
Text Normalization System for Bangla

Firoj Alam, S.M. Murtoza Habib, Mumit Khan
Center for Research on Bangla Language Processing, BRAC University

{firojalam, habibmurtoza, mumit}@bracu.ac.bd

Abstract

This paper describes a process of text
normalization system for the Bangla language
(exonym: Bengali) by identifying the semiotic classes
from Bangla text corpus. After identifying the semiotic
classes, a set of rules was written for tokenization and
verbalization. This study is important for Text-To-
Speech (TTS) system and as well as for creating a
language model used in speech recognition.

1. Introduction

This paper describes the design and implementation
of a text normalization system for Bangla Text-To-
Speech (TTS) system. TTS is one of the major areas of
research on natural languages. The process of TTS
involves the inputting of a text through console, file,
OCR and other means, and converting the text into
spoken words. Before a text is ready to undergo the
process of TTS, it must first be pre-processed to
remove the ambiguities and convert some Non
Standard Words (NSWs) into their standard word
representations, and hence pronunciations. TTS
systems work with text in everyday uses. Therefore,
one may expect to come across certain symbols such as
$ and %, acronyms such as NATO and WHO,
orthographic abbreviations such as Mr. and etc,
ordinals such as 1st and 3rd, and many more. When
converting these texts to speech, one has to use the
pronunciation of the words rather than the
orthographic symbols so that “Mr.” will sound like
“mister”, “1st” will sound like “first”, and so on.
Moreover, certain numbers have to be pronounced as
individual digits or as a whole, depending on the
context. For example, the number 88028624921 will
be pronounced as “eight eight oh two eight six two
four nine two one” if it refers to a phone number, but
pronounced as “eight thousand eight hundred and two
crores eighty six lacs twenty four thousand nine
hundred and twenty one” if it refers to a measurement
such as the population. This process of converting a
textual representation to another, keeping the context
in mind, is called Text Normalization. During speech
recognition in Speech-to-Text and other document

creation systems from recognized text, inverse text
normalization is used [2].

Natural language is a semiotic system, and probably

has by far the most complicated form to meaning
relationship. A semiotic system is a means of relating
meaning to form. Natural language has computer
languages, email addresses, dates, times, telephone
numbers, postal addresses and so on. Just as with
mathematics, a telephone number is not part of natural
language, it is a complete meaning/form/signal system
in its own right. A semiotic class is a similar type of
token like number, date, etc. In our system we tried to
identify all the semiotic classes and then process them
according to their classes. To the best of our
knowledge this is the first published account of Bangla
text normalization system, designed for TTS. This
study develops a method to normalize Bangla text
using rules. To disambiguate tokens, we used rules
rather than using a decision tree and a decision list [1]
because of unavailability a tagged corpus. The basic
model [1] [4] [7] of a text normalization system is the
same for all languages except a language dependent
rules and framework. Here our attempt is to find
possible changes and enhancements which are required
to implement a Bangla text normalization system.

A brief literature review is given in section 2,
followed by a description of the methodology in
section 3. The analytical results are presented and
discussed in section 4. A summary and conclusions of
the study are given in section 5.

2. Literature review

Considerable work may has been done in text

normalization and disambiguation of other languages
such as English, Hindi, Chinese, Japanese and other
well resourced languages. Many little works has been
done on under resourced languages such as Bangla.
The basic similarity among the work done is that each
involves repeated sequences of tokenization, token
classification, token sense disambiguation and standard
word generation to get the normalized text. This effort
differs in the ways of tokenization (delimiter, use of
Flex, etc), the methods of disambiguation (n-gram
comparison, statistical models and POS tagging) and

the methods of word representation (tagging, plain text).
There are various techniques used in lexical

disambiguation in the English language. Use of
decision lists and combining the strengths of decision
trees, N-gram taggers and Bayesian classifiers, a text
can be processed to resolve disambiguation in TTS
synthesis [3]. Most of the work done on text
normalization uses tags after an NSW has been
identified [1] [2] [3] [4]. After the type of the NSW is
resolved, the resulted word representation is tagged.
For example, in Chinese and Japanese, NUM, NDAY,
NDIG, and NTIME are used for numeric NSWs [4].

3. Methodology

This paper talks of a method to normalize Bangla text.
Like other work, the basic processes are same:
tokenization, token classification, token sense
disambiguation and word representation. Before the
processes of Bengali text normalization are discussed,
it is necessary to first discuss the different classes of
Bangla NSWs and their equivalent pronunciation word
representations. Where [1] uses decision tree and
decision list for disambiguation, but this work uses
rule based system. The following section discusses the
semiotic class [7] (as opposed to say NSW)
identification, tokenization and standard word
generation and disambiguation rule. The system
diagram of text normalization procedure is shown in
figure 1.

