

29

Comparison of Parsers Dealing with Text Ambiguity in Natural Language
Processing

Sareya Qayyum, Nimra Aziz, Waqas Anwar, Usama Ijaz Bajwa

 Computer Science
COMSATS University Islamabad, Lahore Campus

{sareyaqayyum, nimraiftikhar1995}@gmail.com, {waqasanwar, usamabajwa}@cuilahore.edu.pk

Abstract

 Parsing in Natural Language processing is a vast domain
which serves as a pre-processing step for different NLP
operations like information extraction, etc. Multiple parsing
techniques have been presented until now. Some of them unable
to resolve the ambiguity issue that arises in the text corpora.
This paper performs a comparison of different models
presented in two parsing strategies: Statistical parsing and
Dependency parsing. The comparison has been made on very
famous Penn Treebank corpus specifically involving its Wall
Street Journal Portion.

1. Introduction

 In Natural Language Processing (NLP), Parsing acts as an
essential and key component to many problems. Parsing is
the analysis of syntax or commonly called syntactic analysis
in which we process the sentences following the rules of a
formal grammar. Parsing involves uncovering the meaning,
content and underlying structure that makes up a sentence.
Every Language has a unique grammar thus making parsing
process unique as well. Languages can be divided into two
categories:
Segmented Languages: Those languages whose words are
space-delimited e.g. English and Spanish language
Un-Segmented Languages: In un-segmented Languages word
segmentation is required as a pre-processing step before further
processing E.g. Chinese and Japanese Languages
 A language is not just a ‘bag of words’ or else there would
be no need for grammar. Grammatical rules apply to sentences
where a sentence in a language is a group of strings that consists
of two things: a subject and a predicate. A subject is defined as
a Noun Phrase (NP) and predicate as a verb phrase (VP). E.g.
In an English Sentence ‘Sam went to school’, ‘Sam’ is NP and
‘went’ is VP. Parsing has many applications in Natural
Language Processing. For Example, Machine translation, text
summarization and question answering are few areas of NLP in
which immense work is being performed, etc. Parsing serves as
an initial step for these problems. The result of parsing a
sentence using a formal grammar is a tree structure. A sentence

can have exactly one or many such tree structures. The
grammar that is usually used is CFG (context-free grammar).
One of the major challenges in Parsing is dealing with
ambiguities in the sentence. Ambiguity refers to sentences that
are subjective, open to interpretation and can have multiple
meanings. Three types of ambiguities are present in a sentence
when parsing is performed namely Syntactic Ambiguity,
Lexical Ambiguity, and Semantic Ambiguity.
Syntactic Ambiguity: Sentences can be parsed in multiple
syntactical forms. E.g. ‘I heard his cell phone ring in my
office’. The Phrase ‘in my office’ can be parsed in a way that
modifies the noun or vice versa modifies the verb.
Lexical Ambiguity: Sentences having Lexical ambiguity can
have words with multiple assertions. E.g. ‘book’ is used as a
noun when used in a sentence as ‘He loves to read books’. On
the other hand, it can also be used as a verb when used in a
sentence as ‘He books an appointment at the dentist’.
Semantic ambiguity: It is related to the interpretation of the
sentence. E.g. ‘I saw a man with the telescope’. It can be
deduced as if I saw a man holding a telescope. Or I saw a man
through a telescope. Parsing of sentences happens in multiple
stages:
a) Dividing a sentence into tokens. These tokens are used as
input to some other tasks like parsing.
b) Tagging each token with parts of speech.

 Eight parts of speech are observed in the English language –
verbs, nouns, pronouns, adverbs, adjectives, conjunctions,
interjections and prepositions.

1.1. Types of parsing

Two main types of parsing will be discussed in this paper and a
comparison of performances for both the types will be made.
Following are the types:

i. Statistical Parsing
ii. Dependency Parsing

1.1.1. Statistical Parsing
 In Natural Language processing statistical parsers are the
type of parsers which associate grammar rules with probability.
The Statistical parser is an algorithm that looks for a tree that
maximizes the probability P (T|S). PCFG (Probabilistic

30

Context-Free Grammar) which is an extended form of CFG is
used as an underlying grammar. The probability of a parse tree
of a sentence can be computed by firstly calculating the
probability of the productions used in the derivation of the tree
and then taking the product of these probabilities. Following
three main tasks are involved in statistical parsing:

