

STATISTICAL PARSER FOR URDU

by

Toqeer Ehsan

2015-Ph.D-CS-02

Research Supervisor:

Prof. Dr. Sarmad Hussain

2022

Department of Computer Science

University of Engineering and Technology, Lahore

STATISTICAL PARSER FOR URDU

by

TOQEER EHSAN

A DISSERTATION

presented to the university of engineering and technology, Lahore

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

APPROVED BY:

Dr. Sarmad Hussain

Professor, Al-Khawarizmi Institute of

Computer Science, UET, Lahore.

Prof. Dr. Mohammad Abid Dr. Tafseer Ahmed Khan

Dean, Faculty of Numerical Sciences Associate Professor, Department of

and Information Technology, Computer Science,

City University of Science and Information Muhammad Ali Jinnah University,

Technology, Peshawar. Karachi.

Prof. Dr. Muhammad Shoaib Prof. Dr. Muhammad Kamran

Chairman, Department of Computer Science Dean, Faculty of Electrical

Engineering

June 06, 2022

UNIVERSITY OF ENGINEERING & TECHNOLOGY, LAHORE

 2022

Toqeer Ehsan

All Rights Reserved

Any part of this thesis cannot be copied, reproduced or published without the written

approval of the Scholar.

iv

ABSTRACT

A number of tools for Urdu language processing have been developed in the past

few years to perform word segmentation, part of speech tagging, chunking, named entity

recognition and parsing. For statistical analysis and modeling the linguistic features,

annotated resources are essential. Corpora, especially treebanks, are required to perform

statistical syntactic parsing. The parsing is helpful to depict the syntactic and semantic

structure of a language. This research presents the development of a treebank for Urdu

and its statistical parsing. The treebank has a multi-layered annotation scheme which

includes part of speech tagging, phrase bracket labeling and functional labels. The

syntactic annotation has been performed in The Penn Treebank style to mark phrases and

grammatical functions. The treebank contains 7,854 annotated sentences and 148,575

tokens. To evaluate the annotation consistency, a grammar-based and automatic

consistency checking based evaluations have been performed. The inter-annotator

agreement is greater than 90 which was computed on reference corpus.

The parsing experiments have been performed by using different language

representations including textual input, gold part of speech tags, lemmatized text and

word clusters. In addition, several syntactic features have been experimented to analyze

the parsing results. The feature set includes sub-categorization of part of speech tags,

empirically learned vertical and horizontal markovizations and lexical phrase heads. For

parsing experiments, probabilistic context-free grammars, data-oriented parsing and

neural network based models have been trained on the Urdu treebank. We developed a

bidirectional long-short term memory (BiLSTM) based parser and a POS tagger which

have been trained on the final version of the treebank. Data-oriented and our BiLSTM

parser performed with f-scores of 87.1 and 89.1 respectively. We further converted the

treebank to the universal dependencies by devising head rules and dependency label

mappings and performed dependency parsing. However, the dependency treebanking is

an additional work of this dissertation.

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my doctoral supervisor, Prof. Dr.

Sarmad Hussain, whose guidance has provided a good basis for the present dissertation.

I express my deep gratitude to Prof. Dr. Miriam Butt for her supervision and

guidance during my research stay at University of Konstanz. I am thankful for her

detailed review, constructive criticism and excellent advice during this research.

I am thankful to Deutscher Akademischer Austauschdienst (German Academic

Exchange Service) for providing me a funding opportunity to conduct my research at

University of Konstanz, Germany. It helped me to enhance my knowledge and gave me

an exposure of the research field.

vi

STATEMENT OF ORGINALITY

It is stated that the research work presented in this dissertation consists of my own

ideas and research work. The contributions and ideas from others have been duly

acknowledged and cited in the dissertation. This complete dissertation is written by me. If

at any time in the future, it is found that the thesis work is not my original work, the

University has the right to cancel my degree.

 Toqeer Ehsan

vii

TABLE OF CONTENTS

Page

ABSTRACT ……………………………………………………………………………..iv

ACKNOWLEDGMENTS………………………………………………………………..v

STATEMENT OF ORGINALITY……………………………………………………....vi

TABLE OF CONTENTS………………………………………………………………..vii

LIST OF FIGURES…………………………………………………………………...…xii

LIST OF TABLES……………………………………………………………………….xv

NOMENCLATURE…………………………………………………………………….xix

 1. INTRODUCTION…………………………………………………………….........1

 2. LITERATURE REVIEW…………………………………………………………10

 2.1 CHARACTERISTICS OF URDU………………………………………..…11

 2.1.1 Word Segmentation ……………………………………………….11

 2.1.2 Morphological Richness…………………………………………...14

 2.1.3 Case System………………………………………………………. 17

 2.1.4 Free Word Order………………………………………………….. 20

 2.1.5 Complex Predicates………………………………………………..21

 2.1.6 Phrasal Heads……………………………………………………...24

2.2 TREEBANKS……………………………………………………………….26

 2.2.1 Phrase Structure Treebanks………………………………………...26

 2.2.2 Dependency Structure Treebanks………………………………….39

2.3 STATISTICAL PARSING………………………………………………….44

viii

 2.3.1 Grammar-based Parsers……………………………………………45

 2.3.2 Data-oriented Parsing………………………………………………51

 2.3.3 Neural Parsers……………………………………………………...54

 2.3.4 Parsing Evaluation…………………………………………………59

2.4 PARSING MORPHOLOGICALLY-RICH LANGUAGES………………..60

3. URDU TREEBANK DEVELOPMENT……………………………………………...63

3.1 LABEL SETS…………………….………………………………………….63

 3.1.1 POS Tag Set………………………………………………………..63

 3.1.2 Phrase Labels……………………………………………………....66

 3.1.3 Functional Labels…………………………………………………..69

3.2 ANNOTATION GUIDELINES…………………………………………….70

 3.2.1 Phrase Structure Annotation……………………………………….71

 3.2.1.1 Verb Complex……………………………………………71

 3.2.1.2 Noun phrases……………………………………………..72

 3.2.1.3 Adjective, Quantifier and Demonstrative phrases……….74

 3.2.1.4 Adpositional Phrases……………………………………..74

 3.2.1.5 Adverbial phrases………………………………………...77

 3.2.1.6 Conjunctions……………………………………………..77

 3.2.1.7 Non-core Clauses………………………………………...78

 3.2.1.8 Foreign Fragment phrase………………………………...79

 3.2.1.9 Functional labels…………………………………………79

 3.2.1.10 Ellipsis………………………………………………….81

 3.2.2 Compatibility with Dependency Structure………………………...84

ix

3.3 CORPUS SELECTION AND PREPARATIONS…………………………..87

 3.3.1 Corpus……………………………………………………………...87

 3.3.2 Preprocessing………………………………………………………88

3.4 TREEBANK ANNOTATION EVALUATION…………………………….90

 3.4.1 Completeness and Correctness Checking………………………….91

 3.4.2 Consistency Evaluation…………………………………………….93

 3.4.2.1 Inter-Annotator Agreement………………………………93

 3.4.2.2 Grammar-based Consistency Checking………………….98

 3.4.2.3 Automatic Consistency Checker………………………..104

3.5 TREEBANK STATISTICS………………………………………………...107

4. STATISTICAL PARSING…………………………………………………………..113

4.1 DATASET………………………………………………………………….114

4.2 CONSTITUENCY PARSERS……………………………………………..116

 4.2.1 Probabilistic Context-Free Grammars (PCFGs)………………….118

 4.2.2 Tree Substitution Grammar (TSG)……………………………….121

 4.2.3 Recursive Neural Network based Parser…………………………123

 4.2.4 BiLSTM Parser (Proposed)………………………………………126

 4.2.4.1 Proposed Sequential Labeling………………………….130

 4.2.5 Transfer Learning…………………………………………………134

4.3 SYNTACTIC FEATURES…………………………………………………135

 4.3.1 Updated POS Tags (POS2)……………………………………….135

 4.3.2 Markovization…………………………………………………….137

 4.3.3 Head-Word Model………………………………………………..140

x

 4.3.3.1 Head-Word Algorithm………………………………….141

 4.3.3.2 Urdu Head Model………………………………………142

 4.3.4 Lemmatization……………………………………………………143

 4.3.5 Word Clustering…………………………………………………..144

 4.3.6 Free Word-order…………………………………………………..145

5. RESULTS AND DISCUSSIONS……………………………………………………148

5.1 CONSTITUENCY PARSING RESULTS…………………………………148

 5.1.1 Grammar-based models…………………………………………..149

 5.1.2 Data-oriented parsing……………………………………………..155

 5.1.3 Neural Parsing…………………………………………………….157

 5.1.4 Summary of Results………………………………………………164

 5.1.5 Discussions ………………………………………………………167

6. CONCLUSIONS…………………………………………………………………….172

6.1 FUTURE WORK …………………………………………………………..174

BIBLIOGRAPHY………………………………………………………………………175

APPENDIX A. DEPENDENCY STRUCTURE……………………………………….193

A.1 COMPATIBILITY WITH DEPENDENCY STRUCTURE………………194

A.2 PHRASE TO DEPENDENCY CONVERSION…………………………..196

 A.2.1 head-word model…………………………………………………196

 A.2.2 PS to DS Label Mappings………………………………………..202

 A.2.2.1 Core Arguments………………………………………..205

 A.2.2.2 Non-Core Dependents…………………………………206

 A.2.2.3 Nominal Dependents…………………………………..206

xi

 A.2.2.4 Other Dependency Relations…………………………..208

 A.2.3 Post Conversion Rules…………………………….......................211

A.3 DEPENDENCY PARSING……………………………………………….214

APPENDIX B. LABEL SETS………………………………………………………….218

B.1 HUTB LABEL MAPPING ON CLE-UTB LABELS……………………..218

VITA……………………………………………………………………………………219

xii

LIST OF FIGURES

Figure Page

Figure 2.1 Space omission errors. (a) Incorrect: no spaces between words. (b)

 Correct: space after each word ……………………………………………………..12

Figure 2.2 Space insertion errors. (a) zimE dArI (Responsibility) (b) xuS mizAj

 (Cheerful) (c) jantar mantar (Mantra) (d) TElI vIyan (Television) (e)

 U.E.T (Abbreviation) ……………………………………………………………….13

Figure 2.3 A phrase structure parse tree by using the annotation of the PTB .………… 27

Figure 2.4 A proposed phrase structure annotation and argument positions from [15]....33

Figure 2.5 Parse tree from the Urdu.KON-TB [2] ……………………………………...35

Figure 2.6 Parse tree from the Urdu.KON-TB [2] …………………………………….. 36

Figure 2.7 Annotation of the parse tree by using the annotation of [2] ……………….. 39

Figure 2.8 An equivalent dependency structure tree from Figure 2.3 by using universal

dependency labels …………………………………………………………………. 40

Figure 2.9 The dependency annotation of an Urdu/Hindi sentence by using Paninian

 grammatical model[11] ……………………………………………………………. 43

Figure 2.10 The universal dependency annotation of the sentences from Figure 2.9 …. 44

Figure 2.11 A sample parse tree ……………………………………………………….. 52

Figure 2.12 Fragments of the parse tree from Figure 2.11 …………………………….. 52

Figure 2.13 A sample parse tree along with linearized labels …………………………. 57

Figure 3.1 A phrase structure parse tree of a sample sentence ………………………… 68

Figure 3.2 Annotation of a sentence containing a verb complex (VC), a nominal

xiii

 subject and a nominal object ……………………………………………………….72

Figure 3.3 Examples of noun phrases (NPs) …………………………………………... 73

Figure 3.4 Annotation examples (a,b) adjective phrase (ADJP) (c) quantifier phrase

 (QP) (d) demonstrative phrase (DMP) ……………………………………………...75

Figure 3.5 Post-positional phrase (PP) annotation examples (a) ergative and locative case

markers (b) genitive case marker ………………………………………………….. 76

Figure 3.6 Adverbial phrase (ADVP) example ………………………………………....77

Figure 3.7 Conjunction clause examples (a) coordinate conjunction (b) subordinate

 Conjunction ………………………………………………………………………... 78

Figure 3.8 Annotation examples of non-core clauses ………………………………….. 80

Figure 3.9 Annotation of functional labels (a) complex predicate (POF) (b) vocative

(VOC) and (c) interjection (INJ) …………………………………………………... 82

Figure 3.10 Annotation of ellipsis (a) empty noun phrase (b) empty verb complex …... 83

Figure 3.11 A phrase structure parse tree by using the CLE-UTB analysis and its

 dependency representation ………………………………………………………… 85

Figure 3.12 An equivalent dependency tree by using universal dependency labels …... 86

Figure 3.13 Corpus coverage according to number of tokens. No. of sentences are

 on y-axis and length groups are on x-axis. ………………………………………... 89

Figure 3.14 Parse tree for the sentence no. 2519 (from Table 3.13) in the treebank ….106

Figure 4.1 Length coverage of the test set …………………………………………….114

Figure 4.2 An example of structural ambiguity ……………………………………….117

Figure 4.3 Two parse trees for the same sentence ‘mAhrIn matAded mesAlEN pES kar

SaktE hyN’ (a) parse tree from a PCFG grammar (b) Parse tree via a lexicalized

xiv

grammar …………………………………………………………………………..120

Figure 4.4 A sample tree with a simple recursive neural network …………………… 123

Figure 4.5 Bi-directional long-short term memory model for sequence labeling ……. 126

Figure 4.6 Basic structure of LSTM …………………………………………………. 127

Figure 4.7 BiLSTM based parsing architecture ………………………………………129

Figure 4.8 A sample Urdu parse tree along with linearized labels ……………………131

Figure 4.9 A parse tree for a sentence ‘leRkE nE sEb KHAyA’ without contextual

 annotation ……………………………………………………………………….. 138

Figure 4.10 Parse tree for the sentence in Figure 4.9 with parental annotation ………139

Figure 4.11 The parsing scores with respect to vertical and horizontal makovizations 139

Figure 4.12 Parse trees with three word orders of the same sentence ‘mAN nE baCE

 kO utHAyA’ ……………………………………………………………………...146

Figure A.1 A sample phrase structure parse tree …………………………………….. 195

Figure A.2 An intermediate dependency representation from PS parse tree of Figure A.1

after head identification ………………………………………………………….. 201

Figure A.3 Final dependency tree from the intermediate tree of Figure A.2 after label

 mapping and conversion rules……………………………………………………..213

xv

LIST OF TABLES

Table Page

Table 2.1 Surface forms of an Urdu verb including causative and double causative

 forms……….……………………………………………………….........................15

Table 2.2 Surface forms of Urdu nouns ………………………………………………....16

Table 2.3 Urdu case markers…………………………………………………………….17

Table 2.4 Different word orders of a single sentence …………………………………...20

Table 2.5 Phrasal head for the Urdu treebank …………………………………………..25

Table 2.6 The Penn Treebank phrase labels …………………………………………….28

Table 2.7 The Penn Treebank functional labels…………………………………………29

Table 2.8 The Mapping of the PTB-I[107] and the PTB-II[16] on universal phrase

 label set proposed in [73]…………………………………………………………...37

Table 2.9 Universal Dependency UD-V2 labels………………………………………....41

Table 2.10 Universal Dependency UD-V2 labels………………………………………. 42

Table 2.11 The Head rules for The Penn Treebank from [37]…………………………...49

Table 3.1 The CLE Urdu POS tag set…………………………………………………....65

Table 3.2 Phrase label set………………………………………………………………...67

Table 3.3 Functional label set…………………………………………………………....69

Table 3.4 Number of sentences and tokens against different text domains of the

 corpus…………………………………………………………………………….88

Table 3.5 Completeness and correctness evaluation sample reports for (a) list of phrases

 with no content (b) list of incorrect POS tags (c) list of incorrect phrase labels…...91

xvi

Table 3.6 Inter-annotator agreement against POS tags, phrase and functional labels …..94