According to semiotic classes a lexical analyzer

was designed to tokenize each NSW by regular
expression using the tool JFlex [8]. We assigned a tag
for each token according to semiotic classes. The
outputs of the tokenization are then used in the next
step i.e token expander. According to the assigned tag
token verbalization and disambiguation was performed
by the token expander.

We identified a set of semiotic classes which
belongs to the Bangla language. To do this, we
selected a news corpus [9] with 18100378 tokens and
384048 token types [13], forum [10] and blog [11],
then we proceeded in two steps to identify the semiotic
classes: (i) Python [13] script was used to identify the
semiotic class from news corpus and we manually
checked it in the forum and blog (ii) we defined a set
of rules according to context of homographs or
ambiguous tokens. The result is a set of semiotic
classes in Bangla text as shown in table 1.

3.1. Semiotic class identification

Table 1: Possible token type in Bangla text

Semiotic class/token
type

Example

English text জাভা Platform Independent বেল
Bangla text ei সমেয়র সবেচেয়

Numbers (cardinal,
ordinal, roman, floating
number, fraction, ratio,

range)

121,23,234; 1ম, 2য়, 3য়; I, II, III,
12.23, 23,33.33; 1/2, 23/23; 12:12;

12-23

Telephone and mobile
number

029567447; 0152303398 (19
different formats)

Years 2006; 1998; 98 সােল
Date 02 -06-2006 (12 different

formats)
Time 4.20 িমঃ; 4.20 িমিনট;

Percentage 12%
Money 10 ৳

E-mail আমার i-ĺমiল Ǉকানা:
abc@yahoo.com

URL সফটoয়Ɵারǅ http://google-
gdata.googlecode.com সাiট

Abbreviation ডঃ ;ĺমাঃ ;সাঃ
Acronym ঢািব ;বাuিব, ĺকিব

Mathematical equation (1+2=3)

Tokenizer

Input text

JFlex -
Lexical

Analyzer

Token
Expander

Disambiguation
rule

Token expansion
rule

Look-up
table for

Abbreviation
Acronym,

and number

List of word in
normalized form

Splitter

Classifier

Tokenization

Figure 1: Text normalization system for Bangla

In Bangla text we have English text and even Arabic
and Urdu text may also be present. Other than Bangla
we worked on English text within Bangla text. The
non-natural language [7] token such as number, year,
date time etc is also available in this multi-text genre
(both scripts). So we are handling two types of natural
language [7] tokens such as Bangla and English. Our
attempt is to build such a text normalization system
that can serve almost every domain of Bangla.
Handling Arabic and Urdu text along with any
specialist domain i.e. medicine, engineering, chemical
equations etc. is beyond the scope of this paper. This
system also can detect simple mathematical equations.
An example of a mathematical equation is shown in
the last row of table 1.

3.2. Tokenization

We defined each semiotic class to a specific tag and
assigned this tag to each class of token. The
tokenization undergoes three levels such as: i.
Tokenizer ii. Splitter and ii. Classifier. Like English
and other South Asian scripts Bangla also uses
whitespace to tokenize a string of characters into a
separate token. Punctuation and delimiter were
identified and used by the splitter to classify the token.
Context sensitive rules written as whitespace is not a
valid delimiter for tokenizing phone numbers, year,
time and floating point numbers. Finally, the classifier
classifies the token by looking at the contextual rule.
Different form of delimiters was removed in this step.
For each type of token, regular expression were written
in .jflex format. Then using JFlex toolkit a Lexer file
was generated. If a regular expression is matched then
we assign a tag in list[i] and token in list [i+1]. In this
way the whole tokenization process is performed. All
regular expressions were designed according to our
predefined semiotic classes and the rules of the context
that were obtained in the previous semiotic class
identification phase. This study is different than [1],
where decision tree and decision list is used for
disambiguation. The generated Lexer file was used in
the token expansion phase. The generated Lexer is a
java class file which was then invoked by a driver class
to get the list of the token. According to the tag in the
list, each type of token expander class was then
invoked for expanding the token. For example, the
rules for telephone numbers are as follows:

