
Proceedings of the Conference on Language & Technology 2009

 94

Rule Based Segmentation of Lower Modifiers in Complex Bangla Scripts

Md. Abul Hasnat and Mumit Khan

Center for Research on Bangla Language Processing, Department of Computer Science and

Engineering, BRAC University, Dhaka, Bangladesh

mhasnat@gmail.com, mumit@bracu.ac.bd

Abstract

Segmentation is the most challenging part of

Bangla optical character recognition (OCR). To solve

the problems of joining errors, several algorithms have

been proposed in the literature, with varying degrees

of accuracy. The selection of the lower modifier

container units and the subsequent extraction of the

modifiers from the core unit during segmentation have

not been studied extensively. We present a dissection

based lower modifier segmentation method which

solves the problem of segmenting lower modifiers

under a wide range of document images. A key goal in

our methodology is to avoid over-segmentation of the

units that do not actually contain any lower modifier,

leading to unacceptably high error rates during

segmentation. Our methodology consists of four tasks:

we first identify the lower modifier separator line using

character height information, and then select the

primary lower modifier containers; we filter this set to

eliminate the units/characters that do not actually

contain any lower modifier; we then extract the lower

modifier unit using the features of the core units and

the lower modifiers; the final step consists of a set of

empirical rules, aided by dictionary lookups, to

eliminate most of the errors, resulting in an accuracy

of 99.6%.

1. Introduction

The demand for greater than 99% accuracy for

printed OCR mandates that the error budget for

segmentation be very small, which is indeed a

significant challenge for the complex scripts such as

those in the Brahmi family. While there are several

scripts for which the process of character segmentation

is well researched, and for which very good solutions

do exist [1], there are many more scripts for which the

segmentation error rate is high enough to make those

OCRs impractical to use. For a complex script such as

Bangla, a significant portion of the segmentation error

budget is consumed by errors in selecting and

extracting the lower modifiers. One complexity in

lower modifier segmentation is the large number of

cases of over-segmentation and a few cases of under-

segmentation. The selection of the characters or

character units that contain the lower modifier is a

significant challenge, followed by the challenge in

segmenting the modifier from the base character.

During the selection process, many characters or units

are selected which do not actually contain a lower

modifier, but the segmented lower parts of those have

features quite similar to the actual lower modifiers, and

thus causing over-segmentation. Another important

issue is the consideration of the segmentation cut point

which may change the actual shape of both the lower

modifier and also the character that is attached with it.

In depth knowledge of the characteristics of the

modifiers and the over-segmented characters is

necessary to find the solution to this problem. While

this issue has already been addressed for the

Devanagari script [2-4], this is the first published

analysis for the Bangla script. We present a new

method to segment the lower modifiers in the Bangla

script with an accuracy of up to 99.6%.

In Bangla script, there are eight lower modifiers

which are classified into three groups namely kaar-

symbol (◌�, ◌� and ◌�) or vowel modifiers, fola-symbol

(◌��, �, � and) or consonant modifiers and halant-

symbol (◌�) [5]. An example of the combination of these

modifiers and a consonant character
 is shown in Fig.

1. Among these modifiers ro-fola (e.g., �) is difficult to

identify and segment from characters because of its

similarity with several other characters (�,
, � and �).

It is not feasible to segment the fola-symbol modifiers

from many of the combinations as the segmentation

might cause a distortion in the original shape of the

core character, leading to difficulties in the later stages

such as recognition. We observed, in many cases, that

the fola-symbols container units are not selected as

Proceedings of the Conference on Language & Technology 2009

 95

lower modifier containers, and even if these are

considered, the cut location results in the rejection of

these units as a lower modifier.

Fig.1: Example of lower modifiers attached

with consonant ‘����’

The generic approach for segmenting the lower

modifiers is to find out a lower zone separator, which

in turn can be identified using several methods [2-11].