Table 3.7 Top ten disagreements with respect to POS tags, phrase and functional label

 annotation……….………………………………………………………………….96

Table 3.8 Kappa coefficients for inter-annotator agreements against POS tagging,

constituent labeling, constituents based on the tokens in the reference corpus………….98

Table 3.9 A sample context-free grammar with rule frequencies sorted in nondecreasing

 order………………………………………………………………………………..99

Table 3.10 (a) List of potentially implausible grammar rules prepared to extract

sentences for revision (b) Evaluation report based on a list of grammar rules…………101

Table 3.11 Statistics of sentences and labels which have been reviewed or revised based

 on implausible grammar report……………………………………………………102

Table 3.12 Sample POS grammar containing POS tags against words and number of

 unique tags and statistics of words with count of POS tags………………………103

Table 3.13 Sample results of consistency-checker for lexical items, POS tags and phrase

 labels………………………………………………………………………………105

Table 3.14 Groups and sentences reviewed against lexical items, POS tags and phrase

 labels for zero and one context……………………………………………………107

Table 3.15 Frequencies of phrase and functional labels in the final treebank………….108

Table 3.16 Word statistics according to number of POS tags with number of unique

 words, their instances and coverage in the final treebank.......................................109

Table 3.17 Domain-wise statistics (%) of phrase labels in the final treebank……….…111

Table 3.18 Domain-wise statistics of functional labels in the treebank………………..112

Table 4.1 Domain-wise train and test set division……………………………………...115

xvii

Table 4.2 Length-wise division of the test set………………………………………….115

Table 4.3 Comparison of our proposed sequential labeling with the labeling of [62] with

 respect to the Urdu Treebank……………………………………………………...132

Table 4.4 Updated POS tags for post-positions and punctuations……………………..136

Table 4.5 F-scores with respect to vertical and horizontal makovization values when

 evaluated on the test set by training a PCFG parser………………………………140

Table 4.6 Urdu head-word identification……………………………………………….142

Table 4.7 Head model evaluation for manually annotated sentences…………………..143

Table 4.8 Ordered test set having three word orders…………………………………...147

Table 5.1 Grammar-based parsing results by using gold and predicted POS tags……..150

Table 5.2 Lexicalized parsing results with lemmatization……………………………...152

Table 5.3 Quantitative evaluation of the lemmatizer…………………………………...152

Table 5.4 Lexicalzed parsing results by applying word clustering……………………..154

Table 5.5 Data-oriented parsing results against gold and predicted POS tags…………156

Table 5.6 Parsing results with SOV, OSV and SV word orders………………………..157

Table 5.7 Neural parsing results for gold and predicted POS tags……………………..158

Table 5.8 Parsing results of the BiLSTM parser with respect to phrase labels………...160

Table 5.9 Category Statistics (all categories / errors) with respect to reference corpus..161

Table 5.10 Neural parsing results by including functional labels………………………162

Table 5.11 Parsing results of BiLSTM parser with respect to individual functional

 labels…………..…………………………………………………………………..163

Table 5.12 Error analysis of functional labels with respect to reference corpus……….165

Table 5.13 Summary of parsing results with respect accumulative scores of best

xviii

 performing models………………………………………………………………..166

Table A.1 Head word model for Urdu treebank………………………………………..197

Table A.2 The mapping of the CLE-UTB tags on UD-POS tags………………………203

Table A.3 The mapping of the CLE-UTB phrase labels on UD labels for core

 arguments………………………………………………………………………….205

Table A.4 The mapping of the CLE-UTB phrase labels on UD labels for non-core

 dependents………………………………………………………………………...207

Table A.5 The mapping of the CLE-UTB phrase labels on UD labels for nominal

 dependents…………….…………………………………………………………..209

Table A.6 The mapping of the CLE-UTB phrase labels on UD labels for dependency

 relations……………………………………………………………………………210

Table A.7 List of pronouns marked as indirect objects………………………………...212

Table A.8 UD labels which have been used by converted dependency treebank……...214

Table A.9 Dependency parsing results for the newly converted Urdu DS treebank…...216

Table B.1 Comparison of the CLE-UTB functional labels with the HUTB dependency

 labels……………………………………………………………..………………..218

xix

NOMENCLATURE

Symbol Description

NLP Natural Language Processing

PS Phrase Structure

DS Dependency Structure

POS Part Of Speech

MRL Morphologically Rich Language

PTB Penn Treebank

UTB Urdu Treebank

HUTB Hindi Urdu Treebank

KON-TB Konstanz Treebank

PCFG Probabilistic Context-free Grammar

TSG Tree Substitution Grammar

DOP Data Oriented Parsing

RNN Recursive Neural Network

LSTM Long Short Term Memory

BiLSTM Bi-directional LSTM

RFE Relative Frequency Estimate

EWE Equal Weight Estimate

CVG Compositional Vector Grammar

Word2Vec Words To Vectors

ELMo Embeddings for Language Models

xx

BIRA Bidirectional Interpolated Refining Alternating

SOV Subject Object Verb

OSV Object Subject Verb

SVO Subject Verb Object

NOM Nominative

ERG Ergative

ACC Accusative

DAT Dative

INS Instrumental

ABL Ablative

LOC Locative

GEN Genitive

SG Singular

PL Plural

MASC Masculine

FEM Feminine

Perf Perfective

NN Common Noun

NNP Proper Noun

VBI Main Verb Infinitive

VBF Main Verb Finite

AUXA Auxiliary Aspectual

AUXP Auxiliary Progressive

xxi

AUXM Auxiliary Modal

AUXT Auxiliary Tense

PRP Pronoun Personal

PDM Pronoun Demonstrative

PRS Pronoun Possessive

PRD Pronoun Relative Demonstrative

PRR Pronoun Relative Personal

PRF Pronoun Reflexive

APNA Pronoun Reflexive Apna

JJ Adjective

Q Quantifier

CD Cardinal

OD Ordinal

FR Fraction

QM Multiplicative

RB Common Adverb

NEG Negation

PRE Preposition

PSP Post Position

CC Coordinate Conjunction

SC Subordinate Conjunction

SCK Subordinate Conjunction Kar

SCP Subordinate Conjunction Pre-sentential

xxii

INJ Interjection

PRT Particle

VALA Vala Particle

SYM Symbol

PU Punctuation

FF Foreign Fragment

NP Noun Phrase

VC Verb Complex

PP Postpositional Phrase

ADJP Adjective Phrase

ADVP Adverbial Phrase

QP Quantifier Phrase

S Simple Phrase

SBAR Subordinate Clause

PREP Prepositional Phrase

DMP Demonstrative Phrase

FFP Foreign Fragment Phrase

SUBJ Subject

OBJ Object

OBL Oblique

ADJ Adjunct

POF Part Of Function

PDL Predicate Link

xxiii

VALA Vala Verb

VOC Vocative

INJ Interjection

G Genitive

NLU Natural Language Understanding

LR Labeled Recall

LP Labeled Precision

LAS Labeled Attachment Score

UAS Unlabeled Attachment Score

LA Labeled Accuracy

1. INTRODUCTION

Urdu is rich in morphology and is written by using a version of the Arabic script

from right to left. It is an Indo-Aryan language which is mainly spoken in the South

Asian region. There are over 160 million speakers who speak Urdu as first and sec-

ond language all over the world [138]. It has several distinguishing linguistic properties

which include rich morphology [79], case system [26, 85], a structure of complex predi-

cates [28, 23] and flexible word-order [126]. These characteristics of the language make

it more challenging to perform the tasks of language processing. It is considered as low

resourced language, however a number of efforts are undertaken in the past decade and

several essential linguistic resources have been developed to perform NLP tasks. These

tasks include development of Urdu corpora, analysis of morphology, tokenization and

word segmentation, part of speech tagging, sequence chunking and syntactic parsing.

Urdu remains under-resourced despite these efforts and there is a need to develop lin-

guistic resources and tools to achieve competitive computational results as compared to

computationally developed languages.

The corpus-based methods are more focus by the modern research for language

processing tasks. Treebanks are essential resources for a range of NLP tasks. A number

of treebanks have been developed by using phrase structure (PS) [107, 103, 152, 116,

1

117] and dependency structure (DS) [100, 72, 22, 136]. The development of Penn Tree-

bank gave new perspectives and inspirations for the development of syntactic resources

for many other languages and corpus based syntactic analysis. The Penn Treebank

(PTB) was a central resource during the development of statistical parsers. PTB has a

phrase structure annotation scheme along with functional labels to represent grammati-

cal roles. The phrase structure annotation scheme was influential for the development of

resources of many other languages. Dependency structure is another annotation method

which represents the grammatical relations by using dependency labels and shows de-

pendencies on head words. Currently, a lot of treebanks have been developed having

dependency structures.

To perform the task of statistical parsing, an Urdu treebank is required with

sufficient number of annotated sentences. Therefore we have developed a treebank

for Urdu (CLE-UTB) which has been annotated by using phrase structure annotation

and performed constituency parsing. The treebank was later converted to dependency

structure to perform dependency parsing. The CLE-UTB was initiated to investigate

the relationship between syntax and prosody of an annotated speech corpus of Urdu.

However, the size of the treebank was extended to have 7,854 sentences and an extensive

evaluation was undertaken to produce a consistent resource. Prominent Urdu treebanks

which existed already are Hindi-Urdu Treebank (HUTB) [14] and the Urdu.KON-TB

[2]. The HUTB uses the Paninian grammatical model [11] to annotate dependency

structured trees. The HUTB guidelines for phrase structure have been derived from

the Minimalist Program [33]. It proposed binary trees and has specific positions for

syntactic arguments which enforces the complex tree structure for constituents with

2

flexible word order. The focus of this research is on syntactic structure of Urdu language

only. By adding more information like morphological features in the annotation process

will increase the data requirements significantly which would make it more challenging

task for a low-resourced language Urdu.

In contrast, a phrase structure annotation scheme has been used for the devel-

opment of the Urdu.KON-TB. The annotation scheme has a composite label set. The

annotation labels attach the information about case, tense, aspect and modality with

them. It has a large annotation scheme containing 26 phrase labels. Although, it is a

small sized resource containing 1,400 sentence with an average length of 13.73 words.

Because of its complex annotation scheme and smaller size, we initiated to develop a

larger treebank for Urdu. The annotation scheme of our treebank provides a simpli-

fied and consistent annotations. The guidelines for syntactic annotation are inspired by

the Urdu.KON-TB with few additional structures. However, the annotation scheme for

the development have been derived from several resources including a universal tag set

[73], Penn Treebank and HUTB. Our annotation scheme provides several advantages

in the process. Less complex parse tree are produced due to the simplicity of the tag

set. The scheme is in-line with other resources rather than having a totally new label

set. The scheme helps to minimize the data requirements to train statistical parsing

models. Alongside the smaller tag set, our annotation scheme is quite appropriate to

annotate constituency structure of Urdu. Chapter 3 discusses the annotation label set

and annotation guidelines of the CLE-UTB in more detail.

The development of a consistent linguistic resource is essential for corpus based

NLP to attain valid results. We have performed multiple evaluation tasks during the

3

annotation of the treebank. These tasks include completeness and correctness check-

ing, a grammar-based evaluation and automatic treebank consistency checking. In the

completeness and correctness checking, we ensured that all the tokens and phrases have

a correct label. The checking has been done for POS tags, phrase and functional la-

beling. Under the grammar-based evaluation, potentially implausible grammar rules

have been identified. A grammar was extracted containing those rules and the reported

sentences were reviewed according to the annotation guidelines. Finally, an automatic

consistency checking took has been used to identify incorrect annotations according to

their contexts. The tool has been employed to evaluate POS tags, phrase and functional

labels. It identified outliers which were further reviewed manually. Before performing

grammar-based evaluation and consistency checking, a random reference corpus was

extracted to perform inter-annotator agreement. The overall agreement was higher than

90% for phrase label annotations. After treebank evaluation, we performed the treebank

analysis with respect to text genres and reported statistics of the labeling in the treebank.

For the annotation of the treebank a balanced corpus has been collected which contains

text from fifteen different text domains. The developed treebank contains 7,854 sen-

tences with 148,775 tokens.

This work presents the state-of-the-art results by performing constituency pars-

ing for the CLE-UTB. To parse morphologically rich and relatively free word-order

languages like Urdu is not a trivial task because they have diverse vocabulary with

respect to surface forms. The flexible word order also produces a number of combina-

tions of phrases in a treebank which increases the data requirements to train statistical

4

models. Several parsing techniques and formal grammars are available for natural lan-

guage parsing. In this work, we have done experiments with statistical models which

include probabilistic context-free grammars, data-oriented parsing (DOP), lexicalized

grammars, a recursive neural network based parser and a bi-directional long-short term

memory (BiLSTM) model to parse our treebank. We have developed a parser and POS

tagger to train on the CLE-UTB which are based on BiLSTM networks. The results

were further enhanced by performing transfer learning by using word representations

which were trained on a large Urdu corpus. Our BiLSTM parser and POS tagger out-

performed the grammar based parsing models regardless of employment of linguistic

features with them. Before training neural parser, several linguistics properties and

features were used to enhance the parsing results for grammar-based models. These

features were helpful to increase parsing scores by improving learning capabilities of

the parsers. The linguistic features included dependency knowledge of case markers of

Urdu and POS sub-categorization on the bases of that information, head-word for lexi-

calized parsing and phrase parental annotation in parser trees, lemmatization and word

clusters.

The statistical parsing of morphologically-rich languages (MRLs) prompts spe-

cific challenges to be catered first as examined by [148]. Tsarfaty et al. [148] brought

up three essential issues which are needed to be offered an explanation to parse an MRL.

1) What is the type of input and language representation? 2) How should morphological

data be represented at the annotation step? 3) How much training data is required for

preparing a parser? The first question asks about the form of input to the parser whether

5

it is plain text, lemmatized text, text with their POS tags or some other encoding or clus-

tering method which could be helpful for better parsing results. The second question

is about the annotation scheme and implementation of the morphological information

at phrase level. The annotation scheme is influential to answer the third question. A

larger and morphologically richer annotation labeling will lead to have more training

data. This work also responds to these inquiries and performs phrase structured parsing

for Urdu. For the sake of simplicity of meaningfulness in this thesis, all the examples

are exhibited by employing a Roman transliteration scheme proposed by [105].

The parsers have been assessed against a solitary test set which was further

divided into three categories; small, medium and long sets. The test set was prepared

in a way that it contains text from all genres and sentence length of the corpus. The

evaluation has been performed on plain Urdu text as well as by encoding POS labels

with the tokens.

The dependency based POS sub-categorization for post-positions and punctu-

ation symbols were helpful to improve the performance of grammar-based parsers.

Therefore, the later models have been trained and tested on the extended POS tag set.

The lemmatization was further performed to diminish the information sparsity and it

produced an unobtrusive improvement in the parsing scores for lexicalized PCFG pars-

ing model. An unsupervised word clustering method categorized the tokens into groups

depending on their grammatical similarities. We performed lexicalized parsing by re-

placing tokens with their cluster labels. For word clustering, we have used a predictive

exchange algorithm as described in [48]. The word clustering was helpful to enhance

the parsing results. Urdu has adaptable word-order, in this way the DOP and RNN

6

models have been additionally assessed on a test set which was classified with various

orders. However, our BiLSTM parser outperformed other parsers by employing transfer

learning.

