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Abstract 

    Parsing in Natural Language processing is a vast domain 
which serves as a pre-processing step for different NLP 
operations like information extraction, etc. Multiple parsing 
techniques have been presented until now. Some of them unable 
to resolve the ambiguity issue that arises in the text corpora. 
This paper performs a comparison of different models 
presented in two parsing strategies: Statistical parsing and 
Dependency parsing. The comparison has been made on very 
famous Penn Treebank corpus specifically involving its Wall 
Street Journal Portion. 
 

1. Introduction 
 

    In Natural Language Processing (NLP), Parsing acts as an 
essential and key component to many problems. Parsing is 
the analysis of syntax or commonly called syntactic analysis 
in which we process the sentences following the rules of a 
formal grammar. Parsing involves uncovering the meaning, 
content and underlying structure that makes up a sentence. 
Every Language has a unique grammar thus making parsing 
process unique as well. Languages can be divided into two 
categories: 
Segmented Languages: Those languages whose words are 
space-delimited e.g. English and Spanish language 
Un-Segmented Languages: In un-segmented Languages word 
segmentation is required as a pre-processing step before further 
processing E.g. Chinese and Japanese Languages 
    A language is not just a ‘bag of words’ or else there would 
be no need for grammar. Grammatical rules apply to sentences 
where a sentence in a language is a group of strings that consists 
of two things: a subject and a predicate. A subject is defined as 
a Noun Phrase (NP) and predicate as a verb phrase (VP). E.g. 
In an English Sentence ‘Sam went to school’, ‘Sam’ is NP and 
‘went’ is VP. Parsing has many applications in Natural 
Language Processing. For Example, Machine translation, text 
summarization and question answering are few areas of NLP in 
which immense work is being performed, etc. Parsing serves as 
an initial step for these problems. The result of parsing a 
sentence using a formal grammar is a tree structure. A sentence 

can have exactly one or many such tree structures. The 
grammar that is usually used is CFG (context-free grammar).  
One of the major challenges in Parsing is dealing with 
ambiguities in the sentence. Ambiguity refers to sentences that 
are subjective, open to interpretation and can have multiple 
meanings. Three types of ambiguities are present in a sentence 
when parsing is performed namely Syntactic Ambiguity, 
Lexical Ambiguity, and Semantic Ambiguity. 
Syntactic Ambiguity: Sentences can be parsed in multiple 
syntactical forms. E.g. ‘I heard his cell phone ring in my 
office’. The Phrase ‘in my office’ can be parsed in a way that 
modifies the noun or vice versa modifies the verb. 
Lexical Ambiguity: Sentences having Lexical ambiguity can 
have words with multiple assertions. E.g. ‘book’ is used as a 
noun when used in a sentence as ‘He loves to read books’. On 
the other hand, it can also be used as a verb when used in a 
sentence as ‘He books an appointment at the dentist’. 
Semantic ambiguity: It is related to the interpretation of the 
sentence. E.g. ‘I saw a man with the telescope’. It can be 
deduced as if I saw a man holding a telescope. Or I saw a man 
through a telescope. Parsing of sentences happens in multiple 
stages: 
a) Dividing a sentence into tokens. These tokens are used as 
input to some other tasks like parsing. 
b) Tagging each token with parts of speech. 

 Eight parts of speech are observed in the English language –
verbs, nouns, pronouns, adverbs, adjectives, conjunctions, 
interjections and prepositions. 

1.1.  Types of parsing 

Two main types of parsing will be discussed in this paper and a 
comparison of performances for both the types will be made. 
Following are the types: 

i. Statistical Parsing 
ii. Dependency Parsing 
 

1.1.1. Statistical Parsing 
    In Natural Language processing statistical parsers are the 
type of parsers which associate grammar rules with probability. 
The Statistical parser is an algorithm that looks for a tree that 
maximizes the probability P (T|S). PCFG (Probabilistic 
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Context-Free Grammar) which is an extended form of CFG is 
used as an underlying grammar. The probability of a parse tree 
of a sentence can be computed by firstly calculating the 
probability of the productions used in the derivation of the tree 
and then taking the product of these probabilities. Following 
three main tasks are involved in statistical parsing: 
 
