
Proceedings of the Conference on Language & Technology 2009

 53

Efficient Transformation of a Natural Language Query to SQL for Urdu

Rashid Ahmad, Mohammad Abid Khan and Rahman Ali

Department Of Computer Science,University of Peshawar Pakistan

rashidahmad_uop@yahoo.com, abid_khan1961@yahoo.com, rahmanali.scholar@gmail.com

Abstract

It is a long term desire of the computer users to

minimize the communication gap between the

computer and a human. Natural Language Interfaces

to Databases (NLIDBs) is one of the mechanisms to

pull off this goal. In NLIDBs the question is asked in

simple daily life human language and the answer is

given in the same language. This research paper is

about NLIDBs for Urdu language. An algorithm is

developed that efficiently maps a natural language

query, entered in Urdu, to an SQL (Structured Query

Language) statement. The algorithm has been

implemented in Visual C#.NET and tested on a

database containing Student Information System and

Employee Information System. The program correctly

maps 85% natural language queries.

1. Introduction

 Natural Language Interfaces is a hot area of

research since long. Asking questions from a database

in natural language is a user friendly way of searching

databases rather than writing and posing a question in

the restricted pattern of SQL syntax. Although the

nature of questions and vocabulary for a particular

natural language interface is limited in some way but

the user is more comfortable in writing questions in

natural fashion instead of learning the keywords and

syntax of the SQL.

 The success of designing Natural Language

Interfaces to Databases (NLIDBs) are partly because of

the real world payback of the field and partly because

Natural Language Processing (NLP) works well in a

particular database domain [1]. A number of

researchers have developed different NLIDBs. Most of

the early systems are based on pattern matching [2].

Lunar was a natural language based query system that

answered questions about rock samples brought back

from the moon [1]. This system was able to answer

90% of the questions in its domain when posed by

untrained people [2].

 LADDER was the first semantic grammar-based

system, interfacing a database with information on US

Navy ships [2]. Semantic grammars are now widely

used in most NLP systems [1]. A semantic grammar is

a formal definition of a language that uses concepts

from a particular domain of discourse to specify

acceptable expressions in that language [3].

 A large part of the research in the middle of eighties

was devoted to portability issues [1]. An example of

this kind of system is TEAM [4]. TEAM was the result

of a four years project and the core endeavor behind it

was to design a portable NLIDB instead of the one that

is domain specific. The design decisions incorporated

in TEAM were generally applicable to a wider range of

natural-language processing systems [4]. However for

some of the systems, TEAM was forced to take a more

limited approach.

 STEP is a natural language interface to relational

databases developed by Michael Minock [5]. It is also

based on semantic grammar and uses paraphrasing

mechanism to treat the natural language query.

Moreover, it is relatively trouble-free to configure for

domain specific databases.

 Some work has also been done on the theoretical

model of representing English sentences in Prolog [6].

The restraint of the work is similarity of the sentences

that had been taken for examples.

 Semantic grammars are mostly used these days in

the design of NLIDBs.. An example of such a recent

work is PRECISE [7]. PRECISE is a system that

guarantees the correct mapping of a natural language

query to an SQL statement, if a query is semantically

tractable. Moreover, the system is also proficient in

resolving ambiguities that arise due to the possibilities

of a value token for multiple columns. For example, a

particular database could contain the value HP under a

column company and also under a column platform.

 This work is about the transformation of a natural

language query in Urdu to SQL. The proposed

algorithm efficiently maps a semantically tractable

natural language query to an SQL statement. The

system is based on formal semantics like PRECISE, but

a more efficient approach has been taken to deal with

Proceedings of the Conference on Language & Technology 2009

 54

the value tokens. The proposed approach does not look

for the value tokens in the database as in PRECISE,

instead, it uses the AV Mapping algorithm to map a

particular value token to its corresponding attribute

token.

 In the rest of the paper, section 2 discuses the

requirements of a natural language interface to

databases. It describes all the pros and cons that were

required to put up this natural language interface for

Urdu language. Section 3 highlights the layout and

working of the attribute/value mapping algorithm and

its efficiency in transforming the natural language

query to an SQL statement. Section 4 is about query

transformation and the intermediate representation of

the query. Section 5 gives the implementation details

and its corresponding results that were experimented

during its testing. Section 6 presents the limitations.

Section 7 sketches some future work dimensions.

2. Considerations of the constructed

Natural Language Interface

 For minimalism and understanding, this section is

divided into seven sub-sections. They are listed below.