The dependency structure produces the annotation of grammatical information

by showing dependencies on head-words and dependency labels to represent their re-

lationships. The annotation scheme of the CLE-UTB is compatible with dependency

structure as it uses a relatively flat structure which is helpful to mark flexible word or-

der of the language. The phrase labels are encoded with functional tags which can be

mapped on dependency labels to represent dependency relationships. We have con-

verted our treebank to dependency structure to perform dependency parsing. However,

the dependency treebank and parsing is additional work of this dissertation and is still

in progress. Therefore the detail of phrase to dependency conversion and dependency

parsing are presented in Appendix A. We have derived a head-word model and a phrase

to dependency label mappings. The head-word model identifies the head words with

in constituents and for dependency label mapping, we have used the Universal De-

pendency version 2.0 (UD 2.0)1 label set. Several post conversion rules have been

employed to enhance the conversion accuracy. We have further trained the dependency

parsers on the converted dependency treebank and compared the results with an existing

Urdu dependency treebank which is a part of HUTB. Our treebank produces competi-

tive dependency parsing results when trained on a BiLSTM parser2.

The syntactic parsing is useful for a number of language processing tasks in-

cluding sentiment analysis, semantic parsing, machine translation, speech recognition

1https://universaldependencies.org/
2https://github.com/elikip/bist-parser

7

and text to speech systems. A phrase based sentiment classification has been performed

for Brazilian Portuguese in [43]. They have performed lexicon-based analysis by in-

corporating phrase structure based on X-bar theory. The sentiments were computed for

all the constituents which were further combined to assign a polarity to the whole sen-

tence. Similarly, Chinese language sentiment analysis has been performed for Weibo3

in [97]. They have trained latent Dirichlet allocation (LDA) model along with Gibbs

sampling for inference. They further used the dependency structure information to find

the details of subjects and objects. The syntactic parsing has been performed by using

a parser presented in [98]. Beside incorporating syntactic parsing in sentiment analysis,

an annotated corpus has been developed on a phrase structure treebank [142]. The cor-

pus has been annotated with sentiment labels along with syntactic categories. The parse

trees have been achieved by using Stanford parser [94].

The syntactic parsing is also helpful for the semantic annotation and parsing by

providing the grammatical relations of phrases and lexical items. A semantic parsing

has been performed by using syntactic parsing in [156]. They proposed a neural net-

work based joint model to perform semantic and syntactic parsing. They used semantic

details to perform phrase structure and dependency parsing and vice versa. They re-

ported promising results as compared to existing models. Another semantic analysis for

user utterances of task oriented dialog has been proposed in [71]. They further built a

semantic dataset which used a constituency parser to attain the hierarchical structure of

the sentences. The constituency parsing has been further used to parse sentences with

elided elements [83]. Semantic roles have been used to identify gapping elements.

3www.weibo.com

8

The syntactic parsing has been further applied in machine translation and speech

processing systems. A hybrid decoder for neural machine translation has been proposed

by employing recurrent neural network grammars (RNNG) [53] [56]. The hybrid model

has been combined by joining the language model decoder and RNNG while sharing

word vectors. Another method to incorporate parse tree structure in the neural machine

translation has been proposed in [151]. The model generates the tree structure on target

side and the parser is similar to the one presented in [53]. The syntactic information

has also been used for automatic speech recognition [42]. The syntactic parsing has

been used in speech synthesis in [70]. The have improved the quality of pronunciation,

prosody and naturalness in the produced speech by using the syntactic categories from

parse trees of the sentences. The phrase structure has been used for word relations and

this information was helpful to improve the system performance.

The thesis has been organized as follows. Chapter 2 presents the related works

and review of literature for treebank development and statistical parsing. Chapter 3

discusses the development of the treebank CLE-UTB. It presents the details of the col-

lected corpus, annotation scheme, annotation guidelines, treebank evaluation steps and

phrase to dependency structure. Chapter 4 presents the details of the parsing models and

linguistic features. The parsing models include grammar-based parsers, data-oriented

parsing, lexicalized grammars, recursive neural network parser and the proposed BiL-

STM parser. Chapter 5 presents the constituency and dependency parsing and POS

tagging results and discussions. Appendix A discusses the dependency treebank and

parsing. Chapter 6 provides the conclusions and discusses future works.

9

2. LITERATURE REVIEW

This chapter presents the detailed survey of the related works which have been

influential for the development of this computational resource for Urdu. Several prereq-

uisites are required to perform syntactic analysis and annotation of any language. The

language representations, in terms of character sets and lexical analysis provide distinc-

tive units for structural analysis. In case of Urdu, word segmentation, morphological

richness and free word order pose fundamental challenges at the first step. The second

step is about the selection of suitable grammatical structure and its annotation scheme.

An annotation scheme should be compatible with the related resources and it should

be able to annotate the syntax of a language. Correct and consistent annotation of a

resource is important to train and evaluate machine learning algorithms. In this chapter,

we present the related works starting from fundamental tasks to the statistical parsing

of morphologically rich languages

This chapter is organized as follows. Section 2.1 presents the basic charac-

teristics of Urdu. Section 2.2 presents the literature for different types of treebanks

and their annotations. This section includes discussions for phrase structures as well

as dependency structure treebanks. Section 2.3 describes parsing techniques and their

evaluations for different languages. Section 2.4 presents the literature about parsing

morphologically-rich languages.

10

2.1 CHARACTERISTICS OF URDU

This section presents basic characteristics and fundamental challenges of Urdu.

Following sections describe word segmentation, morphological richness, case system,

free word order, complex predicates and phrasal heads. All these properties are neces-

sary to perform lexical and syntactic analysis of Urdu.

2.1.1 Word Segmentation

Urdu uses an extended version of Arabic script which is a cursive script and

is written from right to left. Several Unicode based phonetic keyboard are available

to type Urdu on computers. The Arabic Unicode chart 1 contains characters for many

languages which are written by using a subset of the whole script. Characters have

different properties which change their shapes when used with other characters. A

single character can be written at four different positions in a word which include initial,

middle, final and isolated positions [52]. One or more characters combine to make

ligatures and ligatures further constituent words. An isolated character can appear as

a ligature in a word. The characters which combine to make ligatures, usually change

their shapes depending on their positions.

Joining is the most important property of a character in the Arabic script. Some

characters are two sided joiners, that is, they can appear at initial, middle and final posi-

tions of a ligature. These alphabets include ‘Bay’,‘Pay’,‘Jeem’ etc. Some characters are

one sided joiners which means they only appear at the final position of ligatures. These

letters include ‘Ray’, ‘Daal’, ‘Wao’ etc. Any letter appearing in isolated form at final

1https://www.unicode.org/charts/PDF/U0600.pdf

11

position of the previous letter, is a one sided joiner. The letter ‘Bari-Yey’ always appears

at the end of ligatures or in isolated form. It does not appear at initial or middle position

of any ligature. The joining properties of the script, produce words with various number

of ligatures. The characters may have different shapes by appearing at different posi-

tions. Spaces are usually used to separate ligature and to maintain the plausible shapes

but not to separate words essentially. The ligatures and words appear separated to the

reader even if the space character is missing. Therefore, the writing system has a basic

problem of word segmentation. For the word and phrase level computational analysis,

the tokenization is fundamental task which is not directly supported by the script.

To compute the language, one should perform manual tokenization or imple-

ment an automated word segmentation. A few word segmentation systems have been

developed for Urdu [52, 8, 18]. In [52], the space errors have been divided into two cat-

egories, space omission errors and space insertion errors. Figure 2.1 shows an example

of space omission errors.

(a) لڑکےنےشیرکودیکھا
(b) لڑکے نے شیر کو دیکھا

laRkE=nE SEr=kO dEkHA
boy.M.Sg.Erg lion.M.Sg.Acc see.Perf.Sg
‘The boy saw the lion.’

FIGURE 2.1: Space omission errors. (a) Incorrect: no spaces between words. (b)
Correct: space after each word.

Figure 2.1 (a) does not have any spaces between words of the sentence. The

words show plausible shapes to readers because of non-joiner characters at the final

position of each word. However, the tokenization of such sentences and words create

erroneous word by combining more than one lexical items. These types of errors are

12

referred are space omission errors [52]. Figure 2.2 shows examples of space insertions

errors where spaces are inserted between words to keep the shapes of the words.

	(Responsibility)	داری	ذمہ	(a)
(Cheerful)	مزاج	خوش	(b)
		(Mantra)	منتر	جنتر	(c)

(Television)	وژن	ٹیلی	(d)
(U.E.T)	ٹی	ای	یو	(e)

FIGURE 2.2: Space insertion errors. (a) zimE dArI (Responsibility) (b) xuS mizAj
(Cheerful) (c) jantar mantar (Mantra) (d) TElI vIyan (Television) (e) U.E.T (Abbrevia-

tion)

Figure 2.2 shows five space insertion issues where spaces have been typed be-

tween words. The space insertion errors have been divided into five categories which in-

clude space insertions for affixation, compounding, reduplication, foreign words which

are transcribed into Urdu and abbreviations [52].

The automatic word segmentation systems have been developed to overcome

these errors automatically [52, 8, 18]. An n-gram based ranking algorithm has been

developed which achieved an overall word segmentation accuracy of 95.8% [52]. The

segmentation accuracy was further improved by using ligatures are basic units rather

than words. The ligature based n-gram model achieved the best accuracy of 96.1%

[8]. Another Urdu word segmentation system was developed by applying conditional

random field in [18]. They have used manually annotated data to predict space as word

boundary and zero-width-non-joiner (ZWNJ) as sub-word boundary where it was used

to overcome space insertion errors. The model achieved an F1 score of 97% for space

omission errors and 85% for space insertion errors. In our research, we developed

a treebank by using manual annotation of sentences. Automated word segmentation

may not produce hundred percent accuracy therefore, we have segmented the corpus

manually during the annotation. The space omission problems have been solved by

13

inserting spaces between words and for space insertion errors, ZWNJ character has

been used to mark sub-word boundaries.

2.1.2 Morphological Richness

A morphologically rich language (MRL) has many surface forms for a single

root word. Urdu has more than 25 forms for a verb. It has same number of additional

forms for causative verbs and double causatives. There are a total seventy five forms

for a verb [79]. An Urdu verb has surface forms for tense, number, gender, person

and honorifics. Table 2.1 shows the forms of an Urdu verb Aê» ‘eat’ along with its

morphological features.

Table 2.1 shows 25 underlying forms against non-causative, causative and dou-

ble causative surface forms. There are total 75 underlying forms and 51 unique surface

forms. The underlying forms represent the morphological properties with respect to

tense, number, gender, person and honorifics. The underlying forms are divided into

five categories including infinitive, past, habitual, non-past and commands.

In case of nouns, there are forms for number, gender and case. Urdu has its

own vocabulary and morphology however, in some cases, it borrows the morphology

from Arabic and Persian. Therefore, there are many affixation rules for Urdu nouns

[79]. These include morphological rules for thesw words from Persian and Arabic as

well. There are different rules for masculine and feminine nouns. Table 2.2 presents

examples of simple masculine and feminine nouns and their morphological forms.

Table 2.2 shows surface forms along with underling forms of two nouns. Urdu

has a diverse morphology hence has many morphological rules for making surface

14

TABLE 2.1: Surface forms of an Urdu verb including causative and double causative
forms.

No. Features Non-Causative Causative Double Causative

1 Root Aê» Cê» @ñÊê»

2 Infinitive singular A
	
K Aê» A

	
KCê» A

	
K @ñÊê»

3 Infinitive feminine ú
	
GAê» ú

	
GCê» ú

	
G @ñÊê»

4 Infinitive plural
ÿ

	
�Aê»

ÿ

	
�Cê»

ÿ

	
�@ñÊê»

5 Past masculine singular AK
Aê» AK
Cê» AK
 @ñÊê»

6 Past feminine singular ù

KAê» ù

KCê» ù

K@ñÊê»

7 Past masculine plural
þAê»

þCê»

þ@ñÊê»

8 Past feminine plural á�

KAê» á�

KCê» á�

K @ñÊê»

9 Habitual masculine singular A
�
KAê» A

�
KCê» A

�
K @ñÊê»

10 Habitual masculine plural
ÿ

�
�Aê»

ÿ

�
�Cê»

ÿ

�
�@ñÊê»

11 Habitual feminine singular ú
�
GAê» ú

�
GCê» ú

�
G@ñÊê»

12 Habitual feminine plural á�

�
KAê» á�

�
KCê» á�

�
K @ñÊê»

13 Non-past 3P singular
þAê»

þCê»

þ@ñÊê»

14 Non-past 3P plural á�

KAê» á�

KCê» á�

K @ñÊê»

15 Non-past 2P singular
þAê»

þCê»

þ@ñÊê»

16 Non-past 2P plural honor-1
ðAê»

ðCê»

ð@ñÊê»

17 Non-past 2P plural honor-2 á�

KAê» á�

KCê» á�

K @ñÊê»

18 Non-past 2P plural honor-3
ÿ�Aê»

ÿ�Cê»

ÿ�@ñÊê»

19 Non-past 1P singular à

ðAê» à

ðCê» à

ð@ñÊê»

20 Non-past 1P plural á�

KAê» á�

KCê» á�

K @ñÊê»

21 Command singular Aê» Cê» @ñÊê»

22 Command plural honor-1
ðAê»

ðCê»

ð@ñÊê»

23 Command plural honor-1 ñJ

KAê» ñJ

KCê» ñJ

K @ñÊê»

24 Command plural honor-2 á�

KAê» á�

KCê» á�

K @ñÊê»

25 Command plural honor-3
ÿ�

Aê»

ÿ�

Cê»

ÿ�

@ñÊê»

forms. Simple affixation rules are applied to these nouns. The forms have been shown

for nominative singular and plural nouns. Other forms have been achieved against erga-

tive, accusative and vocative cases.

Different feature annotation schemes are available to use in the development of

datasets. The parallel grammar project (ParGram) provides a framework to perform

grammatical analysis of a language by writing constituency and functional structure of

a sentence [29, 25]. It also provides an annotation scheme for morphological features.

15

TABLE 2.2: Surface forms of Urdu nouns.

No. Features Root Surface Form

1 Nominative masculine singular A¿�QË A¿�QË

2 Nominative masculine plural A¿�QË

ÿ» �QË

3 Ergative masculine singular A¿�QË

ÿ» �QË

4 Ergative masculine plural A¿�QË àñ»�QË

5 Accusative masculine singular A¿�QË

ÿ» �QË

6 Accusative masculine plural A¿�QË àñ»�QË

7 Vocative masculine singular A¿�QË

ÿ» �QË

8 Vocative masculine plural A¿�QË ñ»�QË

1 Nominative feminine singular ú» �QË ú» �QË

2 Nominative feminine plural ú» �QË àAJ
»
�QË

3 Ergative feminine singular ú» �QË ú» �QË

4 Ergative feminine plural ú» �QË àñJ
Ë
�QË

5 Accusative feminine singular ú» �QË ú» �QË

6 Accusative feminine plural ú» �QË àñJ
»
�QË

7 Vocative feminine singular ú» �QË ú» �QË

8 Vocative feminine plural ú» �QË ñJ
»
�QË

Universal Dependencies V2.0 provide a tag set for the annotation of morphological

features2. It produces labels for lexical and inflectional features for nouns and verbs.

Similarly, Universal Morphology (UniMorph) project provides a framework to annotate

morphology of any language [90]. Currently, there are data sets for more than one

hundred languages including Urdu 3.

Morphological richness of a language requires large amount of text to produce

computational resources as it may cause data sparsity for machine learning algorithms.

The annotation labels at lexical and phrase level need to be devised to take care of this

issue. Beside the morphology of single word, Urdu also produces forms with multiple

lexical items from affixations, compounding, reduplications, transcription of foreign

2https://universaldependencies.org/u/feat/index.html
3https://unimorph.github.io/

16

words and abbreviations. The morphological phenomena also create the issue of word

segmentation. The second question asked in [148] is about the influent of morphology

when designing an annotation scheme to develop a treebank. Section 3.1 describes the

design of our POS and phrase label sets in more detail.