1. Determine the likely parse trees for the sentence. 
2. Assign probabilities to each derived parse 
3. Select the most probable parse (highest probability) 
 
    Statistical parsing requires a corpus of hand-parsed text. For 
this purpose, we have Penn treebank (Marcus 1993). Penn 
Treebank is extensively used since it is the largest annotated 
dataset for English. In recent years Penn Treebank has been 
immensely used and considered as a standard for training and 
testing statistical parsers. Parseval measures are used to 
evaluate the Penn Treebank parsers. From many Parseval 
measures most commonly used ones are and labelled recall 
(LR) and labelled precision (LP). Sometimes Bracketed 
precision (BP) and bracketed recall (BR) are also used which 
are less strict measures then LP and LR. 
 
1.1.2. Dependency Parsing 
    Identifying a sentence and allocating a syntactic arrangement 
to it is the major task of dependency parsing. In the 
dependency-based method, the head-dependent relation 
provides an estimate to the semantic relationship between 
arguments and their predicates. 
The translation of a sentence to its dependency structure is done 
in two subtasks: 

· Classify the structure for all head-dependent 
relationships.  

· Classify these relations with their correct dependency 
relations.  

·  
A tree of dependency parsing is a coordinated diagram (a 
directed graph) which fulfills the stated following limitations: 

· It consists of a single assigned root hub that does not 
have any approaching segments or arcs. 

· With the exemption of the root hub, every vertex has 
precisely one approaching segment or arc. 

· From every vertex in V, a unique way exits from the 
root hub. 

In short, the stated requirements guarantee that every word has 
a distinct head, to which the dependency tree is linked, and a 
unique root hub by which one can pursue a unique guided path 
to each word of the sentence. 
    The idea of projectivity forces an extra restriction and is 
firmly identified with the setting free nature of human dialects. 
If there is a way from the head to each word that lies between 
the head and it’s dependent, then an arc from a head to its 
dependent is considered as projective. A dependence tree is 
therefore said to be projective if every single one of the arcs is 
projective There are, in any case, numerous impeccably 
substantial developments especially in dialects with a generally 
adaptable word that leads to non-projective trees. 

    Presently the assignment of Syntactic parsing is very 
unpredictable because of the way that a given sentence can have 
numerous parse trees which we call as ambiguities. Consider a 
sentence "Book that flight." which can frame various parse trees 
dependent on its uncertain grammatical speech tags except if 
these ambiguities are settled. Picking a right parse from the 
numerous conceivable parses is called as syntactic 
disambiguation. 
The two main methods of dependency parsing are: 
 
a) Transition-based dependency parsing 
b) MST (Maximum spanning tree) dependency parsing 
 
    Transition based parsers commonly have a linear or quadratic 
complexity. MST based parsers divides the dependency 
structure into small parts called ‘factors’. The components of 
the principle MST parsing algorithm are edges that consists of 
the head, the edge name and the dependent (child). This 
algorithm has quadratic complexity. (Bernd Bohnet., 2010). 
Treebanks have a critical job in the advancement and 
assessment of dependency parsers. Having human annotators 
legitimately create dependency structures for a given corpus. 
The most generally utilized syntactic structure is the parse tree 
which can be produced utilizing some parsing algorithms. 
These parse trees are valuable in different applications like 
sentence grammar checking, co-reference goals, question, and 
their answers, data extraction or all the more significantly it 
assumes a basic job in the semantic analysis stage. We can 
likewise utilize a deterministic procedure to decipher existing 
principal based treebanks into dependency trees using head 
rules. The significant English reliance treebanks have to a great 
extent been removed from existing assets, for example, the 
Wall Street Journal segments of the Penn Treebank (Marcus et 
al., 1993). The later OntoNotes venture (Hovy et al. 2006, 
Weischedel et al. 2011) expands this methodology going past 
customary news content to incorporate conversational phone 
speech, newsgroups, weblogs and talk programs in English, 
Arabic and Chinese. 
 