Using a detailed analysis of the output, we observed

that while it is quite possible to avoid the false

rejection of the units, it is nearly impossible to avoid

the false acceptation or over-segmentation of the units.

These problems may not appear for ideal images, but

the non-ideal document images greatly suffer from

these problems. The reasons are multi-fold: (a) the

words in a line may not properly follow the alignment

of the headline; (b) the presence of a few conjuncts

which have heights similar to the heights of characters

with lower modifiers; (c) the presence of the words

with different styles and sizes. Fig. 2(a) shows an

example of an ideal image, and Fig. 2(b) shows one

with characters that extend below the lower zone, but

that do not contain a lower modifier. Fig. 2(c) shows a

case that includes an inconsistent baseline, which may

lead to cut point error in segmenting the lower

modifier.

Fig. 2: (a) The ideal case of lower modifier

extraction (b) Example of false acceptance of

the lower modifier container characters. (c)

Problems in locating the cut point.

We briefly review the existing literature in section 2,

then present our methodology in section 3, and then

present our results with discussion, and then finally

conclude.

2. Related work

The problem related to the extraction of the

modifiers has been discussed for the Devanagari script

[2, 4], but there has been no such work focusing on the

Bangla script. The main challenges in lower modifier

segmentation are: selecting the characters containing a

lower modifier, eliminating the falsely accepted units,

and locating the segmentation cut point for extracting

the lower modifier. Much of the literature concerned

with Bangla character segmentation and recognition

focuses on the selection of the units that contain a

lower modifier. The approach of Pal and Chaudhuri [6,

7] is to consider an imaginary line in the middle of the

text line and then to compute a horizontal line from the

information of the lower-most pixels (X) of the

connected components below the imaginary line. A

necessary condition is that the horizontal line must pass

through the maximum number of the X marked pixels.

In Garain and Chaudhuri [8], connected component

analysis in used, but the details of the approach is not

discussed. In Mahmud et al., [9] the separator line is

considered as the baseline, and the approach is to

detect abrupt changes in the sum of gray values

between two consecutive rows. The row containing the

highest value between these two rows is considered as

the base line. The approach by Sattar et al. [10] of

determining the baseline is quite abstract, and the only

rule used to determine a lower modifier is to find a

character where the portion of the character below the

baseline reaches the end. However this particular rule

is violated in several cases where the modifier does not

reache the end because of the misalignment of the word

headline in a single line of text. The baseline detection

process proposed by Mahmud et al. [11] is similar to

the approach [6, 7], where the authors mention the use

of depth first search (DFS) technique applied below the

headline to detect the modifiers. However, the detail of

the searching methodology was not discussed. In

Chowdhury et. al., [12], the separator line of the lower

modifier and the container character is detected by

determining the line that contains most of the lowest

points where the points are detected by applying DFS

over each character.

Detection of the separator line and the process to

determine the lower modifier for Devanagari characters

has been found in the literature [2-4]. Kompali et al. [2]

mention the usage of average height and run length of

characters to detect the separator line. They proposed a

recognition based segmentation system to detect the

Proceedings of the Conference on Language & Technology 2009

 96

lower modifiers. The rate of errors is also presented in

the literature. The technique proposed by Bansal [3] is

also used in [4] where the segmentation row was

detected from the threshold character height, which is

calculated from statistics of the height of the characters

in a line. The row that contains minimum number of

black pixel below the threshold height is located. Pixels

below this row are checked to satisfy the height and

width conditions to qualify for a lower modifier symbol

by making a horizontal projection. They also made

some adjustment using the profile information for the

thick joining patterns. Ma et al. [4] proposes to add few

over-segmented characters into their templates by

considering those as a special case class.

3. Methodology

Since the primary concern of this paper is to

segment the lower modifiers only, the basic assumption

is that the pre-processing steps before the lower

modifier segmentation are perfect. The preprocessing

steps include image acquisition and binarization, noise

elimination, skew angel detection and correction, text

boundary extraction or page layout analysis, line and

word segmentation and at last joining and splitting

errors elimination. So the preprocessor for this task

should provide complete information about the

property of each character of a line which includes

character height, width, connected component and

bounding box information.