2.1.3 Case System

Cases represent the grammatical roles of nouns, adjectives, pronouns or numer-

als in the sentences. Urdu reflects its case systems by using clitics. These clictics

are also called case markers. The case markers appear as isolated lexical items in the

phrases hence attain a lexical category. They usually appear after the main word classes

like nouns, pronouns, adjectives etc. Urdu has eight cases [85, 24, 26] which are shown

in Table 2.3.

TABLE 2.3: Urdu case markers.

Sr# Case Clitic Grammatical Function

1 Nominative none Subject/Object

2 Ergative nE Subject

3 Accusative kO Object

4 Dative kO Subject/Indirect Object

5 Instrumental sE Oblique/Adjunct

6 Ablative sE Oblique/Adjunct

7 Genitive kA/kI/kE Subject/Object specifier

8 Locative mEN/par/tak Oblique/Adjunct

Table 2.3 shows case markers, clitics and their grammatical functions. The nom-

inative case does not use any clitic but it is used to represent subjects and objects. Erga-

tive and accusative cases use clistics ‘nE’ and ‘kO’ to mark subjects and objects. The

17

sentence in (1) below shows an example of nominative case. The example in (2) presents

ergative and accusative cases.

(1) mOminA

Momina.F.Sg.Nom

skUl

School.M.Sg.Nom

jAtI

go.Pres.F.Sg

hE

be.Pres.3.Sg

‘Momina goes to school.’

(2) mOminA=nE

Momina.F.Sg=Erg

sAim=kO

Saim.M.Sg=Acc

bulAyA

call.Perf.M.Sg

‘Momina called Saim.’

The dative case uses the ‘kO’ clitic to mark indirect object as shown by (3). Dative

cases are used to mark dative subjects and indirect objects.

(3) sAim=nE

Saim.M.Sg=Erg

MOmina=kO

Momina.F.Sg=Dat

kitAb

book.Nom.F.Sg

dI

give.Pres.3.F.Sg

‘Saim gave the book to Momina.’

Example (4) presents the instrumental case which uses ‘sE’ clitic. Instrumental

cases usually mark oblique or adjunct grammatical roles in the sentences.

(4) mOminA

Momina.F.Sg.Nom

pensil=sE

pencil.F.Sg=Ins

acHA

good.M.Sg

likHtI

Write.Pres.F.Sg

hE

be.Pres.3.Sg

‘Momina writes better with a pencil.’

18

Example (5) demonstrates genitive case by using the clitic ‘kA’. According to

[26], genitive case markers are used as specifiers for subjects in infinitive clauses, fi-

nite copula constructions and simple nominal specifiers. The most common use is the

nominal specifier to show possessions.

(5) kEf=kA

Kaif.M.Sg=Gen

bastA

bag.M.Sg

‘Kaif’s bag.’

Example (6) shows a locative case by using the case marker ‘par’. Locative case markers

usually mark obliques for compulsory arguments and adjuncts for nor-core arguments.

(6) kitAb

Book.F.Sg.Nom

mEz=par

table.M.Sg=Loc

rakHI

put.Perf.F.Sg

hE

be.Pres.3.Sg

‘The book is on the table’

Understanding of the case system is important for the grammatical analysis of

Urdu. The examples discussed above present the contribution of different cases to mark

grammatical relations. In Urdu, these case markers appear as independent tokens de-

manding a lexical category. Therefore, the lexical and phrasal level annotation should

have labels to label them. Chapter 3 describes label sets for the annotation of the Urdu

treebank and annotation guidelines.

19

2.1.4 Free Word Order

The word-order analysis is crucial for syntactic annotation of the argument struc-

ture. Urdu has a flexible word order [126]. The grammar usually has a subject-object-

verb (SOV) order but other orders also appear in the corpus like SVO, OSV etc. Adjunct

arguments further have flexible order in the sentences. The positions of arguments are

flexible but within the phrases, words and clitics keep a fixed order. Table 2.4 demon-

strates the flexible order property by showing all possible orders of arguments for a

sentence.

TABLE 2.4: Different word orders of a single sentence.

laRkE=nE SEr=kO dEkHA
boy.M.Sg=Erg lion.M.Sg=Acc see.Perf.M.Sg
‘The boy saw the lion.’

1. laRkE=nE (the boy) SEr=kO (the lion) dEkHA (saw)

2. SEr=kO (the lion) laRkE=nE (the boy) dEkHA (saw)

3. SEr=kO (the lion) dEkHA (saw) laRkE=nE (the boy)

4. laRkE=nE (the boy) dEkHA (saw) SEr=kO (the lion)

5. dEkHA (saw) laRkE=nE (the boy) SEr=kO (the lion)

6. dEkHA (saw) SEr=kO (the lion) laRkE=nE (the boy)

The sentence in Table 2.4 has three arguments, an ergative subject, an accusative

object and a verbal structure. All three core arguments can appear in any order resulting

in plausible argument structure. All the given orders have the ability to convey correct

meaning of the sentence. However, the syntactic annotation of different orders would

show parse trees with different shapes.

The Urdu word order is also effected by ezafe constructions which are mainly

borrowed from Persian The ezafe constructions constitute noun phrases with reverse

20

order of nouns and their modifiers [21]. A noun phrase normally contains one or more

modifiers followed by a noun. In ezafe constructions, a noun appears before its modifier.

These constructions use a vowel sound which is pronounced with head word appearing

at the start of the constituent. For example, a noun phrase gul=e tAzA ‘fresh flower’ has

a noun modifier tAzA ‘fresh’ appearing after the noun while a clitic ‘e’ is pronounced

with noun gul ‘flower’. The ezafe clitic is represented by using a diacritic but it is not

essential part of the script. A similar construction is used to show possession in a noun

phrase. In this case, possession is associated to the noun on right while the noun on

left is the head. For example, hakUmt=e Pakistan ‘The government of Pakistan’ shows

possession by using ‘e’ with a changed word order.

2.1.5 Complex Predicates

Urdu also uses complex predicate structure to depict the verbal concepts. The

complex predicates make combinations such as verb+verb, noun+verb, adjective+verb

and quantifier+verb [23, 112, 30, 7]. For the complex predication with nouns, adjectives

and quantifiers, the first portion contains the core predicate which are usually followed

by light verbs. The auxiliary verbs further appear after light verbs with respect to tense,

aspect and modality of the sentences. According to [30] and [7], frequent light verbs

are kar ‘do’, hO ‘be’, and dE ‘give’. However, there are also other verbs which are used

with specific combinations. In (7), the constituent SurU kI ‘started’ makes noun+verb

complex predicate structure. The noun SurU ‘start’ produces the semantics of the action

and the light verb kI ‘do.Perf.F.Sg’ further provides the information of tense, gender and

number.

21

(7) laRkE=nE

boy.M.Sg=Erg

paRHAI

study.F.Sg.Nom

SuRU

start.Sg

kI

do.Perf.F.Sg

‘The boy started the study.’

The example presented in (8), show the adjective+verb structure. The con-

stituent band kar diyA ‘closed’ has two components, and adjective band ‘close’ and

a verbal structure kar diyA ‘done’. The verbal structure, in this example, contains a

light verb followed by an aspectual auxiliary verb.

(8) sAim=nE

Saim.M.Sg=Erg

darvAzA

door.M.Sg.Nom

band

close.Sg

kar

do.Imperf.Sg

diyA

give.Perf.M.Sg

‘Saim closed the door.’

The example in (9) presents the complex predicate structure containing quan-

tifier+verb. The quantifiers are usually handled as noun modifiers but our annotation

marks it by using a separate label. The lexical sequence kam kar dI ‘reduced’ repre-

sents the complex predicate structure including a quantifier kam ‘less’ and the verbal

structure kar dI ‘done’. The aspectual auxiliary verb dI ‘give.Perf.F.Sg’ appears after

the light verb.

(9) intizAmiyA=nE

administration.F.Sg=Erg

fIs

fee.F.Sg.Nom

kam

less.Sg

kar

do.Sg

dI

give.Perf.F.Sg

‘The administration reduced the fee.’

22

Urdu also have complex aspectual structures which have been divided into three

types [28]. The type-1 of the complex aspectual structures uses a verb+verb (V1+V2)

structure. The V1 in the construction usually appears in the root form and the second

verb V2 shows the information of aspect, tense, gender and number. Example (10)

shows type-1 construction by using the construction kHA liyA ‘ate’. kHA ‘eat’ is the

main verb and liyA ‘take.Perf.M.Sg‘ defines the aspect.

(10) mOminA=nE

Momina.F.Sg=Erg

sEb

apple.M.Sg.Nom

kHA

eat.Sg

liyA

take.Perf.M.Sg

‘Momina ate the apple.’

The type-2 complex aspectual construction contains infinitive oblique verb in

combination with another verb. In (11), the infinitive verb banAnE ‘to make’ is followed

by a finite verb lagI ‘began’. The type-1 construction is the part of a single constituent

but the type-2 is annotated by constructing the non-finite clause in combination of the

verbal construction.

(11) vO

pron.Sg.Nom

cAE

tea.F.Sg.Nom

banAnE

make.Inf.Obl

lagI

be.attached.Perf.F.Sg

‘She began to make tea.’

The type-3 of complex aspectual structure has cases involved with the infinitive

verbs which are further combined with the second verb. In (12), the construction sEb

kHAnE=kO ‘to eat the apple’ defines the dative case for a non-finite clause as an oblique

argument.

23

(12) mOminA=nE

Momina.F.Sg=Erg

sAim=kO

Saim.M.Sg=Dat

[sEb

apple.M.Sg.Nom

kHAnE]=kO

eat.Inf.Obl

kahA

say.Perf.M.Sg

‘Momina told Saim to eat the apple.’

The positions of nouns, adjective, quantifiers, non-finite constructions are usu-

ally pre-verbal but this is not the case always. Urdu has a flexible word order therefore

the discussed constructions may not always co-occur with verbal structures. To anno-

tate such constructions, we need a mechanism which efficiently represents the flexible

order of the language.

2.1.6 Phrasal Heads

The phrase structure parse trees represent the constituents in the hierarchical

way. The constituents are identified by the phrase labels. They have multiple lexical

items which may have different syntactic and semantic relations with each other. For

example, a canonical noun phrase contains the main noun along with noun modifiers.

The noun modifiers are dependent on the noun whereas the main noun actually defines

the constituent to become a noun phrase. Similarly, other constituents are defined on

the bases of their lexical heads. The phrasal heads are important to perform accurate

constituency parsing. For English constituency parsing, the first head word method was

proposed in [104]. The head model was further employed to perform lexical condition-

ing in the parsing models by [36, 38]. A head model for Urdu has also improved the

24

constituency parsing scores. Table 2.5 presents the Urdu phrasal heads with respect to

our phrase label set. The phrasal head model has been described in Section 4.3.3 with

more detail.

TABLE 2.5: Phrasal head for the Urdu treebank.

Phrase Label Direction Priority

VC left to right VBF, VBI, AUXA, AUXM, AUXP,

AUXT, VC, NEG

PP left to right NP, S, QP, NNP, NN, PP, PSP

NP right to left NP, NNP, NN, PRP, PRR, S

ADJP right to left ADJP, JJ, Q, QP, RB

QP right to left QP, Q, CD, OD, FR, QM, JJ

ADVP right to left ADVP, RB, NP, NN

PREP right to left NP, NNP, NNP, PREP

DMP right to left PDM, PRP, PRT

FFP left to right FF, NNP, NN

S left to right VC, S, SBAR, NP, ADJP, QP

NNP, NN, PRP,

SBAR left to right S, SBAR, SCK

Table 2.5 has three columns, first column shows the phrase labels, second col-

umn describe the direction of the head search against the phrase labels. The third col-

umn presents the label priority. The left-hand side label has the highest priority shown

in the third column. For example, the VC (verb complex) phrase is left headed and the

highest priority tag is VBF followed by VBI and POS tags for auxiliaries and negative

tokens. A finite verbal structure, contains the main verb having tag VBF. The head

model will identify the main verb as phrasal head. Similarly, the PP (post-positional)

phrase is left headed as it contains the inner noun phrase which is usually annotated on

25

the left-hand side followed by case markers. Our phrase structure treebank has been

annotated by using 11 phrase labels which have been described in Section 3.1.

2.2 TREEBANKS

A treebank is an essential resource to perform statistical syntactic parsing. A

treebank contains the collection of annotated sentences. There are several annotation

methods but the well-known representations are phrase structure and dependency struc-

ture. In this section, we describe phrase and dependency structure treebank annotations

and their properties.

2.2.1 Phrase Structure Treebanks

A phrase structure annotation provides the hierarchical attachment of the con-

stituents for a sentences. Phrase labels are used to identify specific constituents. The

functional label are usually attached on the phrase labels to mark the grammatical rela-

tions of the constituents in parse trees. A typical phrase structure parse tree has multiple

annotation layers including, word segmentation, part of speech (POS) tagging, phrase

labels and a functional layer. One of the prominent phrase structure treebanks was de-

veloped for English called The Penn Treebank (PTB) [107]. The PTB was initially

annotated to have the layers of POS tags and phrase labels. It was further updated to

have an additional layer of functional tags to annotate the predicate argument structure

[106]. The treebank uses 36 main POS tags and 12 additional tags for punctuation and

symbols. The phrase labels were further extended to have 26 phrase labels and 20 func-

tional labels [16]. Figure 2.3 shows an example sentence by using the annotation of the

26

PTB. Table 2.6 presents the phrase label set and Table 2.7 shows the functional labels

of the PTB.

S

NP-SBJ

DT

The

NN

boy

VP

VBD

saw

NP-OBJ

DT

a

NN

lion

PP-LOC

IN

in

NP

DT

the

NN

zoo

FIGURE 2.3: A phrase structure parse tree by using the annotation of the PTB.

The parse tree in Figure 2.3 shows the phrase structure annotation. It has a

nominal subject ‘The boy’ which has been annotated by using a noun phrase (NP).

A functional label ‘SBJ’ is further attached to represent the subject argument of the

sentence. The second constituent annotates a verb phrase (VP) which has the main

verb, an NP and a prepositional phrase (PP). The NP following the verb, represents the

object of the sentence. English has a fixed subject-verb-object (SVO) word order which

can be used to identify the core arguments. The attachment of the PP phrase is important

to convey the proper meaning of a sentence. It shows the location of the action by using

a LOC function label. The PP phrase in the example is attached under the VP which

depicts that the action ‘saw’ occurred in the zoo. If the PP is attached to the NP, the lion

is in the zoo but the boy may be in front of a tv set.The PP attachment is important to

convey the actual meaning of a sentence. It is important to note that the phrase structure

annotation is helpful to understand the syntactic structure of the sentence as well as the

semantics associated with it.

27

TABLE 2.6: The Penn Treebank phrase labels.

S# Phrase Label Description

1 S Simple declarative clause

2 SBAR Clause introduced by a subordinating conjunction

3 SBARQ Direct question by a wh-word or wh-phrase

4 SINV Inverted declarative sentence

5 SQ Inverted yes/no question

6 ADJP Adjective Phrase

7 ADVP Adverb Phrase

8 CONJP Conjunction Phrase

9 FRAG Fragment

10 INTJ Interjection

11 LST List marker

12 NAC Not A Constituent

13 NP Noun Phrase

14 NX Used within certain complex noun phrases

15 PP Prepositional Phrase

16 PRN Parenthetical

17 PRT Particle

18 QP Quantifier Phrase

19 RRC Reduced Relative Clause

20 UCP Unlike Coordinated Phrase

21 VP Verb Phrase

22 WHADJP Wh-adjective Phrase

23 WHADVP Wh-adverb Phrase

24 WHNP Wh-noun Phrase

25 WHPP Wh-prepositional Phrase

26 X Unknown, uncertain or unbracketable

The functional labels are helpful to depict the grammatical relations but they

lack the semantic information of the predicates. The predicate argument structure does

not annotate the senses of the predicates and semantic roles. The PTB was further

updated to have semantic roles as described in [88]. The roles have been numbered

from one to five in the form of Arg:0, Arg:1, ..., Arg:5. These semantic frames were

28

TABLE 2.7: The Penn Treebank functional labels.