1. Types of questions.

2. Tokens formulation

3. Syntactic Markers

4. Extraction of necessary parameters

5. Main Keywords

6. Construction of Dictionary

7. Structure of Semantic Knowledge Base

2.1. Types of questions

 NLIDBs are designed to dig out the information

from the database using a query in a natural language.

The natural language queries for Urdu language are

divided in two categories. The query posed by the user

will be either a question or a request. For the proposed

system to work, the query must match one of the given

categories. The words used for request or questions are

the basis for the extraction of the required parameters

from a natural query. Besides, the positions of these

words in a query have a vital role in identifying the

type of the parameter. These parameters could be the

name of a table, attribute or value. On the whole, the

mentioned three parameters are required in an SQL

statement to work out properly. A simple example of

each type of query is given to reveal the nature of

queries.

)1(-��ہے ا�� 	� 	�س 	� ��م ����ں

[mʊʤeI] [ʌmjәd] [ki] [kɒlɒs] [kɒ] [nɒm] [bɒtɒyæñ]
[To me] [Amjad] [of] [class] [his/her] [name] [tell]

“Tell me Amjad’s class name.”

)2(ا�� 	� 	�س 	���� ہے؟

 [ʌmjәd] [ki] [kɒlɒs] [kәʊnsi] [hæ]

 [Amjad] [of] [class] [what/which] [is]

 “Which one is Amjad’s class?”

 Example (1) is a query of type request and example

(2) is a query of type question.

2.2. Tokens formulation

 To make a sentence able to be processed by the

computer, it is necessary to divide it in chunks or

tokens to understand its meaning and structure. In

tokens formulation, the sentence is divided in small

chunks known as tokens. In Urdu, the words are

separated by space as it is in English except some

compound words that is not the concern of this paper.

The proposed system tokenize a sentence into small

pieces or tokens, which then undergo for further

processing for other steps.

 For simplicity and efficient transformation, we have

given an order number to each of the token category.

This ordering makes it effortless to identify the

category of tokens for further processing. For example,

if a category is of no meaning for further operation, that

category is ignored for further processing.

2. 3. Syntactic markers

 This NLIDB is based on formal semantics and deals

a natural language query semantically. It is necessary to

define and ignore the syntactic markers for further

processing as they do not have semantic contribution in

tracking a query semantically. A syntactic marker (such

as “the”) is a token that belongs to a fixed set of

database-independent tokens that makes no semantic

contribution to the interpretation of the question [7].

For example, a simple query in Urdu is:

�� ��م ہے؟	 �	 �)3(ا! � 	ے وا

[ʌslɒm] [keI] [vɒlId] [kɒ] [kIyɒ] [næm] [hæ]

[Aslam] [of] [father] [apostrophe] [what] [name] [is]

“What is Aslam’s father name?”

 In this sentence the word (ے) is a syntactic marker.

It is being the part of a natural sentence and

concatenating the word (� !ا) to the word (� but ,(وا

when we necessitate translating it to SQL, it adds no

contribution in the process of transformation to an SQL

statement. In order to treat the natural query

semantically, we ignore these syntactic markers.

Proceedings of the Conference on Language & Technology 2009

 55

2. 4. Extraction of necessary parameters

 To successfully translate a natural language query to

SQL, there is a need to identity the required parameters

such as table name, attribute, and a value. To

understand the extraction of parameters from a natural

language, there is a call for that to understand the

structure of the SQL. To start with, let us say Q be an

SQL query, O the operator and OP the operand:

Q = SELECT Name FROM Personal WHERE Name

= ‘ahmad’

 By looking at the query in the given example, we

can have the following conclusion. A query Q is

formed of operator/s O and operand/s OP such that for

each O there is a corresponding OP. In the Query Q

SELECT, FROM and WHERE are the operators (O),

whereas Name and ‘ahmad’ are the operands (OP). Its

structure implies the need to extract the operands and

their respective operators from a natural query. This in

consequence, calls for the need of a lexicon/dictionary

and a set of rules. We will look at more detail on the

extraction of parameters in section 3.

2. 5. Main keywords

 This section comprises the list of the keywords that

are used by the parser of the system to identify the

parameters and constructs. They help to design the

algorithm and make it trouble-free to define the logic

for identifying the types of tokens. In table 2.1 the list

of keywords and their types is given.