1. Determine the likely parse trees for the sentence.
2. Assign probabilities to each derived parse
3. Select the most probable parse (highest probability)

 Statistical parsing requires a corpus of hand-parsed text. For
this purpose, we have Penn treebank (Marcus 1993). Penn
Treebank is extensively used since it is the largest annotated
dataset for English. In recent years Penn Treebank has been
immensely used and considered as a standard for training and
testing statistical parsers. Parseval measures are used to
evaluate the Penn Treebank parsers. From many Parseval
measures most commonly used ones are and labelled recall
(LR) and labelled precision (LP). Sometimes Bracketed
precision (BP) and bracketed recall (BR) are also used which
are less strict measures then LP and LR.

1.1.2. Dependency Parsing
 Identifying a sentence and allocating a syntactic arrangement
to it is the major task of dependency parsing. In the
dependency-based method, the head-dependent relation
provides an estimate to the semantic relationship between
arguments and their predicates.
The translation of a sentence to its dependency structure is done
in two subtasks:

· Classify the structure for all head-dependent
relationships.

· Classify these relations with their correct dependency
relations.

·
A tree of dependency parsing is a coordinated diagram (a
directed graph) which fulfills the stated following limitations:

· It consists of a single assigned root hub that does not
have any approaching segments or arcs.

· With the exemption of the root hub, every vertex has
precisely one approaching segment or arc.

· From every vertex in V, a unique way exits from the
root hub.

In short, the stated requirements guarantee that every word has
a distinct head, to which the dependency tree is linked, and a
unique root hub by which one can pursue a unique guided path
to each word of the sentence.
 The idea of projectivity forces an extra restriction and is
firmly identified with the setting free nature of human dialects.
If there is a way from the head to each word that lies between
the head and it’s dependent, then an arc from a head to its
dependent is considered as projective. A dependence tree is
therefore said to be projective if every single one of the arcs is
projective There are, in any case, numerous impeccably
substantial developments especially in dialects with a generally
adaptable word that leads to non-projective trees.

 Presently the assignment of Syntactic parsing is very
unpredictable because of the way that a given sentence can have
numerous parse trees which we call as ambiguities. Consider a
sentence "Book that flight." which can frame various parse trees
dependent on its uncertain grammatical speech tags except if
these ambiguities are settled. Picking a right parse from the
numerous conceivable parses is called as syntactic
disambiguation.
The two main methods of dependency parsing are:

a) Transition-based dependency parsing
b) MST (Maximum spanning tree) dependency parsing

 Transition based parsers commonly have a linear or quadratic
complexity. MST based parsers divides the dependency
structure into small parts called ‘factors’. The components of
the principle MST parsing algorithm are edges that consists of
the head, the edge name and the dependent (child). This
algorithm has quadratic complexity. (Bernd Bohnet., 2010).
Treebanks have a critical job in the advancement and
assessment of dependency parsers. Having human annotators
legitimately create dependency structures for a given corpus.
The most generally utilized syntactic structure is the parse tree
which can be produced utilizing some parsing algorithms.
These parse trees are valuable in different applications like
sentence grammar checking, co-reference goals, question, and
their answers, data extraction or all the more significantly it
assumes a basic job in the semantic analysis stage. We can
likewise utilize a deterministic procedure to decipher existing
principal based treebanks into dependency trees using head
rules. The significant English reliance treebanks have to a great
extent been removed from existing assets, for example, the
Wall Street Journal segments of the Penn Treebank (Marcus et
al., 1993). The later OntoNotes venture (Hovy et al. 2006,
Weischedel et al. 2011) expands this methodology going past
customary news content to incorporate conversational phone
speech, newsgroups, weblogs and talk programs in English,
Arabic and Chinese.

2. Literature Review

 Following is the previous work for statistical parsing and
dependency parsing.

2.1. Statistical Parsing

 Magerman [9] presented a statistical parser called SPATTER.
It achieves the best accuracy by building a complete parse for
every sentence in the corpus. SPATTER is based on a decision-
tree learning technique. Using the PARSEVAL evaluation
measure, SPATTER on the Penn Treebank Wall Street Journal
corpus achieves 86% precision P (see equation 1) and recall R
(see equation 2), and 1.3 crossing brackets CB (see equation 3)
per sentence for sentences with a word length of 40 or less. For
sentences having word length between 10 and 20, SPATTER
achieves 91% P, 90% R, and 0.5 CB.