Fun. Label Description Fun. Label Description

ADV Adverbial DIR Direction

NOM Nominal EXT Extent

DTV Dative LOC Locative

LGS Logical subject MNR Manner

PRD Predicate PRP Purpose or reason

PUT Locative complement TMP Temporal

SBJ Surface subject CLR Closely related

TPC Topicalized CLF Cleft

VOC Vocative HLN Headline

BNF Benefactive TTL Title

defined for frequent verbs.

Due to the fixed word order of English, the parsing models are usually trained

by removing the functional label. In [57], the PTB was trained by including functional

labels and empty categories. The experiments carried out by using the Collins’ parser

[38]. The results are quite comparative when parsing without functional labels. It is

evident that for language with flexible word order, the annotation mechanism have the

potential to represent the syntactic structure.

A number of treebanks have been produced by using phrase structure annotation

after the development of the PTB. We describe the prominent phrase structure treebanks

in this section. The Penn Chinese Treebank (CTB) has also been developed by using

the phrase structure annotation due to its fixed word order. The CTB uses a POS tag set

containing 33 tags, 20 phrase labels and 25 functional labels [154]. The treebank was

further updated to add the information of semantic roles by annotating the propositions

[153]. The inter-annotator agreements have been calculated against gold standard and

a 20% reference corpus selected randomly. During the bracketing phrase the average

29

annotator accuracy was 96.7% and the average consistency score was 93.8%.

A phrase structure treebank has been developed for Arabic viz The Penn Arabic

Treebank [103, 102]. The teebank has been developed by using PTB style of annotation

and guidelines. Despite the difference of grammatical structure and word order, the PTB

guidelines were able to represent the syntax of the language. English language has a

fixed SVO order and Arabic usually has VSO but SVO order is also available in the lan-

guage. The guidelines have been updated to infer the Arabic argument structure such

that; the subjects are attached under VP phrases, clausal coordinations are annotated

at the matrix clause level and nominal objects are annotated as NP-OBJ for transitive

verbs. The Arabic treebank also has three layers of annotations, which are; POS tag-

ging, phrase structure and functional layer. At initial level, the phrase annotation was

performed by using a parser described in [17]. The structures were further reviewed

by the annotators and functional labels were added. The inter-annotator agreement for

POS tags has been computed for 853 words and the overall agreement score was 85%

and the pair was agreement was 92.2%.

Another phrase structure treebank has been developed for Korean viz The Penn

Korean Treebank [75, 74]. The treebank initially contained 54 thousand tokens and five

thousand sentences. The treebank was further extended to a second version by including

additional text from the domain of news [76]. The annotation guidelines were updated

for newly encountered syntactic constructions. However, the main annotation scheme

and guidelines remained the same. It uses eleven clause and phrase labels and a set of

six functional labels. The annotation has been performed in the form of brackets like

the PTB. To ensure the accuracy of the annotation, POS tagging and phrase labeling

30

have been evaluated after manual revision of the whole corpus. The POS tags have

been evaluated to check the wrong or impossible tags, ungrammatical sequence of tags

against word phrases and wrong choice of tag in case of applicability of multiple tags.

The bracketing was evaluated by extracting a context free grammar rules which were

further analyzed based on their syntactic structure and frequency in the corpus. The

erroneous constructions were corrected manually by searching the annotated sentences.

For the inter-annotator agreements, ten percent random corpus was annotated by two

annotators and the agreement scores were satisfactory.

The development of a French treebank has been described in [4]. The treebank

contains one million words from a newspaper domain. The resource provides the an-

notation for POS tags, morphology, lemmas and constituency. It uses 14 phrase labels.

The treebank was further enriched to have a layer of functional labels by using eight

labels [3]. The morphology and POS tags were evaluated manually to achieve the an-

notation accuracy. The lemmas were added automatically without manual intervention.

The bracket labeling was performed automatically by the parsers which were further re-

viewed by the annotators. The evaluation was also done automatically by checking 500

sentences selected randomly. For opening brackets the f-score was 94%. For closing

bracket the f-score was 56.5%.

A phrase structure treebank for Spanish has been described in [114]. It is a

small treebank and contains 1,500 sentences with 22,695 words. The POS tagging was

done automatically by using a tagger and a chunker was used to identify the phrase

boundaries for frequent phrase like NP, ADJP, VP, ADVP and PP. The treebank has

twelve phrase labels. The phrase annotation was evaluated by using a phrase structure

31

rule generator to detect the implausible constructions. Another treebank has been built

for Spanish which is referred as AnCora treebank [145]. It contains two repositories,

one for Catalan and the other for Spanish. It overall consists of 0.5 million words

from each language. It was developed from two already existed resources Cast3LB[34]

and a lexical resource for semantic annotation [9]. The annotation have different levels

including; POS tags, Lemmas, phrase structure including functional labels and semantic

structure. The semantic layer annotates argument structures, thematic roles, semantic

verb classes, named entities and nominal senses from WordNet. These layers were

annotated independent of each other. Spanish and Catalan both have flexible word order.

The most frequent word orders in the corpus are SVO, SV, SOV and OSV which have

occurrences of 28%, 27%, 2% and 2% respectively. Another Spanish treebank has been

built as a part of SMULTRON (Stockholm MULtilingual TReebank) project [63] which

initially contained English-German-Swedish parallel treebanks. It has been annotated

by using 20 phrase labels. The POS and phrase labels have been derived from AnCora

treebank. The current version of the SMULTRON (4.0) contains 4,075 sentences of

Spanish with 90,229 tokens.

A number of phrase structure treebank have been developed for many languages

including Italian[113], German[139], Portuguese[6, 58], Japanese[84], Swedish[119],

Vietnamese[115, 116], Thai[127] and Hebrew[137]. All these treebanks have their own

annotation label sets with respect to their constituency structure. Additional seman-

tic layers are also added to mark grammatical functions, argument structures, semantic

roles etc. We now discuss the prominent treebanks for Hindi and Urdu and their anno-

tation styles in the following lines.

32

The phrase structure treebanks have been developed for many Western language.

Most of them restrict the word orders and the order of arguments resulting a fixed hi-

erarchical phrasal structure. However efforts have been done for the syntactic analysis

of the South Asian languages. The Hindi-Urdu Treebank (HUTB) project [14] pro-

duces two annotated repositories for Hindi and Urdu. The HUTB treebanks have been

developed by using dependency structure. We describe the dependency structure tree-

banking in Section 2.2.2. The phrase structure guidelines for both languages have been

proposed in [15]. The proposed phrase structure has been inferred from the Minimalist

Program and presents the binary trees by using specific positions of the arguments in a

sentence. The position and the phrase structure of a typical transitive sentences is shown

in Figure 2.4.

VP

XPFirst VPPred

NP

NPDative kO

VPPred

XPSecond V’

XPInternal V

FIGURE 2.4: A proposed phrase structure annotation and argument positions from
[15].

The first position of the tree in Figure 2.4 has been specified for ergative subjects

which can show agreement with the verbs. Similarly, the dative position has been re-

served for dative subjects which is identified by the ‘kO’ case marker. If a sentence does

not have dative construction then this position is not annotated. The second position in

the tree has been specified for object of the transitive sentences which further agree

33

with the verb. The forth position shows the internal arguments of the sentences which

usually contain small clauses. For flexible argument orders, the positional scrambling

mechanism is adopted which further complicates the annotation. The phrase structure

annotation is not suitable for a language having flexible positions of the arguments like

Urdu. It also complicates the analysis of the phrase structure with the dependency struc-

ture.

A phrase structure treebank has been developed for Urdu viz Urdu.KON-TB [1,

2]. The treebank uses multiple annotation layers including POS tagging, phrase labels

and functional labels. The phrase labels further attach the morphological information

with labels. It concatenates the information of tense, case, aspect and modality with

labels. The treebank has been annotated by using a large annotation scheme which

contains 26 phrase labels. However, the treebank contains only 1,400 sentences with an

average of 13.73 tokens per sentence. The corpus has been mainly collected from Urdu

Wikipedia4 and the Jang newspaper5. Figure 2.5 shows a sample annotated sentence

from the Urdu.KON-TB.

The parse tree in Figure 2.5 shows the attachment of three clauses under the ‘S’

phrase label. The ‘S’ label represents the annotation of the whole sentence which has

an NP.NOM, a KP and a VCMAIN. The NP.NOM defines the nominal case along with

a noun phrase. The POS tag for personal pronoun is P.PERS which marks the pronoun

by depicting its type as well. The nominal case represents the nominal subject in this

example. The second clause annotates a case marking clause with the label KP. The

annotation of the case phrase is quite flat as noun and case marker appear at the same

4https://ur.wikipedia.org
5https://jang.com.pk

34

S

NP.NOM

P.PERS

vO

KP

N

saRak

CM

par

VCMAIN

V.PERF

kHaRA

VCP

V.ROOT

hO

V.LIGHT.IMPERF

jAtA

VAUX.PRES

hE

vO saRak=par kHaRa hO jAtA hE
Pron.3.M.Sg road.F.Sg=Loc stand.M.Sg be.Imper.Sg go.Pres.M.Sg be.Pres.3.Sg
‘He stands on the road’

FIGURE 2.5: Parse tree from the Urdu.KON-TB [2].

level of the clause. The third clause defines the verbal structure with the VCMAIN

label. The verbal structure contains main verb annotated with V.PERF which defines

the verb and its tense, a VCP clause containing verb root and a light verb and finally

an auxiliary verb by using a VAUX label along with tense information. The verbal

construction is quite complicated as it shows main verb kHaRA ‘stand.M.Sg’ with a

root hO ‘be.Imper.Sg’ and a light verb jAtA ‘go.Pres.M.Sg’. The verbal construction

actually is making a complex predication to denote adjective+verb construction. If the

kHaRa is a verb in past form then what is its present form? This annotation also lacks to

annotate the changed argument order of the complex predicate. The nouns or adjective

do not always appear with nouns therefore a different annotation is necessary which

has the ability to cater the flexible order of the language. The Urdu.KON-TB divides

the verbal structure into four categories which include, VCMAIN; which annotates the

main clause, VCP; to annotate complex predicates, VIP; which marks infinitive verb

35

phrase and VP for simple verb phrases. Figure 2.6 shows another annotated example.

S

NP.NOM

P.PERS

vO

KP.POSS

NPQ

QW

kis

N

dHaRE

CM

kI

VCMAIN

VCP

N

himAyat

V.LIGHT.PAST

karE

VAUX.FUTR

gA

vo kis dHaRE=kI h2amAyat karE-gA
Pron.3.M.Sg which group.M.Sg=Gen support.F.Sg.Nom do.Fut.M.Sg
‘Which group will he support.’

FIGURE 2.6: Parse tree from the Urdu.KON-TB [2].

The annotation of the sentence shown in Figure 2.6 has a nominative subject,

genitive case marking clause and a main verbal structure. The case marking clause

shows the possessive case which is annotated to have a question noun phrase and a

genitive case marker kI. The clause labels the possessor but word himAyat ‘support’

is attached with the VCP. In case of different word order, the annotation specifies the

position of noun+verb complex predicate.

The treebank has a large annotation label set which contains the duplicate labels

for questions like NPQ, KPQ, QWP, ADJPQ, ADVPQ, SBARQ and SQ. The position

of question words in Urdu is also flexible [27]. The Urdu.KON-TB is a small treebank

with a complex annotation scheme. The linguistically rich phrase label sets provide the

deep linguistic insight of the language. To perform the statistical parsing, a relatively

large annotated corpus is required with respect to annotation scheme. The language

36

specific annotation tag sets make the resources less usable. Therefore, the annotation

should be compatible with existing resources.

A universal phrase label set has been propose for multiple languages in [73].

They devised a common and simplified label set for 25 treebanks from 21 languages.

The proposed tag set was helpful to achieve better parsing results. Related phrase labels

were combined into single labels. For example, additional phrase labels are used for wh-

words and wh-clauses in the annotation of the PTB [16] which include; SQ, SBARQ,

WHNP, WHPP, WHADJP and WHADVP. The universal tag set combines all types on

noun phrases into a single NP and ‘S’ is used to annotate all types of clauses. Table 2.8

presents the proposed universal label set and its mapping from the PTB-I[107] and the

PTB-II[16].

TABLE 2.8: The Mapping of the PTB-I[107] and the PTB-II[16] on universal phrase
label set proposed in [73].

S# Universal Label English PTB-I English PTB-II

1 NP NP, WHNP NP, NAC, NX, QP, WHNP

2 VP VP VP

3 AJP ADJP ADJP, WHADJP

4 AVP ADVP, WHADVP ADVP, WHAVP, PRT, WHADVP

5 PP PP, WHPP PP, WHPP

6 S S, SBAR, SBARQ, S, SBAR, SBARQ, SINV,

SINV, SQ SQ, PRN, FRAG, RRC

7 CONJP – CONJP

8 COP – –

9 X X X, INTJ, LST, UCP

Table 2.8 presents the mapping of two versions of PTB on the universal tags.

However the mapping has been done for 25 treebanks from 21 different language. The

37

proposed universal tag set has nine phrase tags. It has labels for noun phrase (NP),

verb phrase (VP), adjective phrase (AJP), adverbial phrase (AVP), prepositional phrase

(PP), sentence or clause phrase (S), conjunction phrase (CONJP), coordinate phrase

(COP) and all other phrase labels are mapped on ‘X’ label. The mapping loses the deep

linguistic structure of the parse trees and it would not guarantee that the mapping could

be reversed back accurately. Although the simplified annotation offer certain benefits in

parsing results. The universal labels can also be used as a common annotation scheme

for other treebanks which reduce the annotation time and effort.

A phrase structure Urdu treebank (CLE-UTB) has been developed by using a

version of the universal tag set [55]. The treebank uses the Urdu POS tag set which

is proposed in [86]. The treebank further has a layer of functional tags on the phrase

labels. The label sets have been inspired from the PTB [107, 16], Urdu.KON-TB [2],

HUTB [14] and the universal tag set [73]. It makes the annotation scheme compatible

with existing resources. Figure 2.7 presents the annotation of the CLE-UTB for the

sentence from Figure 2.5.

The CLE-UTB attaches the arguments at the main clause level (S) which pro-

vides an ability to annotate any order of arguments in a sentence. The complex predicate

structure is also represented without specifying its position in the sentence. The func-

tional labels represent the grammatical relations like subject and oblique in the given

example. A label POF annotated the complex predicate independent of its position on

the sentence. The details of the phrase label set and annotation guidelines for the devel-

opment of the CLE-UTB are presented in Chapter 3. The compatibility of the phrase

annotation with dependency structure is discussed in Section 3.2.2 and Appendix A in

38

S

NP-SUBJ

PRP

vO

PP-OBL

NP

NN

saRak

PSP

par

ADJP-POF

JJ

kHaRA

VC

VBF

hO

AUXA

jAtA

AUXT

hE

vO saRak=par kHaRa hO jAtA hE
Pron.3.M.Sg road.F.Sg=Loc stand.M.Sg be.Imper.Sg go.Pres.M.Sg be.Pres.3.Sg
‘He stands on the road’

FIGURE 2.7: Annotation of the parse tree by using the annotation of [2].

more detail.