In our proposed approach the task of lower modifier

segmentation is divided into three sub tasks. Those are:

1. Calculation of the lower modifier separator

line and selection of the primary lower

modifier containers.

2. Elimination of the preliminary selected

units/characters that do not actually contain

any lower modifier.

3. Extraction of the lower modifier from a

container unit using the features of the lower

modifier.

To calculate the separator we followed the

technique proposed by Bansal [3] with few

modifications. The calculation of the point of

separation (POS) using header/matraa location

(matraaLoc) and threshold character height (thCharHt)

will be: POS = matraaLoc + thCharHt.

From the output generated using this calculation we

observed that sometime a line contains few characters

or symbols of unusual height that affect the maximum

character height (maxCharHt) as well thCharHt and

thus cause under-segmentation. To avoid this we take

the median of maximum five characters of that line as

the maxCharHt. Next we take horizontal histogram

from the next row of thCharHt to bottom of the line. If

the histogram returns non-zero values then we take

vertical histogram to locate all the modifier container

characters of the line. These selected characters are

considered as the primary lower modifier container

units.

We perform the elimination task in several steps. In

the first step we consider aspect ratio of the lower

modifier container and ratio of the unit height vs.

height of the lower modifier (RtLM). Among the

preliminary selected units few of them for example

“◌�”, “◌��”, “।“, “(“ and “)”are erroneously selected.

To eliminate these at the beginning we have to measure

the aspect ratio of each unit. From our experimental

data analysis, we set the rule that the aspect ratio of any

lower modifier container must be more than 0.45.

There are few units like ����, �� and ���� which are

actually the combination of two or more units. If we

apply modifier segmentation on these units right away,

then bits of the information from the preceding or

following units that do not contain the lower modifiers

might be lost. So at the first stage we will mark these

units and pass them for the later stage segmentation.

We observed that the aspect ratio is 0.8 or more for

those characters that need further (additional)

segmentation. So we set the rule as the aspect ratio

must be 0.8 or more to select the units which requires

2
nd

 step segmentation. Next we consider the ratio of the

unit height vs. height of the lower modifier (RtLM).

We observed that those units which have RtLM >= 8 is

not containing any lower modifier, which have RtLM

<= 6 contains lower modifier and which have RtLM in

between these two values may or may not contain a

lower modifier.

Depending on the two measurements to

eliminate/accept the lower modifiers we perform a two-

step categorization of the units which makes it easy to

identify the units that need unique algorithm. In the

first step we categorize the units into three divisions

considering the aspect ratio of the units; Table 1 shows

the examples and conditions of this categorization.

Units which fall under Cat-1 do not contain any lower

modifier. The Cat-2 units may contain lower modifiers

and the Cat-3 units contain more than one character

within it.

Proceedings of the Conference on Language & Technology 2009

 97

Table 1: Examples and conditions for the

1st step categorization

Name Cat-1 Cat-2 Cat-3

Cond

itions

asp_ratio

<= 0.45

asp_ratio>0.45 &

asp_ratio < 0.8

asp_ratio

>= 0.8

Exam

ple

‘◌�’, ‘।‘,
‘(‘ , ‘)’

�, ��, �� ����, ��,

����

The second step categorization is applied on Cat-2

units, where the units are further categorized into three

divisions considering the value RtLM; Table-2 shows

the examples and conditions of this categorization.

Candidate units in the accept category is a valid

container of lower modifier. The units in reject

category are invalid. Units which are in Process

category may contain a lower modifier and hence need

additional checking to accept/reject the candidate lower

modifier.