31

P = number of Correct Components / number of Components
in parser output (1)
R = number of correct Components / number of Components in
gold standard (2)
CB = number of Components in parser output that cross gold
standard Components / number of Components in parser
output (3)

 In 1996 Collins [10] presents his first model for statistical
parsing. Below equation 4 demonstrates a conditional model
capable of parse selection, where for a given sentence S in the
corpus, the probability of a parse tree T is calculated directly.
Input to the model is a Part of Speech (POS) tagged sentence
which produces a tree as an output. For a given sentence S in
the corpus and its tree T, the conditional model for Collins
represents the probability in the following manner:
The most likely parse under the model is then:

T (best) = argmax T (P (T |S)) (4)

 Collins (1996) model showed an improvement in Precision
and Recall when compared with Magerman’s (1995) results.
 Collins presented a new model in 1997 [11] which improved
on the previous results of Collins conditional model (1996).
This approach is based on a generative model. The Collins
(1997) accounts for word-word dependencies when generating
a parse tree. This model focuses on the modeling of the parses
and deals with the flat trees of the Penn Treebank corpus. This
generative version of Collins parser corpus shows an
improvement of 2.3% on the conditional model of Collins
(1996). It achieves 88.1% P and 87.5% R on Wall Street
Journal.
 In [12] Collins (1999) few problems were observed with the
generative model for Collins (1997). It was noticed that Collins
model is no longer a model for predicting maximum likelihood
because of how the dependency probabilities were estimated.
Another deficiency is its way of considering all dependency
relations as independent. Due to these reasons, Collins
presented another modification to his previous model.
 Charniak [13] (2000, 1999) after presenting his first model
for statistical parsing in 1997 Charniak presented another
statistical Treebank parser. It outperformed the Collins
generative model presented in 1997. Charniak’s main
advantage to Collin’s is generating candidate parses using a
simple probabilistic chart parser. Charniak’s model showed an
improvement of 0.45% in labelled recall (LR) and labelled
precision (LP). The model achieved average Precision and an
average recall of 91.1% on sentences with length less than 40.
For sentences with length less than 100, the model achieved
89.5% average precision and recall on Penn Treebank corpus.
Over the previously best results, Charniak’s model achieves an
error reduction of 13% for single parser on this test set.
 Henderson and Brill [14] presented an approach where they
combined the results/prediction of three current existing
parsers. They combined Charniak’s 1997 model with Collins

1997 and Ratnaparkhi 1998 model to better understand the
capabilities of parsers and to check if they yield better results.
This combination of three parsers gave the best results with
Labelled precision of 92.1% and Labelled Recall of 89.2% on
the development set while achieving LP of 92.4% and LR of
90.1% on the test set of Penn Treebank. These are best-known
results up till now.
 Parser presented by Bod [15] claims to give a better
performance in terms of Parseval measures. It improved on the
Charniak’s result by achieving 89.7% LP and LR on sentences
with 100 words. For sentences with 40 words or less Bod’s
model achieves 90.8% LP and 90.6% LR. Although it is
debatable whether an increase of 0.2% in LP and 0.1% in LR is
considered an improvement. Bods’ model takes arbitrary
structural and lexical dependencies into consideration when
computing probabilities of a parse tree as it is based on Data-
Oriented Parsing (DOP).
 Collins in 2000 and Collins and Duffy in 2002 [16] presented
two approaches in which they improved the performance for
Collins 2000 model by re-ranking the parses using a different
model on the outcome of Collins’ 1999 model. LP improved
from 88.1% to 88.3% while LR improved from 88.3% to 89.6%
on Collins 1999 model. For Collins 2000 model using a variant
for boosting LP improved to 88.3% and LR to 89.6%. For
Collins and Duffy 2002 model by using a DOP like approach
using a voted Perceptron LP improved to 88.6% and LR to 88.9
%.