2.2.2 Dependency Structure Treebanks

The dependency structure (DS) is another grammatical framework which defines

the relations of every word in a sentence. These relations are referred as dependencies

which are further marked with labels to annotate core and non-core dependencies. In

most cases, the main finite verb is taken as the center or root of a whole sentence and

core arguments show their dependencies on the root. Other words derive non-core de-

pendencies on their respective heads. The DS is flatter in nature as it shows relations

among lexical components rather than bounding them in a hierarchical structure, in con-

trast with the phrase structure. The DS is considered more suitable for free word order

languages but modern syntactic analysis are being performed by using dependency re-

lations irrespective of the word order of a language. Figure 2.8 presents the dependency

39

representation of the phrase structure parse tree from Figure 2.3.

The boy saw a lion in the zoo .
DET NOUN VERB DET NOUN ADP DET NOUN PUNCT

det nsubj

root

det

obj case
det

nmod

punct

FIGURE 2.8: An equivalent dependency structure tree from Figure 2.3 by using uni-
versal dependency labels.

The dependency tree in Figure 2.8 shows two core arguments by using labels

nsubj and obj on the dependency arcs. The word ‘boy’ is the subject and the word

‘lion’ is the object. Both arguments show a dependency on the root which is the main

verb of the sentence. Beside the core arguments, all other tokens have been represented

with an arc and a label. For example, the tokens ‘the’ and ‘a’ are determiners of their

respective heads and are defined by det dependency label. The preposition is defined

by a case label and the head word ‘zoo’ has the dependency on the head of the object

which has a noun modifying relation. It is defining the location of the lion. The punc-

tuation also has a dependency relation with the root. The annotation of the sentence has

been performed by using Universal Dependencies Version-2 (UD-2)6 [121, 118, 122].

Universal Dependencies (UD) provides a language independent framework to annotate

any language by using dependency structure. The framework has the ability to perform

syntactic structure, POS and morpho-syntactic features. Table 2.9 shows the latest UD

labels for POS tagging and syntactic annotation by using the release V2.5 [155].

6https://universaldependencies.org/

40

TABLE 2.9: Universal Dependency UD-V2 labels.

Categories Nominals Clauses Modifier words Function words

Core arguments nsubj csubj

obj ccomp

iobj xcomp

Non-core dependents obl advcl advmod aux

vocative discourse cop

expl mark

dislocated

Nominal dependents nmod acl amod det

appos clf

nummod case

Coordination MWE Loose Special Other

conj fixed list orphan punct

cc flat parataxis goeswith root

compound reparandum dep

The universal dependencies have been derived from Stanford Universal Depen-

dencies [45, 44, 46]. Currently there are 157 dependency treebanks for 90 different

languages which have been annotated by using UD-V2.5 dependencies [155, 122]. Ta-

ble 2.9 presents 37 dependency labels for different syntactic categories including core

and non-core arguments, nominal dependents etc. The universal dependencies also pro-

vide the cross language annotation guidelines. The core arguments include the labels to

annotate nominal subjects, direct and indirect objects, clausal subjects, clausal comple-

ments and open class complements. The non-core dependencies mark obliques, voca-

tives, expletive, dislocated elements, adverbial clause modifiers, adverbial modifiers,

41

discourse elements, auxiliaries, copula and mark. The third category include the de-

pendencies for nominal modifiers, clause modifiers for nouns, apposition modifiers, nu-

meric modifiers, adjectival modifier, determinants, classifiers and case. There are other

dependencies for coordinations, multi-word expression, loose and some miscellaneous

dependencies. The universal dependencies also provide a cross language framework to

mark POS tags. Table 2.10 shows the universal POS tags.

TABLE 2.10: Universal Dependency UD-V2 labels.

Open class words Closed class words Other

ADJ ADP PUNCT

ADV AUX SYM

INTJ CCONJ X

NOUN DET

PROPN NUM

VERB PART

PRON

SCONJ

There are six universal POS tag to mark open class words and eight tags to mark

closed class words and three tags to mark punctuation and symbols. The unspecified

word classes are tagged by using ‘X’ tag.

Some treebanks have been converted to UD labeling automatically, we espe-

cially discuss, the Hindi-Urdu Treebank (HUTB) [14, 144]. The HUTB was originally

annotated by using a Paninian grammatical framework [11]. The HUTB also performs

the morphological analysis by including the information of lexical categories, number,

gender, person, case, TAM (tense, aspect and mood) along with POS. The model pro-

vides semantic analysis along with syntactic annotation of a sentence. The information

42

is presented in two layers, at first layer it produces the semantics of words and at second

layer it defines the role of the words that they play in the relations with other lexical

components. Figure 2.9 presents the annotation of an Urdu/Hindi sentence by using the

Paninian grammatical framework used in [14].

Ap kOT kO darvAzE kE sAtH laTkA saktE hyN .
PRP NN PSP NN PSP NST VM VAUX VAUX SYM

ROOT
k1

k2

lwg psp

k7p

lwg psp
lwg psp

lwg vaux
lwg vaux cont

rsym

Ap kOT=kO darvazE=ke sAtH laTkA saktE hyN
Pron.2.M.Pl coat.M.Sg.Acc door.M.Sg.Gen with hang.Impr.M.Sg can.M.Pl be.Pres.3.Pl
‘You can hang the coat on the door.’

FIGURE 2.9: The dependency annotation of an Urdu/Hindi sentence by using Paninian
grammatical model[11].

The Paninian framework proposed six main participants of a sentence which

are called Karakas ‘participants‘. However a sentence may have several other relations

like purpose, reason, genitives etc. The HUTB use additional labels to annotate other

dependency relations along with basic participants. The labels are constructed using

letter ‘k’ which is followed by a number to represent specific Karaka labels. The HUTB

has been released in two formats, the CoNLL format and Shakti-Standard Format (SSF)

[12]. The HUTB annotates the agent or subject by using the label k1 ‘kartaa’ and the

object by using a label k2 ‘karma’ as shown in Figure 2.9. The location in space has

been marked by the label k7p ‘deshadhikarana’. The finite verb is annotated as root

of the sentence. Several other labels are used to mark dependency relations among the

words. For example, the label lwg psp is used to mark the genitive case and two labels

43

lwg vaux and lwg vaux cont have been used to mark auxiliary verbs. A comparison of

HUTB label set is shown in Table B.1.

The HUTB has been converted to universal dependency as described in [144].

Figure 2.10 shows the representation of the dependency structure from Figure 2.9 by

using universal dependencies.

Ap kOT kO darvAzE kE sAtH laTkA saktE hyN .
PRON NOUN ADP NOUN ADP ADP VERB AUX AUX PUNCT

root

nsubj
obj

case

obl

case
case

aux
aux

punct

Ap kOT=kO darvazE=ke sAtH laTkA saktE hyN
Pron.2.M.Pl coat.M.Sg=Acc door.M.Sg=Gen with hang.Impr.M.Sg can.M.Pl be.Pres.3.Pl
‘You can hang the coat with the door.’

FIGURE 2.10: The universal dependency annotation of the sentences from Figure 2.9.

The CLE-UTB [55] is a phrase structure treebank, however its annotation is

compatible with dependency structure [54]. Section 3.2.2 and Appendix A present the

automatic conversion of the CLE-UTB to universal dependencies and dependency pars-

ing.

2.3 STATISTICAL PARSING

A statistical parser provides the analysis of a sentence and assigns the syntactic

categories. The syntactic structure is helpful to understand the semantics. The syntax is

represented in the form of a parse tree. A parse tree shows the break down of a sentence

into sub-phrases. A parse tree contains a root, non-leaf nodes and leaf nodes. The

POS tags are referred as pre-leaf nodes as the parsers predict the phrase level relations.

44

However, the accuracy of POS tags is influential on the parsing scores. The syntactic

annotation of a language faces an issue of structural ambiguity. Generally, the ambiguity

is referred as the possibility of multiple parse trees hence with multiple meanings of a

single sentence. The structural ambiguity is quite common in the natural languages. We

describe different types of parsers in the following sections.

2.3.1 Grammar-based Parsers

A probabilistic context-free grammar (PCFG) is derived from an annotated cor-

pus and is used for the prediction of parse trees for unseen sentences. The grammar

rules are treated independent without using the contextual information. Each rule has a

probability in the grammar. The probability is calculated by dividing the frequency of

a rule by the frequency of the rule head. The left-hand side of a rule is referred as head

of a rule. The head frequency is computed by counting the rules containing same head

throughout the grammar of a treebank [81]. Equation 2.1 shows the process to compute

independent probabilities for grammar rules.

P(A→ B) =
Count (A→ B)

∑RCount (A→ R)
=

Count (A→ B)
Count (A)

(2.1)

B and R are sequences of terminals and non-terminal symbols whereas the A is

a non-terminal. A is the head of the rule A→ B. The sum ∑RCount (A→ R) presents

the count of rules in which the head is A. The probability of a parse tree is computed

by the product of probabilities of rules in the parse tree. The probability of a parse tree

P(T) can be calculated as shown by Equation 2.2.

45

P(T,S) = P(T) =
x

∏
i

P(A→ B) (2.2)

T is the parse tree of sentence S. A is the head of a production rule A→ B and

B is the rule body. i is the number of first rule of total x rules. The most probable parse

tree can be computed by maximizing tree probabilities as depicted by Equation 2.3. The

highest probability P(T) parse tree is considered as predicted tree against the sentence

S.

P(S) = arg max
T∈parses(S)

P(T) (2.3)

PCFGs make efficient parsers with respect to processing speed as they do not

compute contextual information when implemented straight away. Context of phrases

in a parse tree could be helpful to achieve more accurate parses. A few treebank repre-

sentations could be helpful to embed contextual information with PCFGs. Section 4.3.2

describes the details of treebank representations for parsing with PCFG based parsers.

Lexical conditioning can provide the contextual information to the parse trees.

The lexicalized grammars use the lexical information from phrases and sub-phrases.

For this purpose, phrasal heads are computed to acquire the syntactic contribution of

dominant words within the phrases. The head based parsing was proposed in [104]

which was further used to achieve better parsing results by [38, 31, 94]. The head word

computation is a language dependent task. The lexical items have been used to extract

the treebank grammar in [104]. The parsing has been performed by using decision trees

in left to right and bottom-up fashion. The parse trees were annotated with an array of

46

features. The features included nonterminal symbols, lexical head word, POS tag and

extension of the siblings in the tree. The extension told that whether the next sibling is

on the left or right-hand side of the child or is it going up to the parent node to become

the head of the constituent. Words and their POS tags were selected to become the head

of the nodes. The parser achieved precision and recall of 86% for sentences upto length

of 40 words.

Another statistical parsing technique was introduced in [40] which used the lex-

ical information along with bigram word dependencies. The head model was used from

[104]. In addition, head word dependencies were used to compute the probabilities for

parse trees in parsing. The co-occurrences of words and POS tags were used to deal the

data sparsity. The backing-off method was used to estimate the dependent probabilities.

The parser produced compatible parsing results with precision of 86.3% and recall of

85.8% for sentences having length upto 40 words on Wall Street Journal’s standard train

and test division of the Penn Treebank.

Furthermore, well-known three head-driven statistical parsing models were de-

veloped by Collins [36, 38]. The models compute lexicalized probabilistic context-free

grammars for estimation. The head finding rules are presented in Table 2.11 from [37].

The heads are computed on the basis of the head finding directions and tag priority

list for each phrase label. Due to data sparsity, some independent assumption were per-

formed in Model-1. It considers the probabilities of right-hand side of a grammar rule to

compute the probability of left-hand side. It further assumed the modifiers as indepen-

dent of each other. Model-1 also used the distance factor in the conditional probabilities

from [40]. The Model-2 was based on the Model-1 and it further annotated the grammar

47

with the complements, adjuncts and information of sub-categorization. It helped in the

identification of subjects, objects and adjuncts in the sentences. The verbal head was

also helpful to identify the number of arguments a verb takes. The Model-3 provided the

probabilities of wh-movement and traces. Wh-movement was handled by adding a gap

feature to the non-terminals of a parse tree. The parsing results from these three models

were further improved in [38] as compared to [36]. The parsing results presented in [38]

are; labeled recall and precision of 87.9% and 88.2% from Model-1, labeled recall and

precision of 88.5% and 88.7% from Model-2 and the Model-3 performed with labeled

recall of 88.6% and labeled precision of 88.7%.

Another head word based parsing techniques was proposed in [31]. The condi-

tional probabilities have been used for head words and grammar rules for estimations.

The grammar rules were not computed independently. The parser computed the proba-

bilities for a head by giving its type, head word of the parent and the type of the parent

node. These features caused data sparsity, therefore the deleting interpolation method

was used for smoothing. Furthermore, the probabilities of the constituents was com-

puted by its context. The parser performed with a labeled recall of 87.5% and a labeled

precision of 87.4% for sentences of length up to 40 words.

A probabilistic feature grammar (PFG) was introduced in [65]. Morphologi-

cal aspects of the head words were exploited for parsing. They used the contextual

information of the grammar rules from parent labels. A grammar rule contained the

node types, head words and their morphological information. Independence assump-

tions were taken to overcome the data sparsity. For using POS tags only, the parser

performed with a labeled recall of 81.0% and labeled precision 82.2% for sentences

48

TABLE 2.11: The Head rules for The Penn Treebank from [37].

Phrase label Direction Priority List

ADJP Left NNS QP NN $ ADVP JJ VBN VBG ADJP JJR

NP JJS DT FW RBR RBS SBAR RB

ADVP Right RB RBR RBS FW ADVP TO CD JJR JJ

IN NP JJS NN

CONJP Right CC RB IN

FRAG Right

INTJ Left

LST Right LS :

NAC Left NN NNS NNP NNPS NP NAC EX $ CD QP

PRP VBG JJ JJS JJR ADJP FW

PP Right IN TO VBG VBN RP FW

PRN Left

PRT Right RP

QP Left $ IN NNS NN JJ RB DT CD NCD

QP JJR JJS

RRC Right VP NP ADVP ADJP PP

S Left TO IN VP S SBAR ADJP UCP NP

SBAR Left WHNP WHPP WHADVP WHADJP IN DT

S SQ SINV SBAR FRAG

SBARQ Left SQ S SINV SBARQ FRAG

SINV Left VBZ VBD VBP VB MD VP S SINV ADJP NP

SQ Left VBZ VBD VBP VB MD VP SQ

UCP Right

VP Left TO VBD VBN MD VBZ VB VBG VBP VP

ADJP NN NNS NP

WHADJP Left CC WRB JJ ADJP

WHADVP Right CC WRB

WHNP Left WDT WP WP$ WHADJP WHPP WHNP

WHPP Right IN TO FW

49

having length up to 40 words. On the basis of head words, the parsing results were

improved to labeled recall of 84.8% and labeled precision of 85.3%.

Another lexicalized parser has been developed in [94] along with dependency

parser by using A* algorithm. They updated the head rules for lexicalized probabilistic

context-free grammar. They added a rule for NX and updated several other rules from

[37]. The lexicalized model performed with a labeled recall of 86.8% and a labeled

precision of 86.6% with an F-score of 86.7%.

The lexicalized grammars produce lexical contextual information during the

probability estimation of the parse trees hence with improved parsing results. How-

ever, the lexical conditioning causes an issue of data sparsity requiring large amount of

annotated data for training the parsers. The contextual information can also be encoded

without lexical conditioning. An annotation technique was proposed in [80]. The inner

nodes are annotated with the name of the parent node. The annotation excluded the root

and the pre-terminal nodes. The proposed annotations were not programed to perform

the parsing but they presented the results of the tree transformations.