2. Literature Review 
 
    Following is the previous work for statistical parsing and 
dependency parsing. 

2.1. Statistical Parsing 
 

    Magerman [9] presented a statistical parser called SPATTER. 
It achieves the best accuracy by building a complete parse for 
every sentence in the corpus. SPATTER is based on a decision-
tree learning technique. Using the PARSEVAL evaluation 
measure, SPATTER on the Penn Treebank Wall Street Journal 
corpus achieves 86% precision P (see equation 1) and recall R 
(see equation 2), and 1.3 crossing brackets CB (see equation 3) 
per sentence for sentences with a word length of 40 or less. For 
sentences having word length between 10 and 20, SPATTER 
achieves 91% P, 90% R, and 0.5 CB. 
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P = number of Correct Components / number of Components 
in parser output                                                                     (1) 
R = number of correct Components / number of Components in 
gold standard                                                                          (2) 
CB = number of Components in parser output that cross gold 
standard Components / number of Components in parser 
output                                                                                     (3)  
                                              
   In 1996 Collins [10] presents his first model for statistical 
parsing. Below equation 4 demonstrates a conditional model 
capable of parse selection, where for a given sentence S in the 
corpus, the probability of a parse tree T is calculated directly. 
Input to the model is a Part of Speech (POS) tagged sentence 
which produces a tree as an output. For a given sentence S in 
the corpus and its tree T, the conditional model for Collins 
represents the probability in the following manner: 
The most likely parse under the model is then: 
 
T (best) = argmax T (P (T |S))                                               (4)                       
 
    Collins (1996) model showed an improvement in Precision 
and Recall when compared with Magerman’s (1995) results. 
    Collins presented a new model in 1997 [11] which improved 
on the previous results of Collins conditional model (1996). 
This approach is based on a generative model. The Collins 
(1997) accounts for word-word dependencies when generating 
a parse tree. This model focuses on the modeling of the parses 
and deals with the flat trees of the Penn Treebank corpus. This 
generative version of Collins parser corpus shows an 
improvement of 2.3% on the conditional model of Collins 
(1996). It achieves 88.1% P and 87.5% R on Wall Street 
Journal. 
    In [12] Collins (1999) few problems were observed with the 
generative model for Collins (1997). It was noticed that Collins 
model is no longer a model for predicting maximum likelihood 
because of how the dependency probabilities were estimated.  
Another deficiency is its way of considering all dependency 
relations as independent. Due to these reasons, Collins 
presented another modification to his previous model. 
    Charniak [13] (2000, 1999) after presenting his first model 
for statistical parsing in 1997 Charniak presented another 
statistical Treebank parser. It outperformed the Collins 
generative model presented in 1997. Charniak’s main 
advantage to Collin’s is generating candidate parses using a 
simple probabilistic chart parser. Charniak’s model showed an 
improvement of 0.45% in labelled recall (LR) and labelled 
precision (LP). The model achieved average Precision and an 
average recall of 91.1% on sentences with length less than 40. 
For sentences with length less than 100, the model achieved 
89.5% average precision and recall on Penn Treebank corpus. 
Over the previously best results, Charniak’s model achieves an 
error reduction of 13% for single parser on this test set. 
    Henderson and Brill [14] presented an approach where they 
combined the results/prediction of three current existing 
parsers. They combined Charniak’s 1997 model with Collins 