Table 2.1 Keywords

Stop Words

Question

Words

Request

Words

�� (of-

Masculine)

�� (of-

Feminine)

 (of-Plural) �ے

-is) ہے

Singular)

 (is-Plural) ہ�ں

-in) 	�ں

preposition)

ے (from-

preposition)

�� (on-

preposition)

���) What(

��) When(

)When (��ن

)Where (�ہ�ں

�ںر���

)Show me(

�ں�"#
)Tell me(

 &�ہ�ے

)I need(

2. 6. Construction of dictionary

 The aim of a natural language interface is to

facilitate the user to computer in a natural way. For this

purpose, we have designed a domain specific

dictionary to keep the synonyms of the columns and

tables names. The inclusion of synonyms makes it

possible for the user to write a sentence in different

natural ways. We call this dictionary as semantic

dictionary, because there is no syntactic information for

tokens. Rather, it will be used by Attribute Value

Mapping Algorithm. For attribute value mapping, there

is a detailed discussion in section 3.

 Semantic dictionary contains the synonyms for each

of the column and table. It also contains the plurals for

each word because there is no addition of “s” or “es” as

it is for English language. It is difficult in Urdu to place

additional words to make a word’s plural, because it

requires a huge knowledge base. Table 2.2 contains

some sample words with their meanings and plurals.

Table 2.2 Urdu words and their plurals

Word Meaning Plural Addition of

Characters

��$ادا Payment ادا��ں�$ اں
ہ&� Address ے &�ے

 No Addition �*دور Employee �*دور

 Table 2.2 describes the structure of Urdu words and

their plurals. As each word has a different plural, we

cannot define rules to convert a word into its plural

form without the need to place it in the database. We

use this dictionary to resolve the names of the

tables/columns from a natural language query to SQL.

2.7. Structure of semantic knowledge base

 The aim of the constructed system is to track the

correctness of a query semantically. For this, all the

semantic information is available in the semantic

dictionary that is obligatory for the process of

transformation. We have designed an attribute value

mapping algorithm that will efficiently transform the

natural language query to SQL using the semantic

knowledge base. The semantic knowledge base

contains three main tables, where we have put the

semantic information for a database that will be used

by AV mapping algorithm. This algorithm is discussed

in Section 3 in more detail. Figure 2.1 depicts the

structure of the semantic knowledge base.

 �)

(Who Sg/Pl)

 *)

)Who Sg(

 ,)

)Who Pl(

 	.�ے
I

�ں	

I

 اس
(He/She)

 ان
)Them(

Criteria

Words Pronouns

Proceedings of the Conference on Language & Technology 2009

 56

Figure 2.1 Semantic knowledge base

 This dictionary is manually constructed and is

database specific. The dictionary is not like a huge

corpus; rather it has entries according to the number of

entities in a database. There is no grave processing

involved in utilizing this dictionary during query

transformation, which makes this system efficient.

 To start the discussion, on the storage of data within

semantic dictionary, we need to understand the concept

of an entity. An entity can be a person, place, thing, and

concept or even about which an organization collects

data [7-8]. Here are the steps that are essential to

construct this semantic dictionary.

a) Identifying all the entities in a database

b) Finding out and writing the synonyms of

the identified entities

c) Defining the characteristics of the entities

 We will exemplify the storage of data within these

tables through an example. Suppose, we have a small

School Management System, and there is the need to

construct the semantic dictionary for it. For the sake of

understanding, let us take only a few entities from the

whole system. Consider, S as the school management

system, E the entities, α the synonyms and β the

characteristics of an entity E. We take three entities and

construct the dictionary as given in the table 2.3.

Table 2.3 (a) Entities

Entity Meaning

� + ,��- Student

 Course 	�رس

�./0+ Class

Table 2.3 (b) Synonyms

Entities � + ,� /.�+0 	�رس -�

Synonyms ,� در/ہ -�
 	�س

Table 2.3 (c) Properties

Entities � + ,� /.�+0 	�رس -�

Properties م��
 &�ہ

 �4ن �.12
 �5.�ن

0+�./

67/

 ��م
 ا/*اء
12.�

0�9�:

12.� ;	

 ��م
اد<=
 ��رڈ

 	@ڑ	��ں
��ں!1	

 This concludes the following implications from the

given tables. For each entity Ei there are many

synonyms (αi…….. αn) such that Ei = (αi…….. αn).

Similarly, each entity has a number of properties

(βi…….βn) such that Ei has (βi…….βn). Here are few

sentences that highlight the deployment of these tables

by the AV Mapping algorithm.

(a) ہ�ں رہ�� ہے؟	 �� و!

[vɒsIm] [kɒha:ñ] [rәhtɒ] [hæ]
[Waseem] [where] [live] [is]
“Where does Waseem live?”

