
Proceedings of the Conference on Language & Technology 2009

 108

Integrating Bangla Script Recognition Support in Tesseract OCR

Md. Abul Hasnat, Muttakinur Rahman Chowdhury and Mumit Khan

Center for Research on Bangla Language Processing, Department of Computer Science and

Engineering, BRAC University, Dhaka, Bangladesh

mhasnat@gmail.com, sourogts@gmail.com, mumit@bracu.ac.bd

Abstract

Tesseract is considered one of the most accurate

free software OCR engines currently available. It was

originally developed by Hewlett-Packard from 1985

until 1995, and is currently maintained by Google. At

present, Tesseract is capable of only recognizing

English, French, Italian, German, Spanish and Dutch.

However, it is possible to make Tesseract recognize

other scripts if the engine is trained with the requisite

data. In this paper, we present a complete

methodology to integrate Bangla script recognition

support in Tesseract.

1. Introduction

The Tesseract OCR engine was one of the top 3

engines in the 1995 UNLV Accuracy Test. Between

1995 and 2006 however, there was very little activity in

Tesseract, until it was open-sourced by HP and UNLV

in 2005; it was again re-released to the open-source

community in August of 2006 by Google [1]. Today, it

is considered one of the most accurate open source

OCR engines available. A complete overview of

Tesseract OCR engine can be found in [3]. While

Tesseract was originally developed for English, it has

since been extended to recognize French, Italian,

German, Spanish and Dutch. It has the ability to train

in other languages and scripts as well [2]. The

algorithms used in the different stages of the engine are

specific to English alphabet, which makes it easier to

support other scripts that are structurally similar by

simply training the character set from the new scripts.

However, for Brahmi family of scripts like Bangla and

Devanagari, one must also consider the issue of line

and character segmentation, as well as how to create

the training data. In-depth knowledge of the Bangla and

Devanagari scripts is necessary to integrate the

recognition support for these scripts in Tesseract.

In the Bangla script, there are 11 independent vowel

and 39 consonant characters. These are called the basic

characters, as shown in Fig. 1. From Fig. 1, it can be

seen that most of the characters have a horizontal line

at the upper part. This horizontal line is called headline

or ‘matraa’ which is used to connect the characters in a

word. Out of the 50 basic characters, 32 characters

have this matra (head line). Out of these 11

independent vowels, 10 vowels have dependent forms

(Fig. 2). The dependent vowels with examples are

shown in Table 1. If the first character of the word is a

vowel, then it remains in its independent form [4].

Generally, a vowel following by a consonant takes a

dependent form, and the dependent form of the vowel

is placed at the left or the right or both, or at the bottom

of the consonant.

Figure 1: Basic characters of the Bangla script

Figure 2: Dependent vowels

Proceedings of the Conference on Language & Technology 2009

 109

Table 1: Example of independent and
dependant vowels

 Indep.

shape

Example Dep.

shape

Example

1. � ���� ◌� ���

2. 	 	
� �◌ ��

3. � �� ◌� ��

4. � �� ◌� ����

5. � ��� ◌� ����

6. � �� ◌� ����

7. � �� �◌ ���

8. � ����� ◌ ��

9. ! !� �◌� ������

10. " "�# �◌$ �$��

 In the Bangla script, a consonant followed by

another consonant often takes a compound shape,

which we call a compound character. Examples of a

few compound characters are shown in Table 2. There

are around 270 compound characters present in the

Bangla script [5], most of which are formed by

consonant-consonant combinations; compounding of

three consonants is also possible. Among the listed

compound characters, there are a few characters that do

not change their respective shapes; instead these just

attach a consonant modifier similar to the case of the

vowel modifiers. There are 3 consonant modifiers that

completely change their shapes. These compound

characters can also be followed by dependent vowels.

Table 2: Example of compound characters

Consonant

Combination

Compound

character

� ◌% � &

� ◌% � '

� ◌% (

� ◌% �)

� ◌% � *

+ ◌% � ,

� ◌% � -

� ◌% � .