Table 2: Rule for detecting telephone number

WSP_CHAR = [|\t]
BDIGIT = [0-9]
BTELNO1 = {BDIGIT}{7,7}
BTELNO2= "\u09E6\u09E8"({WSP_CHAR}*|"-

"){BTELNO1}
BTELNO3=
"\u09EE\u09EE\u09E6"({WSP_CHAR}*|"-
")"\u09E8"({WSP_CHAR}*|"-"){BTELNO1}
BTELNO4 = "+"{BTELNO3}
BTELNO5=
"("{WSP_CHAR}*"\u09EE\u09EE\u09E6"{WSP_C
HAR}*")"{WSP_CHAR}*"\u09E8"{BTELNO1}
BTELNO6=
"("{WSP_CHAR}*"\u09E6\u09E8"{WSP_CHAR}*"
)"{WSP_CHAR}*{BTELNO1}
BTELNO7= "\u09EE\u09EE"({WSP_CHAR}*|"-
"){BTELNO2}
BTELNO8= {BTELNO1}({WSP_CHAR}+|"-
"){BDIGIT}{1,4}

These rules can detect the following phone numbers:
9567447; 029567447; 02-9567447; 88029567447; 880 2
9567447; 880-2-9567447; +88029567447; (880) 29567447;
(02)9567447;

3.3. Verbalization & disambiguation

The token expander expands the token by verbalizing
and disambiguating the ambiguous token.
Verbalization [7] or standard word generation is the
process of converting non-natural language text into
standard words or natural language text. A template
based approach [7] such as the lexicon was used for
number cardinal, ordinal, acronym, and abbreviations.
For expanding the cardinal number, we have calculated
the position of the digit rather than dividing by 10.
Expanding the token cardinal number we have chosen
the following steps: (i). traverse from right to left. (ii).
Map first two digits with lexicon to get the expanded
form (i.e. 10 → ten). (iii). After the expanded form of
the third digit insert the token “hundred”. (iv). Get
expanded form of each pair of digit after third digit
from the lexicon. (v). Insert the token “thousand” after
the expanded form fourth and fifth digit and “lakh”
after expanded form of sixth and seventh digit. These
processes continue for each seven digits. Each seven
digit is divided as a separate block. After each of the
second block (traversing from left to right) we insert
the token “koti”. So the expanded form of token 10910
is “ten thousand nine hundred ten”. Abbreviations are
productive and a new one may appear, so an automatic
process may require solving unknown abbreviations.
In [5] an automatic process is shown for the prediction
of unknown abbreviations, our effort deals with this
problem in an automatic way and looks for possible
changes. In case of Bangla acronyms, most of the time
people say the acronym as it is without expanding it.
For example, দদুক /d ̪ud ̪ɔk/ expands to দনুʗিত দমন কিমশন

/d ̪urnit ̪i d ̪ɔmon komiʃɔn/ but people say it as দদুক

/d ̪ud ̪ɔk/. So it is a matter of linguistic decision whether
we will expand the acronym or not but for the time
being we have expanded to the full form by using the
lexicon. Bangla has the same type of non-natural
language ambiguity like Hindi [1] in the token year-
number and time-floating number. For example: (i).
the token 1998 (1998) could be considered as a year
and at the same time it could be considered as number
and (ii). the token 12.80 (12.80) could be considered as
a floating point number and it could be considered as a
time. Context dependent hand written rules were
applied for these ambiguities. In case of Bangla, after
time pattern 12.30 (12.30) we have a token িমঃ (minute)
so we look at the next token and decide whether it is
time or a floating point number. In the worst case
scenario where our context dependent rule will fail in
year-number ambiguity we are verbalizing the token as
a pair of two digits. For example, the token 1998
(1998) we expand it as uিনশ শত আটানbi (Nineteen
hundred ninety eight) rather than eক হাজার নয় শত
আটানbi (one thousand nine hundred ninety eight). This
is not wrong in case of Bangla as both are acceptable
by this culture. The natural language text is relatively
straightforward, and Bangla does not have upper and
lower case. The mispellings problem is not dealt with
in this system which however, may be handled in a
seperate module before the text normalization system.
Certain homograph problems exist in Bangla such as
an abbreviation homograph token িমঃ may appear as
“minute” or it may appear as “mister” and a part-of-
speech (POS) homograph such as কর would be
pronounced as কর/kɔr/ and কেরা/kɔro/. The POS
homograph problem exists in Bangla verb cases in
terms of grade, such as কর/kɔr/ is pronounced in 2nd
person informal and কেরা/kɔro/ is pronounced in 2nd
person formal. We have not solved this problem as we
do not have any accessible tagged corpus or syntactical
parser which can solve this problem. The natural
language English text that exists within the Bangla text
are kept as it is, we are not dealing any ambiguities
that may be present in the English text.