1997 and Ratnaparkhi 1998 model to better understand the 
capabilities of parsers and to check if they yield better results. 
This combination of three parsers gave the best results with 
Labelled precision of 92.1% and Labelled Recall of 89.2% on 
the development set while achieving LP of 92.4% and LR of 
90.1% on the test set of Penn Treebank. These are best-known 
results up till now. 
    Parser presented by Bod [15] claims to give a better 
performance in terms of Parseval measures. It improved on the 
Charniak’s result by achieving 89.7% LP and LR on sentences 
with 100 words. For sentences with 40 words or less Bod’s 
model achieves 90.8% LP and 90.6% LR. Although it is 
debatable whether an increase of 0.2% in LP and 0.1% in LR is 
considered an improvement. Bods’ model takes arbitrary 
structural and lexical dependencies into consideration when 
computing probabilities of a parse tree as it is based on Data-
Oriented Parsing (DOP).  
    Collins in 2000 and Collins and Duffy in 2002 [16] presented 
two approaches in which they improved the performance for 
Collins 2000 model by re-ranking the parses using a different 
model on the outcome of Collins’ 1999 model.  LP improved 
from 88.1% to 88.3% while LR improved from 88.3% to 89.6% 
on Collins 1999 model. For Collins 2000 model using a variant 
for boosting LP improved to 88.3% and LR to 89.6%. For 
Collins and Duffy 2002 model by using a DOP like approach 
using a voted Perceptron LP improved to 88.6% and LR to 88.9 
%. 
 

2.2. Dependency Parsing 

 
    A huge interest has been seen in Dependency Parsing lately 
for applications such as relation extraction, machine translation, 
synonym generation, and lexical resource augmentation. The 
main reason for using dependency structures is because they are 
highly effective to study and parse while still training much of 
the predicate-argument information needed in a lot of 
applications. 
    Most of these parsing models have concentrated on trees that 
are projective, including the effort of Eisner (1996), Yamada 
and Matsumoto (2003), Collins et al. (1999),  Nivre and Scholz 
(2004), and McDonald et al. (2005). 
A parsing model presented by Nivre and Nilsson in 2005 allows 
to include edges that are non-projective, into trees using learned 
edge transformations in the memory-based parser. The method 
varies in examining efficiently the full span of non-projective 
trees. The main focus was that the dependency parsing can 
serve as the main search point for an MST in a directed graph. 
This specifies the regular projective models of parsing that are 
based on the Eisner algorithm (Eisner, 1996) to have a better 
efficient of O (n 2). By using the spanning-tree illustration, to 
cover non-projective dependencies we extend the work of 
McDonald et al. (2005) on online large-margin discriminative 
training methods (McDonald, Pereira, and Ribarov; 2005) 
    Nowadays there has been an increase in the usage of 
dependency representations through many tasks of natural 
language processing (NLP). Stanford dependency is 
extensively used in both NLP and biomedical text mining. 
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Stanford Dependency was originally extracted from constituent 
parses but the production of parse trees from the raw text was 
quite time. The approaches hence designed specifically for 
dependency parsing such as Covington, minimum spanning 
tree (MST), Eisner and Nivre should perform faster, assuming 
that they have low time complexity. The different approaches 
are compared in terms of their collective accuracy and speed 
and characteristic errors are reported. The parsing models are 
trained using the training set extracted from the Penn Treebank 
that consists of sections 2 through 21, different parsers of 
dependency were compared such as MaltParser package v1.3 
selected models, the MSTParser 0.4.3b, and the rule Based 
RelEx parser 1.2.0. We used F1-score other than accuracy 
because the typical Stanford dependency representation parsers 
can generate a variety of different dependencies for every 
sentence. The fastest parsers were the Malt package, Nivre, and 
Covington. Nivre Eager and MSTParser (Eisner) and they 
achieved better F1scores when the interaction between model 
and features was not used. If parsing a huge amount of data, and 
speed is important, the experiments suggest that the top choice 
is to use parsers included in the Malt package. (Cer, D. M., De 
Marneffe, (2010, May)). 
 

3. Performance Evaluation 
 
    Many different parsers have been presented in the above 
section having unique abilities and different performances each 
trying to perform well than the previous. The main question is 
what type of parsers should be used in which context. The 
decision to apply these models depends on the type of the 
problem under study. To facilitate the decision making a 
performance overview of all the parsers is given below. 
 

3.1. Statistical Parsing 

 
    Table I shows the performance of multiple Statistical Parsers 
over the Parseval Measures. 