2.2. Dependency Parsing

 A huge interest has been seen in Dependency Parsing lately
for applications such as relation extraction, machine translation,
synonym generation, and lexical resource augmentation. The
main reason for using dependency structures is because they are
highly effective to study and parse while still training much of
the predicate-argument information needed in a lot of
applications.
 Most of these parsing models have concentrated on trees that
are projective, including the effort of Eisner (1996), Yamada
and Matsumoto (2003), Collins et al. (1999), Nivre and Scholz
(2004), and McDonald et al. (2005).
A parsing model presented by Nivre and Nilsson in 2005 allows
to include edges that are non-projective, into trees using learned
edge transformations in the memory-based parser. The method
varies in examining efficiently the full span of non-projective
trees. The main focus was that the dependency parsing can
serve as the main search point for an MST in a directed graph.
This specifies the regular projective models of parsing that are
based on the Eisner algorithm (Eisner, 1996) to have a better
efficient of O (n 2). By using the spanning-tree illustration, to
cover non-projective dependencies we extend the work of
McDonald et al. (2005) on online large-margin discriminative
training methods (McDonald, Pereira, and Ribarov; 2005)
 Nowadays there has been an increase in the usage of
dependency representations through many tasks of natural
language processing (NLP). Stanford dependency is
extensively used in both NLP and biomedical text mining.

32

Stanford Dependency was originally extracted from constituent
parses but the production of parse trees from the raw text was
quite time. The approaches hence designed specifically for
dependency parsing such as Covington, minimum spanning
tree (MST), Eisner and Nivre should perform faster, assuming
that they have low time complexity. The different approaches
are compared in terms of their collective accuracy and speed
and characteristic errors are reported. The parsing models are
trained using the training set extracted from the Penn Treebank
that consists of sections 2 through 21, different parsers of
dependency were compared such as MaltParser package v1.3
selected models, the MSTParser 0.4.3b, and the rule Based
RelEx parser 1.2.0. We used F1-score other than accuracy
because the typical Stanford dependency representation parsers
can generate a variety of different dependencies for every
sentence. The fastest parsers were the Malt package, Nivre, and
Covington. Nivre Eager and MSTParser (Eisner) and they
achieved better F1scores when the interaction between model
and features was not used. If parsing a huge amount of data, and
speed is important, the experiments suggest that the top choice
is to use parsers included in the Malt package. (Cer, D. M., De
Marneffe, (2010, May)).

3. Performance Evaluation

 Many different parsers have been presented in the above
section having unique abilities and different performances each
trying to perform well than the previous. The main question is
what type of parsers should be used in which context. The
decision to apply these models depends on the type of the
problem under study. To facilitate the decision making a
performance overview of all the parsers is given below.

3.1. Statistical Parsing

 Table I shows the performance of multiple Statistical Parsers
over the Parseval Measures.

• In [9] it was shown that previous syntactic natural language
parsers used were not capable of handling ambiguous large-
vocabulary text. They had poor performances on standard
datasets like Wall Street Journal of Penn Treebank which led to
the new approach presented by Magerman called SPATTER
(Statistical Pattern Recognizer). It is based on decision-tree
learning technique and has accuracy way better than any parser
published up till 1995. SPATTER requires very less linguistic
knowledge and is compared against state of the art grammar-
based parsers. Decision trees provide a ranking system by
assigning a probability distribution to the possible choices,
which not only specifies the order of preference but also gives
a measure of the relative likelihood that each choice is the one
which should be selected. The limitation of the searching
strategy of SPATTER is its possible consumption of available
memory before completing the search. But conveniently this
memory exhaustion occurs on sentences which SPATTER most
likely will get wrong anyway. So little or no performance loss
is observed due to this search errors.