4. Results

The output of this work is the list of words in a
normalized form. The performance of this rule based
system is 99% for ambiguous tokens such as float,
time and currency. These three types of token appear
as a floating number. The test was performed by
collecting 797 strings from one year news paper corpus
[10] using python script for ambiguous token. Among
797 strings 617 were floating point number, 167 were

in currency and 13 strings were in time format. The
accuracy of these three types of token is: floating point
100%, currency 100% and time 62% as shown in
figure 2. Because there was no other token before or
after the floating point, our system could not detect
these as time. For example, কাজটা 10.15 ĺথেক 11.15 িমিনেটর
মেধƟ ĺশষ করেবন (Finish the work between 10.15 and
11.15). In this case, the first floating number has no
token before or after, but the second floating number
has a token after it which is িমিনেটর (minute). So our
system could not detect the first floating number as
time. By adding more complex rules, this problem can
be solved. The POS homograph ambiguity in Bangla
appears in different grades of the same verb and will
be resolved in the next step of TTS development after
text normalization. Other than the ambiguous token the
rest of the token expansion performs satisfactory
results in this system. This system will be available
online at location
<http://www.bracu.ac.bd/research/crblp/download.php
> as open source after completing the system as a
generalized form so that it can be expanded for other
languages which is derived from Brahmi script.

Figure 2: Performance of the system

5. Conclusions

Text normalization is a very important issue in TTS

systems. TTS systems will be highly beneficial in

various fields and its use will make life easier in
numerous aspects. In this paper, the preprocessing of
TTS, text normalization has been discussed. This is the
first working text normalizer for Bangla that has been
implemented using a rule based system. Hence this
work will be helpful in future by integrating with TTS
and Speech Recognition combined with the
disambiguation techniques of rule based systems and
other classification systems. A tagged corpora is under
development for Bangla that will be used to make a
decision tree and decision list to increase the
performance. We have also a plan to incorporate
Arabic and Urdu text normalizer in this system. More
work is needed to solve POS homograph and other
problematic areas.

6. Acknowledgements

This work has been supported in part by the PAN
Localization Project (www.panl10n.net), grant from
the International Development Research Center
(IDRC), Ottawa, Canada, administrated through Center
for Research in Urdu Language Processing (CRULP),
National University of Computer and Emerging
Sciences, Pakistan.

7. References

[1] K. Panchapagesan, Partha Pratim Talukdar, N. Sridhar
Krishna, Kalika Bali, A.G. Ramakrishnan, "Hindi Text
Normalization”, Fifth International Conference on
Knowledge Based Computer Systems (KBCS), Hyderabad,
India, 19-22 December 2004. Retrieved (June, 1, 2008).
Available:
www.cis.upenn.edu/~partha/papers/KBCS04_HPL-1.pdf

[2] Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, Spoken
Language Processing: A Guide To Theory Algorithm And
System Development. Prentice Hall, pp. 706-720, 2001.

[3] Yarowsky D., "Homograph Disambiguation in Text-to-
Speech Synthesis", 2nd ESCA/IEEE Workshop on Speech
Synthesis, New Paltz, NY, pp. 244-247,

[4] Olinsky, C. and Black, A., "Non-Standard Word and
Homograph Resolution for Asian Language Text Analysis",
ICSLP2000, Beijing, China, Retrieved (June, 1, 2008).
Available:
www.cs.cmu.edu/~awb/papers/ICSLP2000_usi.pdf

[5] Sproat R., Black A., Chen S., Kumar S., Ostendorf M.,
& Richards C, "Normalization of Non-Standard Words:
WS'99 Final Report", CLSP Summer Workshop, Johns
Hopkins University, 1999, , Retrieved (June, 1, 2008).
Available: www.clsp.jhu.edu/ws99/projects/normal

[6] A Raj A., Sarkar T., Pammi S. C., Yuvaraj S., Bansal
M., Prahallad K., and Black, A., "Text Processing for Text-
to-Speech Systems in Indian Languages", ISCA SSW6, Bonn,
Germany, pp. 188-193, Retrieved (June, 1, 2008).
Available:
www.cs.cmu.edu/~awb/papers/ssw6/ssw6_188.pdf

[7] Paul Taylor, Text to Speech Synthesis. University of
Cambridge, 2007. pp.71-111, (draft), Retrieved (June, 19,
2008).
Available:
http://mi.eng.cam.ac.uk/~pat40/ttsbook_draft_2.pdf

[8] Elliot Berk, JFlex - The Fast Scanner Generator for
Java, 2004, version 1.4.1, http://jflex.de

[9] Prothom-Alo, www.prothom-alo.com

[10] “Forum”, forum.amaderprojukti.com

[11] “Blog”, www.somewhereinblog.net

[12] “Python”, www.python.org, version 2.5.2

[13] Khair Md. Yeasir Arafat Majumder, Md. Zahurul Islam,
Naushad UzZaman and Mumit Khan, “Analysis of and
Observations from a Bangla News Corpus”, in proc. 9th
International Conference on Computer and Information
Technology, Dhaka, Bangladesh, December 2006.