• In [9] it was shown that previous syntactic natural language 
parsers used were not capable of handling ambiguous large-
vocabulary text. They had poor performances on standard 
datasets like Wall Street Journal of Penn Treebank which led to 
the new approach presented by Magerman called SPATTER 
(Statistical Pattern Recognizer). It is based on decision-tree 
learning technique and has accuracy way better than any parser 
published up till 1995. SPATTER requires very less linguistic 
knowledge and is compared against state of the art grammar-
based parsers. Decision trees provide a ranking system by 
assigning a probability distribution to the possible choices, 
which not only specifies the order of preference but also gives 
a measure of the relative likelihood that each choice is the one 
which should be selected. The limitation of the searching 
strategy of SPATTER is its possible consumption of available 
memory before completing the search. But conveniently this 
memory exhaustion occurs on sentences which SPATTER most 
likely will get wrong anyway. So little or no performance loss 
is observed due to this search errors. 

•  The study in [10] reveals that Collins and Magerman both use 
lexicalized PCFG which is associating a head word to every 
non-terminal present in the parse tree. Collins parser performs 
almost equally as SPATTER when it is trained and tested on 
Wall Street Journal portion of Penn Treebank. The advantage 
of Collins 1996 model over SPATTER is the simplicity of its 
architecture and working. Still, many improvements can be 
made by using a more sophisticated probability estimation 
techniques like deleted interpolation or estimation on relaxing 
the distance measure for smoothing could be used. Another 
limitation of Collins 1996 model is that it does not account for 
valency when calculating the parse. 
• Collins [11] attempt to address the flaws of the model 
presented in 1996 by putting forth 3 models. It shows that sub-
categorization and wh-movement can be given a probabilistic 
treatment thus resulting in the statistical interpretation of the 
concepts causing an increase in performance by adding useful 
information to the parser’s output. The average improvement of 
Collins 97 over the previous model is 2.3%. Model 1 presented 
has clear advantages when handling unary rules and distance 
measures. Model 2 and 3 can apply condition on any structure 
that has been previously generated while Collins 96 lack in this 
treatment.  
• [12] Is an update of previous works of Collins. It addresses 
the limitation of Collins 1996 and 1997 related to punctuation 
as surface features of the sentence. Previous models failed to 
generate punctuation and are considered a deficiency of the 
model. Collins 2000 uses a technique that is based on boosting 
algorithms for machine learning for re-ranking the best outputs 
using additional features.  
• The major invention of Charniak’s [13] 2000 model is the use 
of maximum entropy inspired model which results in an 
increase of 2% in performance due to its strategy of smoothing 
and to combine multiple conditioning events for testing. 
Maximum entropy inspired approached has certain advantages 
over the probabilistic model and has recommended itself for use 
due to its novel approach of smoothing. Most important 
progress accomplished by using Charniak’s model over 
conventional deleted interpolation is the flexibility achieved 
due to simpler maximum-inspired-model which let us 
experiment with different conditioning events and to move up 
to Markov grammar without significant programming. This 
model uses Markov processes to generate rules. The additional 
features incorporated boost the performance. The main goal for 
Charniak’s parser is to generate model flexible enough to allow 
changes for parsing to more semantic levels.  
• To solve some of the fundamental problems of Natural 
Language processing like parsing some authors including 
Henderson and Brill [14] may adopt a unique approach to 
combine the previous parsers to obtain better results. Collins 
along, with Charniak and Ratnaparkhi model, are experimented 
to explore different parser combination. With poor parser being 
introduced during the experiments, Techniques like parser 
switching and parser hybridization still gave better results. For 
more powerful parser combinations the results can be improved 
further. 
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• Bod 2001 [15] presents results that are comparable to the 
results of previous models like Charniak and Collins 2000. The 
main goal of the Bod model is to achieve maximal parse 
accuracy by applying constraints of several words in a fragment 
and to the depth of lexicalized fragments. Many previous 
models applied constituent lexicalization on Wall Street portion 
of Penn Treebank while Bods 2001 DOP based model uses 
frontier lexicalized approach. The results obtained from Bods 
models claim that using frontier lexicalization yields better 
results and is a better alternative to constituent lexicalization. 
Another difference of Bod with other models is its use of 
treebank grammar as an underlying grammar of its DOP model. 
Another future area could be the application of Markov 
grammar on the DOP model which will further improve the 
results. 
• The main advantage of this model presented by Collin and 
Duffy [16] is the application of the perceptron algorithm on 
exponentially big representations of parse trees. It is 
computationally efficient and leads to a polynomial-time 2 
algorithm for training and testing phases of the perceptron. It 
can stretch to more complex domains. Due to its different 
parameter estimation when compared to Bod and other models 
the computation is manageable. 