 (b) ں؟� &���Aہں /.�+0 ��ں 	�7� 	1!��ں ہ
[pɒnʧvñ] [ʤɒmɒt] [meIñ] [kItni] [kʊrsIyɒñ] [hæñ]
[5

th
] [class] [in] [how many] [chairs] [are]

“How many seats are there in 5
th

class?”

(c) ں؟��.�ڑB 	ے ا/*اء 	�� ہ	
[kәmIstɒri] [keI] [ʌʤzɒ] [kIyɒ] [hæñ]
[Chemistry] [of] [contents] [what] [are]
“What are the contents of Chemistry?”

 In each of the sentences above, one characteristic of

each of the three entities has been used to be evidences

for how this semantic dictionary is utilized. In sentence

(a) a question has been asked about the entity Student.

Student has a property of living that is given in table

2.3(c) as (ہ�&), which is the synonym of word (رہ��, live).

This characteristic is found in the column of (� + ,��-,

Student), which reflects that the assumed value

“Waseem” is the name of a student.

 In the second sentence, the question has been asked

about the number of chairs (ں��!1) in 5
th

class. The

characteristic chair reflects that the user is asking

question about a class as this characteristic is found in

the column of class in table 2.3(c). The third question

asks about the contents (ا/*اء) of a course or subject.

As “contents” is a characteristic of a course, which

implies that the user is asking question about the

course. Its algorithmic details of how all this works has

been shown in the next section of AV Mapping

algorithm.

Entity

Entity

Synonyms

Entity

Properties

Proceedings of the Conference on Language & Technology 2009

 57

3. Attribute Value (AV) mapping

algorithm

 This section confers the AV Mapping algorithm that

efficiently maps a natural language query to SQL using

semantic tables described earlier. Figure 3.1 shows this

algorithm.

Figure 3.1 Tokenization

 The algorithm starts working by scanning the query

posed by the user. The query is tokenized using

tokenization rules. The identified tokens are then

further processed for ordering/ranking. This ordering is

done in order to simplify the work with the implication

that only those order categories will be considered for

further processing that shell out semantic contribution

in the interpretation of the query. An important point

in this algorithm is that it does not consult the database

for value tokens in order to minimize and speed up the

query transformation process, which is different from

PRECISE. Instead, AV Mapping algorithm assumes all

tokens as values that are left at the end after identifying

all other tokens for their respective categories. For

simplicity, AV Mapping algorithm also rank value

tokens as order ranking 3, which is the same as that of

an attribute, so that it should be effortless to treat

attribute/value on the same level in AV Mapping

algorithm. At the end, these value tokens are mapped to

their respective attributes following some rules, and

those tokens are ignored that contribute nothing to the

query in terms of semantics.

 Hence, all the tokens having order number 1 are

ignored for further processing. The next important step

is the identification of the type of question as explained

in section 2.1. These questions are divided into two

categories on the basis of their nature as discussed in

section 2.1. If the question lies in neither of the

category, we say the question is intractable; otherwise

the question is forwarded for further processing.

 Another piece of algorithm is given in Figure 3.2. In

this algorithm the process of query break up and its

storage in attribute/value pattern has been shown.

Figure 3.2 Pattern Extraction

 Figure 3.2 shows the working of the query splitter

algorithm. Once the query is scanned and unnecessary

tokens are removed, we break up the query into small

chunks in order to treat each chunk individually.

 The query is broken down on the basis of connector

tokens or splitter/criteria tokens. In Urdu language (like

English), connector words/tokens are used within the

queries where a user may want to ask multiple things.

The sentence connector words in Urdu are (ورا) and (��
), each of which respectively stands for “and” and “or”.

 Secondly, this algorithm also checks the query for

criteria tokens. If a criteria token is found, then the

second condition in the algorithm breaks up the query

on the basis of this token. There is ever an attribute

//Tokenization algorithm

 Module 1 (Scanning)

 - Start Scan

1. Split the query (Q) in tokens (t1…tn)

2. Give an order number to each of the

tokens identified.

i- Stop Words order t1

ii- Question or Request words

order t2

iii- Attribute/Column/Value

order t3

iv- connectors/splitters/criteria

words order t4

 -End Scan

//Algorithm that splits the query

//and extracts patterns from

Module 2 (Query Splitting)

-Start Processing Order

 Formatted Query

1. Look for the sentence

connectors/splitters/criteria words

2. If (word = connector(and/or))

 Then

 queryparts = splitquery(Q)

 connectors= store connectors

 and their positions

 End If

If (word=splitter/criteria)

 then

 Queryparts= splitquery(Q)

 Module 3(queryparts)

 Else

 Module 3(queryparts)

 End If

-End Processing

Proceedings of the Conference on Language & Technology 2009

 58

value pattern after a criteria token. Here examples of

both of the connectors and criteria tokens are given.