• The study in [10] reveals that Collins and Magerman both use
lexicalized PCFG which is associating a head word to every
non-terminal present in the parse tree. Collins parser performs
almost equally as SPATTER when it is trained and tested on
Wall Street Journal portion of Penn Treebank. The advantage
of Collins 1996 model over SPATTER is the simplicity of its
architecture and working. Still, many improvements can be
made by using a more sophisticated probability estimation
techniques like deleted interpolation or estimation on relaxing
the distance measure for smoothing could be used. Another
limitation of Collins 1996 model is that it does not account for
valency when calculating the parse.
• Collins [11] attempt to address the flaws of the model
presented in 1996 by putting forth 3 models. It shows that sub-
categorization and wh-movement can be given a probabilistic
treatment thus resulting in the statistical interpretation of the
concepts causing an increase in performance by adding useful
information to the parser’s output. The average improvement of
Collins 97 over the previous model is 2.3%. Model 1 presented
has clear advantages when handling unary rules and distance
measures. Model 2 and 3 can apply condition on any structure
that has been previously generated while Collins 96 lack in this
treatment.
• [12] Is an update of previous works of Collins. It addresses
the limitation of Collins 1996 and 1997 related to punctuation
as surface features of the sentence. Previous models failed to
generate punctuation and are considered a deficiency of the
model. Collins 2000 uses a technique that is based on boosting
algorithms for machine learning for re-ranking the best outputs
using additional features.
• The major invention of Charniak’s [13] 2000 model is the use
of maximum entropy inspired model which results in an
increase of 2% in performance due to its strategy of smoothing
and to combine multiple conditioning events for testing.
Maximum entropy inspired approached has certain advantages
over the probabilistic model and has recommended itself for use
due to its novel approach of smoothing. Most important
progress accomplished by using Charniak’s model over
conventional deleted interpolation is the flexibility achieved
due to simpler maximum-inspired-model which let us
experiment with different conditioning events and to move up
to Markov grammar without significant programming. This
model uses Markov processes to generate rules. The additional
features incorporated boost the performance. The main goal for
Charniak’s parser is to generate model flexible enough to allow
changes for parsing to more semantic levels.
• To solve some of the fundamental problems of Natural
Language processing like parsing some authors including
Henderson and Brill [14] may adopt a unique approach to
combine the previous parsers to obtain better results. Collins
along, with Charniak and Ratnaparkhi model, are experimented
to explore different parser combination. With poor parser being
introduced during the experiments, Techniques like parser
switching and parser hybridization still gave better results. For
more powerful parser combinations the results can be improved
further.

33

• Bod 2001 [15] presents results that are comparable to the
results of previous models like Charniak and Collins 2000. The
main goal of the Bod model is to achieve maximal parse
accuracy by applying constraints of several words in a fragment
and to the depth of lexicalized fragments. Many previous
models applied constituent lexicalization on Wall Street portion
of Penn Treebank while Bods 2001 DOP based model uses
frontier lexicalized approach. The results obtained from Bods
models claim that using frontier lexicalization yields better
results and is a better alternative to constituent lexicalization.
Another difference of Bod with other models is its use of
treebank grammar as an underlying grammar of its DOP model.
Another future area could be the application of Markov
grammar on the DOP model which will further improve the
results.
• The main advantage of this model presented by Collin and
Duffy [16] is the application of the perceptron algorithm on
exponentially big representations of parse trees. It is
computationally efficient and leads to a polynomial-time 2
algorithm for training and testing phases of the perceptron. It
can stretch to more complex domains. Due to its different
parameter estimation when compared to Bod and other models
the computation is manageable.

TABLE I: Performance of all statistical parsers on penn
treebank corpus

Parsers

Evaluation Measures

LP LR CB

Magerman 1995
[9]

86% 86% 1..3

Collins 1996 [10] 86.3% 85.8% 1.14

Collins 1997 [11] 88.6% 88.1% 0.96

Henderson and
Brill [14]

92.4% 92.1% -

Collin 2000 [12] 90.4% 90.1% 0.73

Charniak 2000
[13]

90.1% 90.1% 0.74

Bod 2000 [15] 90.8% 90.6% -

Colins and Duffy
2001 [16]

88.6% 88.9% -

3.2. Dependency Parsing

3.2.1. Deterministic Dependency Parsing
 Collins and Charniak are one of the best accessible parsers
prepared on the Penn Treebank, utilize statistical models for

disambiguation that utilize dependency relations. The Yamada
and Matsumoto method of deterministic dependency parser and
that of Collins and Charniak, when prepared On the Penn
Treebank, gives a nearly equal accuracy. The parser depicted in
this paper is like that of Yamada and Matsumoto in that it
utilizes an algorithm of deterministic parsing in blend with a
classifier actuated from a treebank. Be that as it may, there are
likewise significant differences between the two
methodologies. Most importantly, while Yamada and
Matsumoto utilizes a severe algorithm of bottom-up(basically
shift-reduce parsing), the present parser utilizes Nivre’s
algorithm, which uses bottom-up and top-down approaches
together to increase the accuracy. The experiment was carried
out on two sets whose result is shown in table II and IIA.

· Set G which contained grammatical roles from Penn
· Set B contained the function tags for grammatical

roles with normal bracket labels (S, NP, VP, etc.).
And the evaluation metrics used are:

· Unlabeled attachment score is the measure of words
that are root and are correctly identified as head.