The treebank representation have been used to perform constituency parsing.

In [93], an unlexicalized PCFG has been implemented for parsing. The model uses

the parent annotation to include the contextual information. Pre-terminals were also

annotated for the parse trees. The parsing results were quite comparable with lexicalized

PCFG with a labeled recall of 85.7% and a labeled precision of 86.9% for sentences

having length up to 40 words.

Another unlexicalized grammar-based parser has been proposed in [125]. The

parser splits and merges the non-terminals on the basis of the highest likelihood. As

50

compared to [80] and [93], the grammar is more accurate and compact. The inside-

outside probabilities were computed to develop a split and merge algorithm. The pars-

ing results were quite promising as compared to lexicalized parsers. The parser per-

formed with a labeled recall of 90.0% and a labeled precision of 90.3% for sentences

with length of 40 or less. The parser also performed well on longer sentences and pro-

duced a labeled recall of 89.6% and a labeled precision of 89.8 for sentences of length

up to 100 words. The parsing results were further improved in [124] by using a coarse to

fine method for incremental pruning from hierarchical projections of the grammar and

different inference methods for splitting PCFGs. The parser improved the results by a

labeled recall of 90.5% and labeled precision of 90.7% for the sentences of length less or

equal to 40 and a labeled recall of 89.9% and a labeled precision of 90.2% for sentences

of length up to 100. We have discussed more prominent grammar based parsers in this

section. Next section describes another formalism which incorporates the contextual

information by learning sub-trees rather just grammar rules.

2.3.2 Data-oriented Parsing

Tree Substitution Grammars (TSG) make probabilistic parsers. They were pro-

posed by [131] and were further formalized by [20]. The parsing based on TSGs is also

called data-oriented parsing (DOP). DOP model carters all possible subtrees in a parse

tree and predicts parses for unseen sentences. These subtrees are called fragments. Sev-

eral variations of DOP model are available with different applications. The DOP model

can produce a huge number of fragments with respect to number of parse trees in a

treebank. Many fragments may produce a lot of candidate parse trees for one sentence.

51

Figure 2.12 presents all possible fragments [157] for a sentence from Figure 2.11.

S

NP

John

VP

V

loves

NP

Mary

FIGURE 2.11: A sample parse tree.

NP

John

V

loves

NP

Mary

VP

V NP

S

NP

John

VP

V NP

S

NP

John

VP

VP

V

loves

NP

Mary

VP

V NP

Mary

S

NP VP

S

NP VP

V NP

VP

V

loves

NP

S

NP VP

V NP

Mary

S

NP

John

VP

V

loves

NP

S

NP VP

V

loves

NP

Mary

S

NP VP

V

loves

NP

S

NP

John

VP

V NP

Mary

S

NP

John

VP

V

loves

NP

Mary

FIGURE 2.12: Fragments of the parse tree from Figure 2.11.

The DOP model computes the probability distribution to perform disambigua-

tion. It calculates fragment probabilities and derivations for estimation. The sum of

probabilities of all fragments is equal to one as shown by Equation 2.4.

∑
f∈Fx

P(f) = 1 (2.4)

52

In Equation 2.4, Fx represents the set of all subtrees with root x. A sequence of

fragments which produces a parse tree t by using the left-most substitution is called a

derivation. Equation 2.5 shows the probability calculation for a derivation d.

P(d) = ∏
f∈d

P(f) (2.5)

The relative frequency estimate (RFE) produces the simplest probability esti-

mate against a fragment . RFE is calculated by dividing the frequency of a fragment f

with sum of all fragments having same root in the treebank.

PRFE (f) =
Count (f)

∑ f ′∈Froot(f)Count (f ′)
(2.6)

RFE does not provide a complete probabilistic interpretation. It contributes a

biased estimate by assigning a higher probability value to larger fragments. Therefore,

[66] proposed an equal weight estimate as shown by Equation 2.8.

WEWE (f) = ∑
t∈T B

Count (f , t)
|{ f ′ ∈ t}|

(2.7)

PEWE (f) =
WEWE (f)

∑ f ′∈Froot(t)WEWE (f ′)
(2.8)

Equation 2.7 adds the division of sums against a fragment f for a tree t belong-

ing to a treebank (T B) with all fragments. P(f) can be calculated by dividing the equal

weight estimate by the count of all equal weight estimates of all fragments having same

53

root. To calculate the probability of a tree t, DOP counts the probabilities of all deriva-

tions of a tree t and maximizes the likelihood for the estimation of most probable tree

as presented by Equations 2.9 and 2.10.

P(t) = ∑
d∈D(t)

P(d) = ∑
d∈D(t)

∏
f∈d

P(f) (2.9)

t = argmaxP(t) (2.10)

The DOP model produced the contextual information by considering all possible sub-

trees. We have performed experiments for different subtree heights. Higher tree depths

are helpful to attain more context of constituents.

2.3.3 Neural Parsers

In the previous few years, the statistical methods have been more focused to

different types of neural networks. Neural networks started pushing state of the arts in

the field of artificial intelligence, machine learning and natural language processing. In

this section, we discuss neural models for constituency parsing.

A compositional vector grammar (CVG) was introduced by [141] which per-

forms syntactic parsing by learning syntax and semantics of words in the treebank.

They combined the syntactic categories achieved from a grammar based parser with a

recursive neural network (RNN) model. The technique improved parsing results for En-

glish and achieved an f-score of 90.4. The parser was a continuation of parsing model

proposed in [140]. Word embeddings were trained along with the parsing which were

54

proposed in [149]. The POS tags were appended with the word vectors so that each pair

contains a word representation in the form of vector and POS tag. The CVG computes a

score by adding up scores for all nodes of a tree. The parser is trained with max-margin

objective function and predicts the tree with the highest score. The objective function

and optimization used for training are described by Equations 2.11, 2.12 and 2.13.

J (θ) =
1
m

m

∑
i=1

ri (θ)+
λ

2
||θ ||22 (2.11)

ri (θ) = maxŷ∈Y (xi) (s(CV G(xi, ŷ))+∆(yi, ŷ))− s(CV G(xi,yi)) (2.12)

∆(yi, ŷ) = ∑
d∈N(ŷ)

k{d /∈ N (yi)} (2.13)

Where, input sentence is represented as xi, all possible parse trees for xi are

represented by Y (xi), correct prediction for xi is yi, ∆(yi, ŷ) is the margin loss, k was

set to 0.1 for all experiments, (xi,yi) represents all training samples, score function is

represented by s, parameter collection is represented by θ , λ = 10−4 for training and

N (yi) represents all nodes for the parse tree yi.

The word vectors have been used to find the correct parent for a pair of child

nodes (P→ AB). A parent and its children have the same dimensionality. The vectors

from child nodes are concatenated which result to have a dimension of 2n× 1. The

55

dimension of weight matrix was set to x×2n and tanh was used for nonlinearity. Sim-

ilarly, the output vector was used for the prediction of parent nodes. CVG considers

the syntactic constructions extracted from the treebank by using a PCFG parser. The

weights were learned by training a syntactically-united recursive neural network (SU-

RNN). Child nodes were also influential in the weight matrix. A node score was com-

puted by adding up the linear score of a parent and log probability of the rule (P→ AB)

as demonstrated by Equation 2.14.

s(p) =
(

v(A,B)
)T

p+ logP(P→ AB) (2.14)

Where v is the parameter vector and the CVG computed scores for a parse tree

by summing all node scores.

s(CV G(θ ,x, ŷ)) = ∑
d∈(ŷ)

s
(

pd
)

(2.15)

A lexicalized PCFG parser has been used for caching top 200 parse trees against

each training sample of the CLE-UTB. RNN parser has been trained with an objective

as shown in Equation 2.11. Beam search was used to optimize the speed for top 200

parses.

Recurrent neural networks (RNNs) are able to provide a learning framework to

model word sequences by using the entire context. LSTMs were introduced by [78]

and were improved by many others [60, 61, 59, 68, 10, 69]. A constituency parser

was developed by using LSTMs in [62]. The parser converts trees into linear structures

along with tree labels and POS tags. The BiLSTM model was quite capable to predict

56

the sequential labels. The constituency parser described in [62] performed with best f-

score of 90.6% by using word embedding, character embeddings and two hidden LSTM

layers.

S

NP

PRP

My

NN

daughter

VP

VBD

broke

NP

NP

DET

the

JJ

red

NN

toy

PP

IN

with

NP

DET

a

NN

hammer

.

.

Absolute scale:
2NP 1S 2VP 4NP 4NP 3NP 4PP 5NP 1S
Relative scale:
2NP -1S 1VP 2NP 0NP -1NP 1PP 1NP -4S

FIGURE 2.13: A sample parse tree along with linearized labels.

Figure 2.13 shows a linear labeling from a constituent parse tree from [62]. The

absolute labels have been achieved by counting common number of predecessors con-

catenated with first common phrase label from bottom to top. The relative labels have

been achieved by subtracting the previous token’s label number from the current token.

The linear labels were used to train long-short term memory networks for prediction.

The results were further converted back to tree structure for evaluation and the achieved

f-score is 90.6%.

57

A chart-based neural model has been proposed in [143] which achieved im-

proved parsing results with an f-score of 91.8% on PTB. They further used deep bidi-

rectional long-short term memory (LSTM) neural networks to enhance sentence rep-

resentations, designing sophisticated strategies for span representation. On the other

hand, they adopted top-down incremental parsing for decoding, which simplified the

differences between transition-based and chart-based approaches. Their results were

quite competitive as compared with transition-based parsers. The technique was fur-

ther followed by [91] by using the word representations which are contextualized word

representations ELMo [123] and BERT [49]. In [91], self-attentive features were used

for learning and the parsing f-score was 93.5% which is quite high for PTB. The model

was further enhanced by using ELMo embedding. The ELMo embeddings produced

deep contextualized word representations and the improved results were phenomenal

with f-score of 95.1% on PTB.

On the other hand, a transition-based parsing system defines transition states

and actions, where states denote partial parsing outputs, and actions specify next step

state-transition operations. Several methods exist to implement transition strategies.

The recurrent neural network grammars (RNNG) were proposed in [53] which is a top-

down transition system. This model achieved a parsing f-score of 92.4%. In [99] an in-

order transition system was developed which makes a compromise between top-down

and bottom-up transitions. The model achieved an f-score of 91.8%. [92] suggested a

system which used four types of tagging, it combined sequence tagging and transition

action classification. They further used the BERT representation in the model training.

They achieved a state-of-the-art parsing f-score of 95.4% on PTB dataset.

58

2.3.4 Parsing Evaluation

The constituency parsing results have been computed by using the Parseval mea-

sures [19]. The measure computes labeled precision, labeled recall and f-scores with

respect to constituents as given below.

Labeled recall(LR) =
Correct constituents in candidate

Constituents in re f erence
(2.16)

Labeled precision(LP) =
Correct constituents in candidate

Constituents in candidate
(2.17)

Labeled F− score(F1) =
2 ·LP ·LR
LP+LR

(2.18)

For the constituency parsing, the candidate results are compared with the gold

standard or reference corpus. For a constituent to be correct in the candidate set, its label

and brackets both need to be correct. For example, an NP(0:2) defines a noun phrase

contain a bracketing span from token ‘0’ to ‘2’. Suppose the candidate parse tree for

this specific example also contains an NP but with bracket span of ‘0:3’. In this case,

the shown constituent is considered as incorrect. For a sentence of length ‘n’, the clause

label S has a span from token number ‘0’ to ‘n-1’. The constituency parsing models, in

this work, are evaluated by using Parseval measures.

Dependency parsers, on the other hand, are evaluated using different measures

which include, labeled attachment score (LAS), unlabeled attachment score (UAS) and

59

label accuracy (LA). The dependency results are evaluated more like tagging measures.

For LAS, each token is checked for its correct dependency label and correct syntactic

head. If both are correct with respect to gold corpus, it is computed as correct with

respect to all tokens in the candidate set. Similarly, the UAS just checks for the syntactic

head attachment without labels. The LA computes the accuracy of dependency labels

like POS tags.

2.4 PARSING MORPHOLOGICALLY-RICH LANGUAGES

All the statistical models discussed above are designed and developed to parse

Penn Treebank for English. Adopting these models for other natural languages may or

may not work properly. However, several adaptations have been tried for morphologi-

cally rich languages (MRLs). A head-driven parser has been implemented for Czech by

using the Model-2 of Collins’ parser [39]. Czech is a highly inflectional language and

a relatively free word order language like Russian, Slovak, Slovene, Polish, Ukrainian

and Serbo-Croatian. The model, after few alterations, has given moderate parsing scores

although the parser has achieved more than ninety percent accuracy for English while

parsing Wall Street Journal section of Penn Treebank. German is rich in morphology

and also has free word order [147] but the parsing results are still low as compared to

English [95].

An implementation of statistical parsing with lexicalized dependencies has been

presented in [51]. They have concluded that un-lexicalized parser performs well as

compared to lexicalized. They have shown that sister-head dependencies work better

60

than head-head dependencies for a flat structured tree bank. Further improvements have

been done to German parsing by adding case and morphological information in [50].

A simple probabilistic context free grammar (PCFG) with morphological in-

formation and head annotation has outperformed the head-driven parsing models for

Modern Hebrew [146]. Similarly, [41] has used the Collins’ model-2 to parse Italian

ISST treebank and the results are significantly low. Further adding the parent anno-

tation and horizontal markovization has not done well either. Lexicalized parser with

lemmatization improved the parsing results for French [134].

The concept of feature annotation has been introduced in [65]. Probabilistic

Feature Grammar (PFG) has been presented to parse the Penn Treebank along with the

lexical information. The formalism has not beaten the head-driven models for English

but the idea has been used by the several researchers to parse the morphologically rich

languages. [47] has used morphological features to discover the effect on parsing re-

sults. They have selected fifteen morphological features which are identified from the

Penn Arabic Treebank [103] and have reported an improvement in parsing results. In

the same way, morphological features have been used for Arabic dependency parsing

[108]. Word clustering technique has also been used to decrease the effect of data spar-

sity while parsing French [135].

Parsing the morphologically rich language, like Urdu, is not a trivial task. To

parse such languages, some specific issues need to be solved as discussed in [147, 148].

They have raised three questions which are needed to be answered while parsing an

MRL. First question is regarding language representation and input type. Second ques-

tion asks about the morphological information, whether it is encoded at part of speech

61

tags or at the non-terminal nodes. Third question is about the data requirements for

training. Urdu is a morphologically rich language which has many inflectional forms

for single word. In case of compounding where more words combine to provide sole

meaning, how should it be considered, single word or multiple words? Part of speech

tagging is a morpho-syntactic layer so which morphological features (POS tags, lem-

mas, number, gender, tense, honor) would be useful in parsing if at all? Data sparsity

is also an issue for Urdu statistical parsing due to its nature to have many inflectional

forms. This research is motivated to answer these questions by implementing the statis-

tical constituency parser for Urdu.

62

3. URDU TREEBANK DEVELOPMENT

In this chapter, we present the process of treebank development and its evalu-

ation. The chapter division is as follows. Section 3.1 discusses label sets which have

been used to annotate the CLE-UTB, Section 3.2 presents the annotation guidelines

by showing parse tree examples, Section 3.3 describes the corpus and its preparation

for annotation, Section 5.1 discusses multi-step treebank evaluation process including

inter-annotator agreement and treebank consistency checking and Section 3.5 shows the

statistics of the treebank after development and evaluation.

3.1 LABEL SETS

Section 3.1.1 discusses the part of speech tag set, Section 3.1.2 describes the

details of phrase labels and Section 3.1.3 presents the functional labels which have been

used to mark grammatical roles.

3.1.1 POS Tag Set

The part of speech tag set for Urdu has been gone through several revisions.