(a) ہ�ں رہ�� ؟	ہے اور وہ ��ہے! .�ن 	� =�D7اہ 	

[sʌlmɒn] [ki] [tʌnxʊ:ɒh] [kIyɒ] [hæ] [ɒәʊr] [vәʊh]
[kɒhɒñ] [rәhtɒ] [hæ]
[Salman] [of] [salary] [what] [is] [and] [he] [where]
[lives] [is]
“What is the salary of Salman and where does he live?”

 Here the connector token is اور (and). If the query is

broken up on the base of اور (and) token, it results in

the given sentences.

(i) ہے؟ �� ! .�ن 	� =�D7اہ 	

(ii) ہ�ں رہ�� ہے؟	وہ

 The second example shows the use of criteria words

in a sentence and their break up through the splitter

algorithm.

(b) ور - �2ء��@ے ان�E& �/ ے ��م ����ں	ں رہ�ے�- ہ�ں�

[mʊʤheI] [ʊn] [tɒlbɒ] [keI] [nɒm] [bɒta:yæñ] [ʤәʊ]
[pIʃɒvә(r)] [meIñ] [rәhteI] [hæñ]
[to me] [those] [students] [of] [tell] [who]
[Peshawar] [in] [live those] [are]
“Tell me the names of those students who live in

Peshawar?”

 Criteria tokens are used to specify a condition in a

query, just like in the above query, �) (who) is a

criterion token. In Urdu language, there will be ever a

required thing before criteria token and an attribute

value after it or vice versa. When this query is broken

down on the basis of a criteria token, we will get the

following chunks of the query.

(i) ے ��م ����ںء- �2 ��@ے ان	

(ii) ں� &�Eور ��ں رہ�ےہ

 After this is done, the chunks will be forwarded to

Module 3 for further processing, where AV Mapping

will get in action for each chunk of the query. The

splitting of the query into chunks will provide an ease

in identifying the relevant values for attributes. In the

example above, the first piece of the query gives us the

required information, that is the names of the people

(ں �ے �7م�4�5), and the second chunk is asking about the

address (رہ"ے, live in) and its respective value as the

name of the city (�8ور�).

Figure 3.3 Attribute value mapping

 The AV Mapping algorithm has been shown in the

figure 3.3 that efficiently maps the assumed values to

//Algorithm that will map an //assumed value for

an //identified column

Module 3 AV Mapping(queryparts)

-Start Making AV Patterns

 For each chunk ci=1 to ∑c in queryparts

 If (ci has col and has no val

 and ∑c == 1) then

 stop processing

 prompt “Intractable”

 End If

 If (ci has no col and ∑c==1)then

 stop processing

 prompt “Intractable”

 End If

 If (ci has a col and no val

 and ∑c > 1) then

 ReqColumns[x] = col

 End If

 If (ci has a col and val) then

 ReqColumns[x] = col

 AVPattern[y] = col + val

 End If

 If (ci has val and no col

 and ∑c > 1) then

 AVPattern[y]=

 ReqColumns[len – 1] + val

 End If

-End AVPatterns

//Algo takes each pair and if //necessary replace a

synonym with //proper attribute name

//SD (Semantic Dictionary)

-Start AV Mapping

 For each pattern p in AVPattern

 att = Extract att (p)

 For each characteristic c in SD

 If (c is a match for p) then

 entity = extract from SD

 If (att = synonym of c) then

 att = table_col_name

 End If

 End If

 End For

 End For

-End AV Mapping

Proceedings of the Conference on Language & Technology 2009

 59

their respective attributes. If the query is not in proper

format, the value tokens fail to map to their respective

attribute tokens. This results with the response for a

query as intractable. By contrast, if the query lies in

one of the categories either a proper question or

request, the values are successfully mapped and we get

an intermediate form of the query that is effortlessly

transformable to SQL.

4. Query transformation

 After a query is processed by the AV Mapping

algorithm, it is equipped to be transformed to SQL. The

AV Mapping Algorithm transforms the query into an

intermediate form with the resolution of attribute

names and proper binding of attribute and values.