Table 2: Examples and conditions for the

2nd step categorization

Name of

category

Accept Reject Process

Conditions RtLM<

= 6

RtLM >= 8 RtLM>6 &

RtLM < 8

Examples �, ��, �� �, �, �, �,

�, �, , !
"�, #�, $�, %�,
&

We tested the conditions mentioned above and

observed from the output that there are two challenges

ahead of us after selecting the preliminary lower

modifier container units. Those are:

a) Eliminate the units which do not have lower

modifier from the “Accept as lower modifier”

category.

b) Accept those units which actually have lower

from the “Process” category.

To eliminate the units from the “Accept as lower

modifier” category we relied on the statistics of the

width and positions of the modifiers and non-modifiers.

We identified the starting position of the lower

modifier with respect to the width of the modifier. This

position is named as relative location (relPosition) of

the extracted modifier. We observed that relPosition of

the modifiers is more than 0.1 – 0.2 and less that 0.5 –

0.6 depending on the value of RtLM. The observations

are:

Observation-1: Few characters like �, �, �, � and '
where the lower zone contains symbols almost same as

the lower modifier. However the relative location is

more than 0.5.

Observation-2: Few compound characters whose

segmented cut point location distort the real shape of

both the container unit as well as modifier like �

erroneously fall under the “lower modifier container”

category where the assumed lower modifier starts

exactly of nearly the beginning/starting position of the

unit. For these types of characters the relative location

is less than 0.1.

Observation-3: There are few lower modifier

container units which have the relPosition more than

0.5 and a vertical bar at the rightmost columns.

To accept units which actually have lower from the

“Process” category, first we extract the sub-image from

the separator point to the bottom and take the vertical

histogram (VH). From VH we identified the location of

the lower modifiers and extract them. We select two

threshold values for character width (thCharWd) and

lower modifier width (thLMWd) equal to the pen width

and check the core character and the modifier against

them for validity purpose. In the next step we check the

value of relPosition of the modifiers and apply the

rules.

In our approach in order to extract the lower

modifier from a container unit using the features of the

modifiers, first we segment the lower modifier from the

core unit and validate this against the features. In some

cases when the rules do not satisfy the extracted unit as

a lower modifier we shift the cut point upward using

the amount of one third of the lower modifier image

height. Then take the horizontal projection and select

the row that contains minimum number of pixels as

well having one crossing.

We finalize the rules of elimination and rules of

extraction to perform sub tasks 2 and 3.

3.1. Rules of elimination

1. To successfully eliminate the invalid lower

modifier containers (e.g (,), ◌*, +, �, , and -)

relPosition for a valid lower modifier is:

relPosition<0.5 && relPosition>0.1 when RtLM<=6

relPosition<0.6 && relPosition>0.2 when RtLM>6

This rule can successfully eliminate the invalid lower

modifier containers mentioned above, examples of

which are shown in Fig. 3.

Proceedings of the Conference on Language & Technology 2009

 98

Fig. 3: Examples of units which are eliminated

after applying rule-1

2. A valid lower modifier should not contain more

than 70% black pixels compare to the unit width in any

of its row. This rule will be applicable for those units

which have RtLm > 6. Few units where the consonant

modifier ‘◌��’ is present like ./, 0, 1 sometime

selected and the cut point is located at the middle. To

avoid those units this rule will be applied. Few

examples of units which are eliminated after applying

rule-2 are shown in Fig. 4.

Fig. 4: Examples of units which are eliminated

after applying rule-2

3. The width of the extracted connected component

should be more than 40% relative to the width of the

unit. This rule is useful to prevent the possible over-

segmentation of the characters like 2, �, 3 etc. and few

compound character like 4, 5 etc. Also this rule is

successful to eliminate noise which seems to a lower

modifier. Few examples of units which are eliminated

after applying rule-3 are shown in Fig. 5.

Fig. 5: Examples of units which are eliminated

after applying rule-3

4. There must be one connected component for a

valid lower modifier. However if there is more than

one connected component then the one that satisfy the

rules mentioned above (rule-3) is qualified as a

connected component. Characters like �, 6 are

eliminated using this rule. Few examples of units which

are eliminated after applying rule-4 are shown in Fig. 6

.