TABLE I: Performance of all statistical parsers on penn 
treebank corpus  

Parsers 

Evaluation Measures 

LP LR CB 

Magerman 1995 
[9] 

86% 86% 1..3 

Collins 1996 [10] 86.3% 85.8% 1.14 

Collins 1997 [11] 88.6% 88.1% 0.96 

Henderson and 
Brill [14] 

92.4% 92.1% - 

Collin 2000 [12] 90.4% 90.1% 0.73 

Charniak 2000 
[13] 

90.1% 90.1% 0.74 

Bod 2000 [15] 90.8% 90.6% - 

Colins and Duffy 
2001 [16] 

88.6% 88.9% - 

 

3.2. Dependency Parsing 

 
3.2.1. Deterministic Dependency Parsing 
    Collins and Charniak are one of the best accessible parsers 
prepared on the Penn Treebank, utilize statistical models for 

disambiguation that utilize dependency relations. The Yamada 
and Matsumoto method of deterministic dependency parser and 
that of Collins and Charniak, when prepared On the Penn 
Treebank, gives a nearly equal accuracy. The parser depicted in 
this paper is like that of Yamada and Matsumoto in that it 
utilizes an algorithm of deterministic parsing in blend with a 
classifier actuated from a treebank. Be that as it may, there are 
likewise significant differences between the two 
methodologies. Most importantly, while Yamada and 
Matsumoto utilizes a severe algorithm of bottom-up(basically 
shift-reduce parsing), the present parser utilizes Nivre’s 
algorithm, which uses bottom-up and top-down approaches 
together to increase the accuracy. The experiment was carried 
out on two sets whose result is shown in table II and IIA.  

· Set G which contained grammatical roles   from Penn  
· Set B contained the function tags for grammatical 

roles with normal bracket labels (S, NP, VP, etc.). 
And the evaluation metrics used are: 

· Unlabeled attachment score is the measure of words 
that are root and are correctly identified as head. 

· Labelled attachment score is the measure of words that 
are root and are correctly identified as head and their 
dependency type. 

· Dependency accuracy is the measure of words that are 
non-root and are correctly identified as heads. 

· Root accuracy is the measure of root words correctly 
identified as roots. 

· Complete match is the measure of sentences whose 
unlabeled dependency structure is correctly identified. 

TABLE II: PERFORMANCE OF DETERMINISTIC DEPENDENCY 

PARSERS ON PENN TREEBANK CORPUS (6. NIVRE AND M.SCHOLZ 

2004) 

 

 

Parsing 
Models  

Evaluation metrics  

Dependency 
Accuracy 

Root 
Accuracy 

Complete 
Match 

Charniak 92.10% 95.20% 45.20% 

Collins 91.50% 95.30% 43.30% 

Yamada  
and 

 Matsumoto 
90.30% 91.60% 38.40% 

Nivre  
and  

Scholz 
87.30% 84.30% 30.40% 
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TABLE IIA: PERFORMANCE OF DETERMINISTIC DEPENDENCY  

PARSERS ON  PENN TREEBANK CORPUS (6. NIVRE AND M.SCHOLZ 

2004) 

Evaluation 
metrics 

Data sets  

Grammatical 
Roles from 

Penn II 
(Experiment # 

1) 

Function 
Tags for 

Grammatical 
Roles 

(Experiment 
#2) 

Combinati
on of both 
Experimen

ts 

Unlabeled 
Attachment 

Score 
85.8% 87.1% - 

Labelled 
Attachment 

Score 
84.6% 84.4% 86.0% 

 
3.2.2. Constituent-to-Dependency Parsing 
    PENN2MALT disposes of the deep information in the 
dependency tree. In the new strategy, the topicalized phrases 
and words are connected to their respective semantic head. 
Other than this the new approach used a richer collection of 
arced labels than that used in PENN2MALT. MALTPARSER 
depends on a parsing system that constructs a parse tree 
gradually while continuing through the sentence one token at 
any given moment. By utilizing this type of system, a rich 
history-based list of capabilities for the SVM classifier is made, 
that can be used for choosing activities. MSTPARSER predicts 
a parse tree by expanding a function of scoring over the space 
of all parse trees. The scoring function is a weighted sum of 
single connections or links. Table III describes MALT Parsers 
and MST Parser for different parsing sets. 