Transformation from natural language query to SQL is

shown in 4.1.

5. Experimental results

 We have tested our algorithm on two query sets

which we have collected from the users of the relevant

departments. The first query set was for School

Management System and the second query set was for

Employee Information System. The results were quite

satisfactory. The experimental results are shown in table

5.1.

Table 5.1 Experimental Results

Database

Name

Questions

Asked

Correctly

Mapped

Accuracy

Percentage

School

Management

System

200

172

86 %

Employee

Information

System

200

167

84 %

6. Limitations

 The AV Mapping algorithm accurately maps most of

the queries and relies on semantic dictionary to work out.

It is undesirable to construct the semantic dictionary

manually for every database. Our system failed to map

some of the queries that were correct semantically but

were not equipped with the proper information necessary

for AV Mapping algorithm to map it properly to SQL. An

example query is like:

(a) I need salma’s marks in chemistry.

 Here in the sentence “salma” and “chemistry” are the

value tokens referring a student and a subject

respectively, and “marks” is an attribute token. The

request is asking for the student marks, but “marks” is a

characteristic of a subject not of a student. To map

correctly who salma is, the “marks” should be “obtained

marks” instead of the general characteristic “marks”.

However this limitation has been addressed in the future

work on the improvement of structure of semantic

dictionary.

7. Future work

 Research is done from the last few decades on

Natural Language Interfaces. With the advancement in

hardware processing power, this goal has got

realization. That is, some of the NLIDBs got promising

results as we mentioned in the historical background. In

ں رہ�� ہے؟	ہ�!�رہ

[sɒrɒ] [kɒhɒñ] [rәhti] [hæ]
 [Sara] [where] [live] [is]

Where does Sara live?

Input Query

Starts processing query

AVPattern(att(Sara),val(address))

 AVPattern(att(رہ�
),val(ہ"�))

Tokenize and order

Chunks Extraction Algorithm

AV Mapping Algorithm

Extracted chunks are forwarded

for attribute value mapping

Mapped chunks are

transformed

SELECT Address FROM Personal WHERE Name

= ‘Sara’ (‘رہ�
’)

Tokenization Algorithm

Transforms each mapping

to SQL

Figure 4.1 Query transformation

Proceedings of the Conference on Language & Technology 2009

 60

this research paper, we have presented an AV Mapping

algorithm that accurately maps a natural language

query in Urdu with minimum transformation time. As a

future direction, for complex databases, we need to

construct more robust ambiguity resolution algorithms.

This ambiguity normally arises because of the

characteristics conflicts using the semantic dictionary

for more than one entity. The structure of the semantic

dictionary can be improved with the consideration of

mapping a complex query. There is also the need to

formulize the summary, grouping (Group By, Order

By), and other constructs in a natural way so that a user

can get the same results using natural language. The

algorithms discussed in the paper are applicable to

other similar languages also, so we can work in other

languages as well that have similar structure to Urdu or

English using the techniques given in the paper.

8. References

[1] S. Knowles, “A Natural Language Database

Interface for SQL-Tutor”, 5
th

 November 1999.

[2] V. Lopez, E. Motta, V. Uren and M. Sabou, “State

of the Art on Semantic Questioning Answering”, May

2007.

[3] Retrieved: (August, 4, 2008)

 Available:

http://library.ahima.org/xpedio/groups/public/document

s/ahima/bok1_025042.hcsp?dDocName=bok1_025042

[4] P. Martin, D. E. Applet, B. J. Grosz, F. Pereira,

TEAM: “An Experimental Transportable Natural

Language Interface”, Artificial Intelligence Center, SRI

International Menlo Park, California 94025, November

1986.

[5] M. Minock, STEP A Natural Language Interface to

Database, Available: http://www.cs.umu.se/~mjm/

Retrieved: (February, 15, 2008)

[6] A. A. Sultan, Natural Language Interfaces, M.sc

Thesis, Department of Computer Science, University of

Peshawar, January 1993.

[7] A. M. Popescu, O. Etzioni, H. Kautz, “Towards a

theory of Natural Language Interfaces to Databases”,

University of Washington, Computer Science, January

2003.

[8] Retrieved: (August, 21, 2008).

Available:

damacoc.org/presentations/2007_04_11_Adelman_D

WGlossary.doc

[9] David H.D. Warren, Fernando C. N. Pereira, “An

Efficient Adaptable System for Natural Language

Queries”, Artificial Intelligence Center, SRI

International 333 Ravenswood Avenue Menlo Park,

CA 94025, July 1982.

