of the Mississippi, a passing ship piqued his 
interest

– How do we find the right meaning and thus translation?

– Context should be helpful

• Phrase translation problem

It’s raining cats and dogs 

موس�دھار بارش ہو رہی ہے

Open Problems in Machine Translation
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Open Problems in Machine Translation

• Morphological Differences

ين احساناوالدوبال

And be kind with your parents

ين + والد +ال  + ب +و

• Structural Differences

Diese Woche ist die grüne Hexe zu Haus

The green witch is at home this week

4

Collins et. al (2005)

Koehn and Hoang (2007)

Fraser et. al (2012)

Galley and Manning (2008)

Green et. al (2010)

Durrani et al (2011)



The Grand Plan
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Different Machine Translation Frameworks

• Rule-based 

• Empirical 

– Example-based machine translation

– Statistical machine translation

• Hybrid Machine Translation 
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Rosetta Stone

• Egyptian language was a mystery for centuries

• The Rosetta stone is written in three scripts

– Hieroglyphic (used for religious documents)

– Demotic (common script of Egypt)

– Greek                  (language of rulers of Egypt at that time) 
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Parallel Data
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Parallel Data

• UN and European Parliamentary Proceedings

– German, French, Spanish etc.

• News Corpus and Common Crawl Data

• NIST Data (Arabic, Chinese)
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Noisy Channel Model

• Decipherment problem

Warren Weaver: “When I look at an article in Russian, I say: This is 
really written in English, but it has been coded in some strange 
symbols. I will now proceed to decode”

• Bayes Rule: p (E | F) = p (F | E) x p(E) / p(F) 

ebest = argmax p (E | F) = argmax p (F | E) x p(E)
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Statistical Machine Translation

From Koehn 2008. University of Edinburgh



w
w

w
.u

n
i-

s
tu

tt
a
rt

.d
e

Word-based Models (Brown et. al 1992)

• Word alignments

– If we had word alignment we can learn 
translation model

– If we knew model parameters we can learn 
word alignments

– Chicken and Egg problem: EM-algorithm 
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Word-based Models (Brown et. al 1992)

• Word alignments

– If we had word alignment we can learn 
translation model

– If we knew model parameters we can learn 
word alignments

– Chicken and Egg problem: EM-algorithm 

• IBM Models

– Model 1 (Word-to-word translation)

– Model 2 (+additional distortion model)

– Model 3 (+fertility: insertions, deletions)

– Model 4 (+improved distortion model)

– Model 5 (+non-deficient Model 4)
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Phrase-based Model (Och/Koehn et. al 2003)

• State-of-the-art for many language pairs

Morgen    fliege ich    nach Kanada   zur Konferenz

Tomorrow     I will fly     to the conference   in Canada

• Translation p(f|e) is estimated through phrases instead of words

From Koehn 2008 14
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Benefits of phrase-based SMT

Morgen    fliege ich    nach Kanada       in den sauren Apfel beißen

Tomorrow     I will fly     to Canada           to bite the bullet

er    hat ein Buch gelesen               lesen Sie mit             

he      read a book                          read with me

15

1. Local reordering

4. Insertions and deletions 3. Discontinuities in phrases

2. Idioms
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Left-to-Right Stack Decoding
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Left-to-Right Stack Decoding
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Phrasal Extraction
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Reordering Sub-Model (Koehn et. al 2005)

Morgan fleige ich nach Kanada zur Konferenz

Tomorrow X

I X

will

fly X

to X

the

conference X

in X

Canada X

M

D

S

• Orientation-based model

Monotonic (M), Swap (S), Discontinuous (D)
19
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Syntax-based Models

• Phrase-based model can not capture long distance dependencies

• Language is hierarchal and not flat 
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String-to-Tree Model (Galley et. al 2004, 2006)
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Tree-to-tree Model (Zhang et. al 2008)

From Koehn 2010. University of Edinburgh
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Chart-based Decoding
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Syntax-based Models

• Much progress, but success only for some language pairs

• Many open questions

– Syntax on source/target/both? 

– Can we learn syntax unsupervised?

– Phrase structure or dependency structure?

– What grammar rules should be extracted?

– Soft or hard constraints?