 After an analysis of Tesseract, we found, that to

integrate the Bangla script recognition support in

Tesseract, we need a complete set of training data. This

training data is dependent on the output of the script

segmenter which will be included during test data

recognition. It also depends on the nature of the

segmenter that is included in the Tesseract engine; the

engine has its own segmenter to detect lines, words and

characters. Since Tesseract is a complete OCR

package, once it is trained with the training data, we do

not need to be concerned about feature extraction and

recognition in order to recognize the characters in the

Bangla script.

To the best of our knowledge this is the first

reported attempt to integrate Bangla script recognition

in Tesseract. We briefly present our methodology in

section 2, followed by results with discussion in section

3, and then conclude.

2. Methodology

 The entire task is divided into two parts:

1. Training data generation

2. Test data processing

2.1. Training data generation

 A basic guideline to prepare training data is nicely

written in [2], which we followed to prepare the

training data. However, there are several problems that

we found during training data preparation. The

problems and our solutions are described below.

2.1.1. Prepare training data Image. As is probably

evident by now, Bangla, along with other members of

the Brahmi family of scripts, is a farily complex script.

For English, Tesseract was trained with just 94

characters/units [3]. We listed 340 (50 basic, 10 vowel

modifiers and 270 compound characters) characters,

and considered these as the basic units for training. We

performed our experiment with the training data to

estimate of the necessary amount of training data. For

this experimental purpose, we considered two

approaches as follows:

1. Train dependent modifiers separately than the

basic units.

2. Train dependent modifiers combined with the

basic units.

 In a word image the modifiers (vowel & consonant)

are placed around the core characters and often

connected with the basic characters following few

certain characteristics. In most of the cases the image

of basic character and modifier has a certain amount of

overlap between them. As a result it is impossible to

make a horizontal and vertical boundary line between

them. This scenario is completely different than

English character where there are no modifiers as well

as the amount of overlapping and touching problem is

Proceedings of the Conference on Language & Technology 2009

 110

very less. We observed the performance of the trained

units generated from the first approach. We noted that

Tesseract can successfully recognize those units which

the character segmenter is capable to isolate properly

from the surrounding units. If the segmenter is

successful in separating the modifier (example: ◌�, �◌,

�◌ ◌� �) and basic characters using a vertical column

then Tesseract is successful in recognition. However in

case of other modifiers (Example: 	◌, ◌
, ◌� , ◌� , ◌ , �◌�, ◌�

and ◌� �) it is not possible for the segmenter to separate

them using any vertical column. In such cases

Tesseract failed to recognize them because it is unable

to identify the bounding box for modifier and basic

unit. This observation motivates us towards approach-2

where it is necessary to train all possible combinations

of the modifiers (Example: 	◌, ◌
, ◌� , ◌� , ◌ , �◌�, ◌� and

◌� �) and basic characters. An example of such a

scenario of few training units with modifier is shown in

figure 3.

Figure 3: Example of few training units where
basic character is overlapped by modifiers

 So, in the final training data set will consider the

following combinations:

• All vowels, consonants and numerals

• Consonants + vowel modifiers

• Consonants + consonant modifiers

• Combined consonants (compound character)

• Compound characters + vowel modifiers

• Compound characters + consonant modifiers

 Following approach-2 the total amount of training

data units will be around 3200. Next we typed all the

combinations and take print out of the documents (13

pages for a single font). Next we scan the pages and

manually preprocessed the pages which include skew

correction. We choose the most popular fonts that have

been widely used for a long time to print Bangla

documents, as maximum documents that we are

targeting to recognize is written in those fonts. Most of

the popular fonts are non unicode which is a problem

because it cannot be used for transcription. So, we used

unicode font (Solaimanlipi) to prepare the

transcription. An example of a part of the training

image is shown in figure-4.