· Labelled attachment score is the measure of words that
are root and are correctly identified as head and their
dependency type.

· Dependency accuracy is the measure of words that are
non-root and are correctly identified as heads.

· Root accuracy is the measure of root words correctly
identified as roots.

· Complete match is the measure of sentences whose
unlabeled dependency structure is correctly identified.

TABLE II: PERFORMANCE OF DETERMINISTIC DEPENDENCY

PARSERS ON PENN TREEBANK CORPUS (6. NIVRE AND M.SCHOLZ

2004)

Parsing
Models

Evaluation metrics

Dependency
Accuracy

Root
Accuracy

Complete
Match

Charniak 92.10% 95.20% 45.20%

Collins 91.50% 95.30% 43.30%

Yamada
and

 Matsumoto
90.30% 91.60% 38.40%

Nivre
and

Scholz
87.30% 84.30% 30.40%

34

TABLE IIA: PERFORMANCE OF DETERMINISTIC DEPENDENCY

PARSERS ON PENN TREEBANK CORPUS (6. NIVRE AND M.SCHOLZ

2004)

Evaluation
metrics

Data sets

Grammatical
Roles from

Penn II
(Experiment #

1)

Function
Tags for

Grammatical
Roles

(Experiment
#2)

Combinati
on of both
Experimen

ts

Unlabeled
Attachment

Score
85.8% 87.1% -

Labelled
Attachment

Score
84.6% 84.4% 86.0%

3.2.2. Constituent-to-Dependency Parsing
 PENN2MALT disposes of the deep information in the
dependency tree. In the new strategy, the topicalized phrases
and words are connected to their respective semantic head.
Other than this the new approach used a richer collection of
arced labels than that used in PENN2MALT. MALTPARSER
depends on a parsing system that constructs a parse tree
gradually while continuing through the sentence one token at
any given moment. By utilizing this type of system, a rich
history-based list of capabilities for the SVM classifier is made,
that can be used for choosing activities. MSTPARSER predicts
a parse tree by expanding a function of scoring over the space
of all parse trees. The scoring function is a weighted sum of
single connections or links. Table III describes MALT Parsers
and MST Parser for different parsing sets.

TABLE III: PERFORMANCE OF MALT AND MST DEPENDENCY

PARSERS ON PENN TREEBANK CORPUS (17.JOHANSSON,R., &

NUGUES,P.(2007))

3.2.3. MIRA (18. McDonald, R., Crammer, K., & Pereira,
F. (2005))

 It is an online learning algorithms which intuitive and easy
to comprehend and implement. To form dependency structures
the extraction rules of Yamada and Matsumoto were used. For
the evaluation and development of sets, the tagging system of
Ratnaparkhi was used and POS tags were assumed as the input
for the system.
 For large margin multi-class classification, Crammer and
Singer established an approach (equation #5) which was then
extended to structured classification by Taskar.

EQUATION # 5 (18. MCDONALD, R., CRAMMER, K., &

PEREIRA, F. (2005))

 The above-mentioned equation #1 optimization is directly
mapped into the online framework by the margin infused
relaxed algorithm (MIRA). On every attempt, while applying
the change to the parameter vector MIRA tries to maintain the
standard and keep it as small as possible, to classify an instance
correctly the margin should be at least equal to the loss of
classifying incorrectly. This can be done by substituting the
following changes in the original algorithm (equation #5)
present online and form another (equation #6).

EQUATION # 6 (18. MCDONALD, R., CRAMMER, K., &

PEREIRA, F. (2005))

 To apply dependency parsing using MIRA, we can just
consider the parsing as a multi-class classification problem in
which, every dependency tree is considered as one of the
classes of the sentence. Nevertheless, this clarification fails in
reality as a normal sentence has a lot of possible dependency
trees thus making it exponentially complex. To overcome this
issue another equation #7 was created.