TABLE III: PERFORMANCE OF MALT AND MST DEPENDENCY 

PARSERS ON PENN TREEBANK CORPUS (17.JOHANSSON,R., & 

NUGUES,P.(2007)) 

 

 

 

3.2.3. MIRA (18. McDonald, R., Crammer, K., & Pereira, 
F. (2005)) 

    It is an online learning algorithms which intuitive and easy 
to comprehend and implement. To form dependency structures 
the extraction rules of Yamada and Matsumoto were used. For 
the evaluation and development of sets, the tagging system of 
Ratnaparkhi was used and POS tags were assumed as the input 
for the system. 
    For large margin multi-class classification, Crammer and 
Singer established an approach (equation #5) which was then 
extended to structured classification by Taskar. 

EQUATION # 5 (18. MCDONALD, R., CRAMMER, K., & 

PEREIRA, F. (2005)) 

 
    The above-mentioned equation #1 optimization is directly 
mapped into the online framework by the margin infused 
relaxed algorithm (MIRA). On every attempt, while applying 
the change to the parameter vector MIRA tries to maintain the 
standard and keep it as small as possible, to classify an instance 
correctly the margin should be at least equal to the loss of 
classifying incorrectly. This can be done by substituting the 
following changes in the original algorithm (equation #5) 
present online and form another (equation #6). 

EQUATION # 6 (18. MCDONALD, R., CRAMMER, K., & 

PEREIRA, F. (2005)) 

 

 
 
    To apply dependency parsing using MIRA, we can just 
consider the parsing as a multi-class classification problem in 
which, every dependency tree is considered as one of the 
classes of the sentence. Nevertheless, this clarification fails in 
reality as a normal sentence has a lot of possible dependency 
trees thus making it exponentially complex. To overcome this 
issue another equation #7 was created. 

EQUATION # 7 (18. MCDONALD, R., CRAMMER, K., & 

PEREIRA, F. (2005)) 

 

 

 

 

 

Parsing 
sets 

Parsing models 

 MALT 
PARSER 

   MALT 
PARSER 

    MST 
PARSER 

MST 
PARSER 

LABEL
ED 

UN 
LABELE
D 

LABELE
D 

UNLABEL
ED 

PENN2
MALT 

 
90.30% 

 
91.36% 

 
92.04% 

 
93.06% 

NEW 
CONV
E-
RSION 

87.63% 

 
90.54% 

86.92% 91.64% 
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TABLE IV: PERFORMANCE OF MIRA DEPENDENCY PARSERS ON 

PENN TREEBANK CORPUS 

Parsing 
Models  

Evaluation measures  

Accuracy Root  Complete  

Y&M 90.30% 91.60% 38.40% 

N&S 87.30% 84.30% 30.40% 

AVERAGE 
PERCEPTI
ON 

90.60% 94.0% 36.50% 

MIRA 90.90% 94.20% 37.50% 

 

Accuracy: number of words whose parents are correctly identified. 

Root: number of trees in which the root is identified correctly.  

Complete: number of sentences whose dependency was correctly identified. 

 

4. Conclusion 
 

    Comparison between parsers leads us to examine the 
similarities and differences between multiple models and the 
scenarios in which they tend to perform better. The famous 
CKY parsing algorithm can represent the ambiguities that occur 
while parsing efficiently but it is not able to resolve them. So 
statistical and dependency models are designed to overcome the  
Limitations of the previous ones thus showing an increase in 
the overall measures of evaluation.  
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