Figure 4: Part of the training data generated

using SutonnyMJ font

2.1.2. Prepare box file. A box file is a text file that

contains necessary information about the bounding box

of each character/unit in a training image. Each training

image must have a box file where the number of box

information must match with number of training

character/unit in the image. Tesseract has its own tool

to create box information from an image which create

box file considering the nature of English character. As

a result it fails to correctly generate box information

from Bangla character image in several cases where a

modifier is slightly detached from the core character.

Another point is that we have to manually correct the

transcription in the created box file by Tesseract which

is a very monotonous task. To handle these issues we

create our own box file generator. The input of our box

file generator is a training image and a transcription file

of the image and the output will the box file (Figure. 5).

Figure 5: Structure of the box file generator

2.1.3. Prepare feature files. We performed this task

by invoking the Tesseract engine in training mode. The

output is a *.tr file which contains the features of each

character of the training page.

2.1.4. Prepare clustered files.

 We perform the clustering using two different

programs called mftraining and cntraining. This

clustering is performed to create the prototypes using

the character shape features. The output of this step is

*.inttemp and *.pffmtable file.

2.1.5. Prepare character set file. To create the

character set file we used the program called

unicharset_extractor. This program takes the *.box files

as input. Next we manually set the properties (isalpha,

Proceedings of the Conference on Language & Technology 2009

 111

isdigit, isupper and islower) of each character in the

file. As Bangla characters do not have uppercase and

lowercase variation so we set all the characters with the

value equivalent to uppercase letter. The output of this

process is a *.unicharset file. An example of character

set file is shown in figure-6.

file

Figure 6: Example of a character set

2.1.6. Prepare dictionary data. Tesseract uses 3

dictionary files for each language. Two of the files are

coded as a Directed Acyclic Word Graph (DAWG),

and the other is a plain UTF-8 text file. To make the

DAWG dictionary files we used wordlist2dawg

program. We collected a unique word list of 180K

words and frequent word list of 30K words. Using the

word list and the frequent word list we generate the

dictionary files freq-dawg and word-dawg. In the third

dictionary file called user-words we put all the

characters.

2.1.7. Prepare DangAmbigs file. To prepare this file

we identified the possible intrinsic ambiguity between

characters or sets of characters during recognition. This

file can be generated from the erroneously generated

output. Information about a number of possible

ambiguities is found from possible OCR errors listed in

the literature [6]. Examples of few ambiguities are

shown in figure-7.

Figure 7: Intrinsic ambiguity between
characters

 After finished the generation of all the training data

files (8 files) we renamed each files according to our

language/script which is “ban” (Example:

ban.unicharset). These 8 files must be copied into the

tessdata subdirectory.

2.2. Test data processing

 The main goal of this step is to prepare the test

image in a form suitable for Tesseract to process and

recognize. Tesseract is a raw OCR engine, so it does

not include a preprocessor, and so we need to perform

the preprocessing task at this stage. We divide the test

data processing task into four main parts like any other

OCR as follows:

1. Binarization

2. Noise elimination

3. Skew detection and correction

4. Character segmentation

 To perform tasks 1-3, we followed the approaches

described in [6]. To perform segmentation, we

followed the approach that is specific to the

requirement of the Tesseract engine. We performed an

experiment to recognize isolated character image using

our training data to identify the requirements of the

Tesseract recognizer. From the observed output, it is

clear that the recognition rate will be very high if it can

successfully extract the bounding box of each

character/unit from the text image. We also note that

Tesseract can successfully recognize units which are

broken into two parts. These observations make the

requirement of the segmenter very clear which is that

the segmenter needs to separate each unit from its left

or right units using a horizontally separable line. There

are several segmentation algorithms available in the

literatures [6-8] to perform segmentation. We followed

the algorithms mentioned in [7,8], but without

segmenting the upper and lower modifiers. The output

of the segmenter is shown in Fig. 8. The segmenter

output is then passed on to the Tesseract recognition

engine and the output test is saved in a text file.