EQUATION # 7 (18. MCDONALD, R., CRAMMER, K., &

PEREIRA, F. (2005))

Parsing
sets

Parsing models

 MALT
PARSER

 MALT
PARSER

 MST
PARSER

MST
PARSER

LABEL
ED

UN
LABELE
D

LABELE
D

UNLABEL
ED

PENN2
MALT

90.30%

91.36%

92.04%

93.06%

NEW
CONV
E-
RSION

87.63%

90.54%

86.92% 91.64%

35

TABLE IV: PERFORMANCE OF MIRA DEPENDENCY PARSERS ON

PENN TREEBANK CORPUS

Parsing
Models

Evaluation measures

Accuracy Root Complete

Y&M 90.30% 91.60% 38.40%

N&S 87.30% 84.30% 30.40%

AVERAGE
PERCEPTI
ON

90.60% 94.0% 36.50%

MIRA 90.90% 94.20% 37.50%

Accuracy: number of words whose parents are correctly identified.

Root: number of trees in which the root is identified correctly.

Complete: number of sentences whose dependency was correctly identified.

4. Conclusion

 Comparison between parsers leads us to examine the
similarities and differences between multiple models and the
scenarios in which they tend to perform better. The famous
CKY parsing algorithm can represent the ambiguities that occur
while parsing efficiently but it is not able to resolve them. So
statistical and dependency models are designed to overcome the
Limitations of the previous ones thus showing an increase in
the overall measures of evaluation.

5. Acknowledgment

 We would like to give our deepest appreciation to all the
people who helped us complete this paper. A special gratitude
to our instructor and co-author of this paper [Dr. WAQAS
ANWAR], whose support helped us in achieving the goals of
writing this paper.

6. References

[1] Marcus, B. Santorini, and M. Marcinkiewicz. 1993. Building a

large annotated corpus of English: the Penn Treebank.
Computational Linguistics, 19(2):313–330.

[2] Snow, D. Jurafsky, and A. Y. Ng. 2004. Learning syntactic
patterns for automatic hypernym discovery. In NIPS 2004.

[3] Eisner. 1996. Three new probabilistic models for dependency
parsing: An exploration. In Proc. COLING.

[4] Yamada and Y. Matsumoto. 2003. Statistical dependency
analysis with support vector machines. In Proc. IWPT.

[5] Nivre and M. Scholz. 2004. Deterministic dependency parsing of
English text. In Proc. COLING

[6] McDonald, Pereira, Ribarov. 2005. Non-projective Dependency
Parsing using Spanning Tree Algorithms.

[7] McDonald, R., & Pereira, F. (2006). Online learning of
approximate dependency parsing algorithms. In 11th Conference
of the European Chapter of the Association for Computational
Linguistics.

[8] Magerman, D. M. (1995, June). Statistical decision-tree models
for parsing. In Proceedings of the 33rd annual meeting on
Association for Computational Linguistics (pp. 276-283).
Association for Computational Linguistics.

[9] Collins, M. J. (1996, June). A new statistical parser based on
bigram lexical dependencies. In Proceedings of the 34th annual
meeting on Association for Computational Linguistics (pp. 184-
191). Association for Computational Linguistics

[10] Collins, M. (1997). Three generative, lexicalized models for
statistical parsing. ArXiv preprint cmp-lg/9706022.

[11] Collins, M. (2003). Head-driven statistical models for natural
language parsing. Computational linguistics, 29(4), 589-637

[12] Charniak, E. (2000, April). A maximum-entropy-inspired parser.
In Proceedings of the 1st North American chapter of the
Association for Computational Linguistics conference (pp. 132-
139). Association for Computational Linguistics.

[13] Henderson, J. C., & Brill, E. (2000). Exploiting diversity in
natural language processing: Combining parsers. ArXiv preprint
cs/0006003

[14] Bod, R. (2001, July). What is the minimal set of fragments that
achieves maximal parse accuracy? In Proceedings of the 39th
Annual Meeting on Association for Computational Linguistics
(pp. 66-73). Association for Computational Linguistics.

[15] Collins, M., & Duffy, N. (2002, July). New ranking algorithms
for parsing and tagging: Kernels over discrete structures, and the
voted perceptron. In Proceedings of the 40th annual meeting on
association for computational linguistics (pp. 263-270).
Association for Computational Linguistics

[16] McDonald, R., Crammer, K., & Pereira, F. (2005). Online large-
margin training of dependency parsers. In Proceedings of the
43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05) (pp. 91-98).

[17] Johansson, R., & Nugues, P. (2007). Extended constituent-to-
dependency conversion for English. In Proceedings of the 16th
Nordic Conference of Computational Linguistics (NODALIDA
2007) (pp. 105-112)