Fig. 6: Examples of units which are eliminated

after applying rule-4

3.2. Rules of extraction of the lower modifiers.

1. If the selected lower modifier container satisfies

all rules then extract the modifier from the average

height (avgHt) till the bottom of the container unit. Few

examples of lower modifier extraction by applying

rule-1 are shown in Fig. 7

Fig. 7: Examples of lower modifier extraction

by applying rule-1

2. In several type of script the lower modifier is

not attached with the character. As a result the

candidate cutting location points up/below the actual

cut point. To solve this problem we search for the gap

(row of white pixels). We considered the following two

conditions here:

a) To search the gap below the candidate

location we will search for a gap between the

average lower modifier height (avgHt) and the

bottom of the unit.

b) To find the gap upward we will search for a

gap between the probable lower modifier

location (probLoc = lmImgHt - ceil(lmImgHt /

3)) and the bottom of the lower modifier.

If such a gap (lmCutPoint) is found then extract the

lower modifier from the lmCutPoint till the bottom of

the container unit. Few examples of lower modifier

extraction by applying rule-2 are shown in Fig. 8.

Fig. 8: Examples of lower modifier extraction

by applying rule-2

3. An exception of ROE-1 is the combination of the

lower modifier “◌�” or the broken part of other lower

modifiers with the consonant where the vertical bar is

at the right most columns (�, �, �, 2, 7, (, 6). In that

case we check the presence of vertical bar there and

also the rule is modified as: 0.5 < relPosition < 0.7 &&

Vertical_Bar_right_most_cols = present

If this rule is satisfied then segment the lower

modifier from avgHt to bottom of the container unit.

Few examples of lower modifier extraction by applying

rule-3 are shown in Fig. 9.

Proceedings of the Conference on Language & Technology 2009

 99

Fig. 9: Examples of lower modifier extraction

by applying rule-3

4. Algorithm

We will apply lower modifier segmentation

algorithm for three different type of units. So, we have

three different algorithms as follows:

1. Algorithm for segmenting the “Cat-2-Accept”

category units.

2. Algorithm for segmenting the “Cat-2-Process”

category units.

3. Algorithm for segmenting the “Cat-3”

category units.

4.1. Algorithm for segmenting the “Cat-2-

Accept” category units

1. Get the relative lower modifier starting position

(relPosition)

2. IF 0.1 < relPosition < 0.5 (Rule of elimination 1)

then find a gap using Rule of extraction 2(a)

2.1. IF gap location can be found then set lmCutPoint

to gapSegLoc + 1

 ELSE set lmCutPoint to avgHt

2.2. Extract the lower modifier

2.3. Validate the lower modifier by connected

component analysis (rules of elimination 3 and 4)

2.4. IF validated then segment the lower modifier

ELSE IF relPosition > 0.1 then find out a gap using

rule of extraction 2(b)

2.1. IF gap location can be found then validate lower

modifier by connected component analysis (rules of

elimination 3 and 4)

2.1.1. IF validated then segment the lower modifier

 ELSE check the presence of a vertical bar (rule

of extraction 3)

2.1.1. IF vertical bar is present then validate the lower

modifier by connected component analysis (using rules

of elimination 3 and 4)

2.2.1.1. IF validated then segment the lower modifier

4.2. Algorithm for segmenting the “Cat-2-

Process” category units

1. Find out a gap using rule of extraction 2(b)

2. IF gap location can be found then validate the lower

modifier by connected component analysis (rules of

elimination 3 and 4)

2.1. IF validated then segment the lower modifier

 ELSE get the relative lower modifier starting

position (relPosition)

2.1. IF 0.2 < relPosition < 0.6 Rule of elimination 1

then validate the lower modifier by pixel count

information (rule of elimination 2)

2.1.1. IF validated then validate the lower modifier by

connected component analysis (Rule of elimination 3

and 4)