Figure 8: Output of the segmenter (a) Input
image (b) Segmented image

3. Result analysis and discussion

 We tested our results in two steps. In the first step,

we observed the performance of Tesseract in

recognizing isolated characters. The accuracy in

recognizing the basic characters with different font was

98%. The result of this step also provided us with the

Proceedings of the Conference on Language & Technology 2009

 112

amount of training data that we needed to create. In the

second step, we performed the testing with page images

where we considered images with same and different

fonts, resulting in a maximum accuracy of 92%. Table

3 summarizes our testing results.

Table 3: Experimental result

Type of image Font Accuracy

Isolated character Same 99.5%

Isolated character Different 97%

Word image Same 93.5%

Word image Different 88%

 The generated output of the recognizer on test

image (figure 8) is “/01���2� ��3� �45 �61�! ��7��1�1/�
8�1�� �9��	 :��� ��/1;%<� =�#����”. We can see from the

output that the erroneous outputs “�9�” and “��3” are

occurring instead of “��” which is very close. To

identify the errors in recognition, we performed several

tests with the dictionary data and identified that these

are not contributing to the recognition accuracy, at least

in the case of the Bangla script. We will investigate

extending the language modeling capability for Brahmi

scripts in the future.

4. Conclusion

 In this paper, we present a complete procedure to

Bangla printed text open source Tesseract OCR engine.

We first conducted a series of tests to decide how much

training data we needed, and to understand the

requirements of the Tessearct’s built-in segmenter. We

then trained Tesseract’s recognizer with the Bangla

training data, and then observed the results using

scripts of different sizes and fonts. The best results

were when using the same font as the training data, but

the result is quite promising when using a different

font. The methodology presented here would be

applicable Improvements in the segmenter, and more

data in the training set would improve the overall

quality for all inputs which is something we would be

working on next. The methodology outlined here would

also be just as applicable to other members of the

Brahmi family of scripts, such as Devanagri.

5. Acknowledgements

This work has been supported in part by the PAN

Localization Project (www.PANL10n.net) grant from

the International Development Research Center,

Ottawa, Canada.

6. References

[1] http://google-code-

updates.blogspot.com/2006/08/announcing-Tesseract-

ocr.html last accessed 12 August, 2008.

[2] http://code.google.com/p/Tesseract-ocr/ last accessed 12

August 2008.

[3] Ray Smith, "An Overview of the Tesseract OCR in proc.

ICDAR 2007, Curitiba, Paraná, Brazil, 2007.

Available:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4376

991

[4] S. M. Murtoza Habib, N. A. Noor and Mumit Khan,

“Skew correction of Bangla script using Radon Transform”,

in proc. ICCIT’06, Dhaka, Bangladesh, December, 2006.

Available:

http://www.panl10n.net/english/final%20reports/pdf%20files

/Bangladesh/BAN02.pdf

[5] M. E. Hoque, S. Lahiri, S. Sarkar, “Bangla Academy

Byabaharik Bangla Abhidhan”, Bangla Academi Press,

Dhaka, Bangladesh, September 2003.

[6] Md. Abul Hasnat, S M Murtoza Habib and Mumit Khan.

"A high performance domain specific OCR for Bangla

script", Proc. of CISSE’07, 2007.

Available:

www.springerlink.com/index/l75400676825p373.pdf

[7] U. Pal, B. B. Chaudhuri, "OCR in Bangla: an Indo-

Bangladeshi Language", Proc. of ICPR, pp. 269-274,

Jerusalem, Israel, 1994.

Available:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5769

17

[8] B. B. Chaudhuri, U. Pal, "An OCR System to Read Two

Indian Language Scripts: Bangla and Devnagari(Hindi)",

Proc. of 4th ICDAR, Page(s): 1011 -1015 vol.2, Ulm,

Germany, 1997.

Available:

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel3/4891/13

496/00620662.pdf?arnumber