– Feature design

24
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Semantic-based Model

• What do existing models don’t capture

– Who did what to whom 

– Preservation of meaning can be more important than 
grammaticality/fluency

• ISI (Kevin Knight’s Group) 

– Using semantic role labeling

– Jones et. al (2012)
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Log-linear Model (Och and Ney 2004)

• Typical features in Phrase-based Model

– 4 Translation model features 

– 6 Reordering model features

– Length Bonus

– Phrase Bonus

– Language Model

• Tuning Algorithms

– MERT (Och and Ney, 2004)

– PRO (Hopkins and May, 2011)

– MIRA (Chiang, 2012)

• 11,001 New Features for Statistical Machine Translation (Chiang et. al 2009)

26

ebest = argmax p (E | F) = argmax p (F | E) x p(E)
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Log-linear Model (Och and Ney 2004)
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• Evaluation 

– How good is a given machine translation system?

– Hard problem, since many different translations acceptable

– Evaluation metrics

• Subjective judgments by human evaluators

• Automatic evaluation metrics

• Automatic Evaluation Metrics

– BLEU (Papineni et. al 2002)

– METEOR (Banerjee and Lavie 2005)

– WER/TER (Error rate)

Open Problems in Machine Translation
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Open Problems in Machine Translation

29



w
w

w
.u

n
i-

s
tu

tt
a
rt

.d
e

Open Problems in Machine Translation

• Human judgment

– given: machine translation output

– given: source and/or reference translation

– task: asses the quality of machine translation output

• Metrics

– Adequacy: Does the output convey the same meaning as the input 
sentence? Is part  of the message lost, added, or distorted?

– Fluency: Is the output good fluent English?
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• Domain Adaptation

– Training data (News corpus, Europarl, Common Crawl Data)

– Test data (Education domain, Medical domain)

– Interpolation Models (Foster and Kuhn 2007)

– MML Filter (Axelrod et. al 2011)

– Domain Features (Hasler et. al 2012)

• OOV word translation

– NE translation (Onaizan and Knight 2002)

– NE disambiguation (Hermjakob et. al 2008)

– Unsupervised Transliteration (Sajjad et. al 2012, Durrani et. al 2014)

• Closely related languages (Durrani et. al 2011, Durrani and Koehn 2014)

Open Problems in Machine Translation
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• Decoding Algorithms

– Stack Decoding (Tillmann et. al 1997)

– Efficient A* Decoding (Och et. al 2001)

– Pruning Methods (Moore and Quirk 2007)

• Language Model

– The house is big (good)

– The house is xxl (worse)

– House big is the (bad)

– Markov-based language models with Kneser-Ney Smoothing

• Considers history of 4 previous words 

– Syntax-based Language Models (Charniak et. al 2003)

Open Problems in Machine Translation
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• Big Data and Scaling to Big Data

– Parallel data (Billions of words) (Smith et. al 2013)

– English monolingual data (trillions of words)

– Randomized data structures (Talbot and Osborne 2007)

• Developed at Edinburgh now used at Google

– Distributed Systems

• Distribute models over 100 machines

– Efficient data-structures 

• Compact Phrase-tables (Junczys-Dowmunt 2012)

• Scalable Language Model estimation (Heafield 2013)

– Prefixes, back-off links in language models, binarization

Open Problems in Machine Translation
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• Computer Assisted Translation

– Machine Translation makes inroads in human translation industry

– CASMACAT/MateCat Projects in Edinburgh

Open Problems in Machine Translation
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Why Do Machine Translation?

• Assimilation – reader initiates translation, wants to know the content (Gistable) 

• Translation in Hand-held devices

• Post-editing (editable)

• User manuals in different languages, high quality translation (publishable) 

• Integration with other NLP applications

– Speech Technologies

– Cross lingual information retrieval

• US Defense

– Arabic-English post 9/11

– Urdu-English, Pashto-English 2008

– Dialectal Arabic (Egyptian, Labenese, Iraqi 2009-present)

– Russian-English (2013-2014)
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Open Source Resources

• Toolkits

– Moses (Koehn et. al 2007), Phrasal (Cerr et. al 2010), NCode (Crego et. al 2011)

– GIZA++ (Word Alignments)

– SRILM, IRSTLM, KENLM, LMPLZ (Language Model)

• Data

– French-English 39M

– Chinese-English Spanish-English, Czech-English 15M

– Arabic-English

– German-English 5.5M

– Urdu-English/Hindi-English ~300K 

• Parsers

– English, French, German
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Thank you !!!

• Most of the slides are borrowed from Philipp Koehn
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