2.1.1.1. IF validated then segment the lower modifier

4.3. Algorithm for segmenting the “Cat-3”

category units

The algorithm is given below:

1. Extract the lower modifiers using vertical projection

analysis

2. For each lower modifier validate the lower modifier

by pixel count information and connected component

information (rules of elimination 1 - 4)

2.1. IF validated then segment the lower modifier

(rules of extraction 1 - 3)

5. Result analysis and discussion

 We run our experiments on four different types of

printed text document images. Those are Bangla old

Book having congested text lines (BB1), Bangla books

having well formatted text (BB3), Bangla official page

document (BPD1) and Bangla Typewriting document

(BT1). We measured the performance of the technique

in each step of the entire process.

 In the first step we select the lower modifier

containers using our selection approach and observed

that on average 47.9% of the selected units are over-

segmented. However there was no under-segmentation.

Examples of the over-segmented units are shown in

Fig. 3 (a). Next (step-2) we used the aspect ratio and

RtLM to reduce the amount of over segmented units.

We observed that the rate of over-segmentation goes

Proceedings of the Conference on Language & Technology 2009

 100

down to 26% on average. Examples of the over-

segmented after this step is are shown in Fig. 3 (b). In

step-3 we applied the rules of elimination and

extraction to minimize the rate of over-segmentation

and observed that the error rate goes down to 2.6% on

average. The result of these steps is presented in Table-

3.

Table 3: Result of the lower modifier

segmentation at different stage

Im
ag

e

N
am

e

T
o

ta
l

U
n

it
s

L
o

w
er

M
o

d
if

ie
rs

E
rr

o
r

ra
te

(I
st

 s
te

p
)

E
rr

o
r

ra
te

(2
n

d
 S

te
p

)

E
rr

o
r

ra
te

(3
rd

 s
te

p
)

BB1 2049 42 60.4 24.2 1.3

BB3 2352 52 44.7 15.5 2.1

BPD1 1090 23 53.1 28.0 3.5

BT1 359 16 33.3 36.0 4.0

 Average Error Rate 47.9 25.9 2.7

We observed that most of the errors occur after step-3

is on the following characters 8, :, ;, - where the

extracted lower modifier from these characters are

more likely to “◌�” and less likely to “◌�”. So the

erroneously detected lower modifiers will be identified

as “◌�” by the recognizer. Examples of the errors are

shown in Fig. 10(c).

Fig. 10: Incorrect lower modifier containers. (a)

After step-1 (b) After step-2 and (c) After step-3

To avoid these errors we used a module with a set of

empirical rules aided by dictionary lookups. The rules

are shown in Fig. 11:

Fig. 11: Rules for the post processor

Among these only rule 4 needs dictionary look-up to

check the validity of the word. However we need to

train the broken parts of these units. This is the final

step of our proposed approach. The average error rate

after this step goes down to 0.4%.

We performed our experiment on two different fonts

of different styles – SuttonyMJ, which is the most

widely used Bangla font (BB1, BB3 & BPD1) and

Typewriting (BT1) – considering noisy and degraded

images and observed reasonable performance. Hence

the above technique is robust for different fonts as well

as for noisy and degraded document images (applying

rules of elimination 3 and rules of extraction 2). Since

this is the first published analysis of lower modifier

segmentation for the Bangla script, it is difficult to

compare with existing techniques. Kompali et al. [13]

observes that the error rate of Devanagari descender

segmentation is 58.39% using the generic technique.

Compared to this, we observed an error reate of 47.9%

using the generic technique, which is a reasonable

improvement.

6. Conclusion

In this paper we present a complete dissection based

lower modifier segmentation technique for Bangla

printed text document image characters. The entire

process is accomplished in four steps where we

followed certain rules to eliminate the over-segmented

units and to extract the lower modifier units properly.

The final result shows significant improvement

compared to the generic approach. As the Bangla script

is a derivative of the Brahmi script that is also the

mother of many other Indian scripts, the methodology

outlined here is applicable to Devanagari as well.

7. Acknowledgements

This work has been supported in part by the PAN

Localization Project (www.PANL10n.net) grant from

the International Development Research Center,

Ottawa, Canada.

8. References

[1] Richard G. Casey and Eric Lecolinet, “A Survey of

Methods and Strategies in Character Segmentation”,

IEEE Trans. on Pattern Analysis and Machine Intelligence,

Vol. 18 No. 7, July, 1996.

Available:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5067

92

[2] S. Kompalli, S. Setlur and V. Govindaraju, “Design and

Comparison of Segmentation Driven and Recognition

Driven Devanagari OCR”, Proc. of the 2nd DIAL, pp. 96 –

120, 2006.

Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=506792

Proceedings of the Conference on Language & Technology 2009

 101

[3] V. Bansal and R. M. K. Sinha, “Segmentation of

touching and fused Devanagari characters”, Pattern

Recognition, Volume 35, Number 4, pp. 875-893(19), April,

2002.

Available: http://www.iitk.ac.in/ime/veena/PAPERS/s.pdf

[4] H. Ma and D. Doermann, "Adaptive Hindi OCR Using

Generalized Hausdorff Image Comparison", ACM

Transactions on Asian Language Information Processing,

Vol. 26, No. 2, , pp198-213, 2003.

Available: http://portal.acm.org/citation.cfm?id=979875

[5] M. Ali, M. Moniruzzaman, Jahangir Tareque, “Bangla

Academy Bengali-English Dictionary”, Bangla Academi

Press, Dhaka, Bangladesh, 2005.

[6] U. Pal, B. B. Chaudhuri, "OCR in Bangla: an Indo-

Bangladeshi Language", Proc. of ICPR, pp. 269-274,

Jerusalem, Israel, 1994.

Available:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5769

17

[7] B. B. Chaudhuri, U. Pal, "An OCR System to Read Two

Indian Language Scripts: Bangla and Devnagari(Hindi)",

Proc. of 4th ICDAR, Page(s): 1011 -1015 vol.2, Ulm,

Germany, 1997.

Available:

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel3/4891/13

496/00620662.pdf?arnumber=620662

[8] U. Garain and B. B. Chaudhuri , “Segmentation of

Touching Characters in Printed Devnagari and Bangla

Scripts Using Fuzzy Multifactorial Analysis”, IEEE

Transactions on Systems, Man and Cybernetics, vol. 32, pp.

449-459, Nov., 2002.

Available:

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/5326/26

422/01176894.pdf?arnumber=1176894

[9] S.M. Mahmud, N. Shahrier, D. Hossain, T. M.

Chowdhury, M.A. Sattar,“, An Efficient Segmentation

Scheme for the Recognition of Printed Bangla characters”,

Proc. of ICCIT, 2003.

Available:

http://research.banglacomputing.net/iccit/ICCIT_pdf/7th%20

ICCIT-2004_123.pdf

[10] Md. Abdus Sattar, Khaled Mahmud, Humayun Arafat

and A F M Noor Uz Zaman, "Segmenting Bangla Text for

Optical Recognition", Proceedings of ICCIT, Dhaka,

Bangladesh, 2007.

Available:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4579

373

[11] Jalal Uddin Mahmud, Mohammed Feroz Raihan and

Chowdhury Mofizur Rahman, "A Complete OCR System for

Continuous Bangla Characters", IEEE TENCON-2003:

Proceedings of the Conference on Convergent Technologies

for the Asia Pacific, 2003.

Available:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1273

141

[12] A. A. Chowdhury, E. Ahmed, S. Ahmed, S. Hossain and

C. M. Rahman, "Optical Character Recognition of Bangla

Characters using neural network: A better approach", 2nd

ICEE, 2002.

[13] S. Kompalli, S. Nayak, S. Setlur, V. Govindaraju,

"Challenges in OCR of Devanagari Documents", Proc. of

ICDAR, 2005.

Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=157556

3