Hardie (2003)[77] proposed a POS tag set which contained 280 tags. To cover the

morphology of the language, the tag set contained tags for a large number of surface

forms which resulted in a lot number of tags. To train a statistical parser a sufficient

63

size of the data set and optimal number of POS tags are necessary. Too many tags will

make it impractical to train a tagger due to lack of training samples in the corpus. Sajjad

(2007)[77] and Sajjad and Schmid (2009) [129] performed automated part of speech

tagging for Urdu by using 42 tags. Furthermore, the tag set was simplified to have 35

tags [86] and is referred as CLE Urdu POS tag set1. Table 3.1 shows the Urdu POS tag

set proposed in [86] which has been used for the development of the CLE-UTB.

The tag set resembles the well-know Penn Treebank tag set. Due to morpho-

syntactic properties of Urdu, several distinctive tags have been added. The tag set was

used to train an Urdu corpus containing 100 thousand word. The Tree Tagger [132] was

trained on the tagged corpus which produced an accuracy of 96.8% [86]. The tag set has

a flat tagging mechanism for several categories. For example, it uses a single tag NN

for all types of common nouns irrespective of their number and gender. Similarly, main

verbs have been divided into two categories infinitive and finite verbs with tags VBI and

VBF. However, there are four auxiliary verbs which are marked with four separate tags.

Furthermore, cases are represented with case markers in Urdu and the tag set proposed

a single tag for all kind of case markers. Urdu has a rare occurrences of prepositions

and hence a single tag PRE to mark them. The punctuation symbols are also tagged

with a single tag PU. The POS tag set defines the leaf nodes in parse trees. Therefore, a

POS tag set should be able to mark all syntactic categories of any language. The CLE

Urdu POS tag set provides an optimal number of tags which are also appropriate to tag

Urdu language.

1http://www.cle.org.pk/software/langproc/POStagset.htm

64

TABLE 3.1: The CLE Urdu POS tag set.

Sr# POS tag Category

1 NN Common noun
2 NNP Proper noun
3 VBI Infinitive verb
4 VBF Finite verb
5 AUXA Aspectual auxiliary
6 AUXP Progressive auxiliary
7 AUXT Tense auxiliary
8 AUXM Modal auxiliary
9 PRP Personal pronoun
10 PDM Demonstrative pronoun
11 PRS Possessive pronoun
12 PRD Relative demonstrative pronoun
13 PRR Relative personal pronoun
14 PRF Reflexive pronoun
15 APNA Reflexive apna
16 JJ Adjective
17 Q Quantifier
18 CD Cardinal
19 OD Ordinal
20 FR Fraction
21 QM Multiplicative
22 RB Common adverb
23 NEG Negation adverb
24 PRE Preposition
25 PSP Post-position
26 CC Coordinate conjunction
27 SC Subordinate conjunction
28 SCK SC-Kar
29 SCP SC pre-sentential
30 INJ Interjection
31 PRT Common particle
32 VALA Vala particle
33 SYM Common symbol
34 PU Punctuation symbol
35 FF Foreign fragment

65

3.1.2 Phrase Labels

Phrase labels are used to annotate constituents by providing a constituent label

and phrasal boundaries. Constituents can also have sub-phrases in them which fur-

ther combine to produce parse trees. The parse trees are helpful to define the syntax

and semantics of a sentence. An annotation scheme should have labels to annotate all

syntactic categories of a language. In case of morphologically-rich nature of a lan-

guage, phrase label set needs to be derived carefully. The second question asked by

[148] is about the morphological influence on the phrase labels and POS tags for a

morphologically-rich language. The POS tag set has been derived to be more flat as

discussed in Section 3.1.1. The scheme for the annotation of the CLE-UTB has been

derived from Penn Treebank [107] and a universal tag set [73] which has been presented

in [87]. The Penn Treebank used the standard labels which include, S, NP, PP, ADJP,

ADVP, VP etc. It has 26 phrase labels and 17 functional labels [16, 106]. It includes

additional labels for wh-clauses and wh-words. These labels include WHNP, WHPP,

WHADJP, WHADVP, SBARQ and SQ which results the treebank to have more labels.

[73] proposed an optimal phrase label set by analyzing 25 treebanks for 21 languages.

They achieved improved parsing accuracies by using the simplified annotation scheme.

They combined the related and duplicate labels into single categories. For example, all

types of NPs were combined to a single NP label and all types of clauses were assigned

the ‘S’ label. They proposed a label set with nine phrase labels. Their label set helped

to achieve better parsing results but it lost some linguistic information of the parse trees.

To annotate the CLE-UTB we have proposed a phrase label set shown by Table 3.2.

The phrase label set contains 11 labels which are mostly inherited from existing

66

TABLE 3.2: Phrase label set.

Sr# Phrase label Phrase category

1 NP Noun Phrase

2 VC Verb Complex

3 PP Postpositional Phrase

4 ADJP Adjective Phrase

5 ADVP Adverbial Phrase

6 QP Quantifier Phrase

7 S Simple Clause

8 SBAR Subordinate Sentence

9 PREP Prepositional Phrase

10 DMP Demonstrative Phrase

11 FFP Foreign Fragment Phrase

label sets. The labels NP, ADJP, ADVP, QP, S and SBAR are used to annotate canonical

constructions for noun phrases, adjective phrases, adverbial phrases, quantifier phrases,

matrix and subordinate clauses. VC label has been used for verbal complex structure.

In Urdu, a verbal structure contains a main verb followed by auxiliary verbs. All of

these verbs and auxiliaries are annotated as a single constituent by using VC label. In

Penn Treebank, PP label is used for prepositional phrase but Urdu has fewer occur-

rences of prepositions hence annotated by PREP label. However, the PP label has been

used to mark post-positional phrases. Due to a strong case system, Urdu uses case

markers which are represented by independent clitics. Demonstrative phrases annotate

the constructions having demonstrative pronouns. Foreign fragment phrase has been

used to annotated foreign words. Figure 3.1 shows a sample sentence annotated by this

annotation scheme.

The annotated sentence in Figure 3.1 has been transliterated by using a Roman

67

S

PP-SUBJ

NP

NN

sadr

PSP

nE

NP-OBJ

APNA

apnA

NN

xatAb

NP-POF

NN

SurU

VC

VBF

kar

AUXA

dyA

AUXT

hE

sadr=nE apnA xatAb SurU kar dya hE
president.Sg=Erg own.M.Sg speech.M.Sg.Nom start do give.Perf.M.Sg be.Pres.Sg
The president has started his speech.

FIGURE 3.1: A phrase structure parse tree of a sample sentence .

transliteration scheme presented in [105]. The parse tree has a root label S which rep-

resents a sentence. There are four constituents under ‘S’ label with labels PP-SUBJ,

NP-OBJ, NP-POF and VC. PP label marks a post-positional phrase which contains

an NP followed by a post-position to represent an ergative case. An ergative case is

represented by using the case marker ‘nE’. The first NP phrase contains a common

noun preceding by a reflexive pronoun apnA. The second NP contains a common noun

SurU ‘start’. The last constituent is labeled with a verb complex (VC) which has a

main verb kar ‘do’ followed by aspectual and tense auxiliaries dyA ‘give.Perf.M.Sg’

and hE ‘be.Pres.Sg’ respectively. It can be seen that the parse tree also has functional

labels which are attached with phrase labels. The labels SUBJ and OBJ represent sub-

ject and object of the sentence. The label POF marks the complex predicate structure.

Section 3.1.3 describes the functional labels of the annotation scheme and Section 3.2

presents the annotation guidelines in more details.

68

3.1.3 Functional Labels

The annotation scheme further annotates a functional layer which represents

the grammatical relations. The functional labels are concatenated with phrase labels

with a hyphen ‘-’. Table 3.3 presents the list of functional labels which are part of our

annotation scheme.

TABLE 3.3: Functional label set.

Sr# Functional label Grammatical function

1 SUBJ Subject

2 OBJ Object

3 OBL Oblique

4 ADJ Adjunct

5 POF Part of function

6 PDL Predicate link

7 VALA VC-Vala

8 VOC Vocative

9 INJ Interjection

10 G Genitive

Our annotation scheme used ten functional labels which have been derived from

three sources, Penn Treebank, Urdu.KON-TB and HUTB. The labels SUBJ, OBJ and

ADJ were derived from the Penn Treebank. SUBJ and OBJ labels mark subjects and

objects. ADJ label defines adjuncts and spacio-temporal nouns. However, Penn Tree-

bank and Urdu.KON-TB use separate tags to annotate spacial and temporal nouns. The

Penn Treebank uses LOC and TMP labels for them whereas Urdu.KON-TB uses SPT

and TMP labels. Our annotation keeps the label set compact and uses a single label ADJ

69

and marks them adjuncts. The label OBL has been used to annotate non-core compul-

sory arguments in the treebank. The label OBL has been annotated with NPs as well as

PPs. The label POF annotates the complex predicate structure of Urdu and is attached

with NPs, ADJPs and QPs. The label has been inherited from HUTB. Similarly, PDL

label is attached with NPs, ADJPs, QPs and ADVPs to annotate copula constructions.

The Urdu.KON-TB uses the tag PLINK to show the predicate link (PDL). The label ‘G’

annotates the genitive case markers along with post-positional phrases which is equiva-

lent to POSS label of Urdu.KON-TB. The VOC label adopted from the Penn Treebank

has been used to mark vocative relation. Furthermore, INJ and VALA labels have been

used to annotate interjections and verb complex having vAlA particle. The vAlA particle

usually appears after infinitive verbs, nouns and noun modifiers. The VALA functional

labels has been used with VC label and other constituents which are annotated with

phrase labels.

3.2 ANNOTATION GUIDELINES

The annotation guidelines produce phrase structure trees with a relatively flat

structure for the CLE-UTB [87]. The annotation scheme has the ability to annotate sen-

tences having any order of syntactic arguments and adjuncts. For that purpose, syntactic

arguments and adjuncts are attached at the same level in a syntax tree. This mechanism

produced the simplified trees without argument scrambling and traces in the treebank.

This tree structure offers the dependency information within constituents and arguments

in a sentence. The annotation guidelines have been largely derived from the Urdu.KON-

TB which annotates non-binary trees providing deep linguistic information due to its

70

syntactically rich and large label set. Our treebank on the other hand uses a appropriate

annotation label sets along with some language specific syntactic constructions includ-

ing the annotation of complex predicates, genitive case markers, subordinate clauses

and conjunctive participles.

3.2.1 Phrase Structure Annotation

In this section, we present the phrase structure annotation for different phrase

labels with the help of examples.

3.2.1.1 Verb Complex

A verb complex (VC) of Urdu contains main verb, light verbs, copula and aux-

iliary verbs. The annotation scheme marks four auxiliary verbs which are aspectual

(AUXA), modal (AUXM), progressive (AUXP) and tense auxiliary (AUXT). The aux-

iliaries have been categorized based on their POS tags. An Urdu verb complex may

also contain negation (NEG) and emphatic particles. Figure 3.2 shows a sample sen-

tence containing a nominal subject, a nominal object and a verb complex (VC). The VC

phrase contains a finite verb with a POS tag VBF and two auxiliary verbs. The AUXP

tag shows progressive action and the AUXT tag indicates the tense of the sentence. The

POS tag of tense auxiliary remains the same for all tenses but lexical values indicate the

actual tense in a sentence. An Urdu VC is head initial constituent because the main or

light verbs are normally followed by auxiliary verbs.

71

S

NP-SUBJ

NN

laRkA

NP-OBJ

NN

sEb

VC

VBF

kHA

AUXP

rhA

AUXT

hE

laRkA sEb kHA rhA hE
boy.M.Sg.Nom apple.M.Sg eat Prog.M.Sg be.Pres.3.Sg
‘The boy is eating an apple.’

FIGURE 3.2: Annotation of a sentence containing a verb complex (VC), a nominal
subject and a nominal object.

3.2.1.2 Noun phrases

The CLE-UTB marks all types of nouns including common nouns, proper nouns,

pronouns, spacio-temporal nouns and noun complex predicates (Noun + verb) in a noun

phrase (NP). An NP also contains modifiers, determinants and intensifiers. The POS tag

set marks spacio-temporal and nominal complex predicate nouns with a single tag NN.

This reduces the size of the POS tag set and all these types of nouns are annotated in

an NP. The functional labels are used to annotate grammatical relations by adding an

additional layer on noun phrases. Figure 3.3 shows some examples of noun phrases.

In Urdu, ezafe constructions constitute noun phrases with reverse order of nouns

and their modifiers. A noun phrase normally contains one or more modifiers followed

by a noun. In ezafe constructions, a noun appears before its modifier. These construc-

tions use a vowel sound which is pronounced with head word appearing at the left-hand

side of the constituent. Examples are given in Section 2.1.4. We have annotated ezafe

constructions as noun phrases.

72

(a)

NP

NN

kitAb

kitAb
book.F.Sg.Nom
‘The book’

(b)

NP

CD

Ek

JJ

SAndAr

NN

kHel
Ek SAndAr kHel
one splendid match.M.Sg.Nom
‘A splendid match’

(c)

NP

NN

mEz

CC

aOr

NN

kursI
mEz aOr kursI
table.M.Sg.Nom and chair.F.Sg.Nom
‘Table and chair’

(d)

NP

PDM

yE

NN

kitAb
yE kitAb
this book.F.Sg.Nom
‘This book’

FIGURE 3.3: Examples of noun phrases (NPs)

73

3.2.1.3 Adjective, Quantifier and Demonstrative phrases

Adjectives normally appear as noun modifiers but they also constitute an adjec-

tive phrase (ADJP) when there are multiple adjectives delimited by a coordinate con-

junction (CC). Adjective phrases can also appear before verbs as part of complex predi-

cates and copula constructions on pre-verbal positions. Their word order is flexible and

adjective phrases do not always appear before verb construction. The Quantifier phrase

is similar to ADJP as it is also a noun modifier. It also constitutes a quantifier phrase in

case of complex predicates and copula constructions. A demonstrative pronoun (PDM)

followed by a particle has been annotated as a demonstrative phrase (DMP). Figure 3.4

presents some examples of these phrases. Figure 3.4(a) shows an NP which has an

ADJP containing two adjectives with a conjunction. Both adjectives modify head ‘bi-

cycle’ of the NP. Figure 3.4(b) shows a copula construction with ADJP and it is marked

with PDL functional label. It is important to note that copula constructions have also

been annotated with NPs and QPs. Figure 3.4(c) shows a QP with copula construction

and Figure 3.4(d) shows an NP containing a DMP which has a demonstrative pronoun

followed by a particle hI.

3.2.1.4 Adpositional Phrases

In the annotation scheme, a postpositional phase (PP) annotates the phrases con-

taining case markers. A PP normally contains a noun phrase followed by a case marker.

Urdu uses several clitics to represent case information. In the POS tag set, case markers

are tagged with PSP label and prepositions are marked with PRE tag. The annota-

tion scheme uses PREP label to annotate prepositional phrases in addition to PP label.

74

(a)

NP

ADJP

JJ

acHI

CC

aOr

JJ

mazbUt

NN

bicycle

acHI aOr mazbUt bicycle
fine.F.Sg and durable bicycle.F.Sg.Nom
‘A fine and durable bicycle’

(b)

S

NP-SUBJ

NN

kitAb

ADJP-PDL

JJ

acHI

VC

VBF

hE

kitAb acHI hE
book.F.Sg.Nom fine.F.Sg be.Pres.3.Sg
‘The book is fine.’

(c)

S

NP-SUBJ

PRP

vo

QP-PDL

Q

dO

VC

VBF

tHE

vO dO tHE
Pron.3.M.Pl two be.Perf.M.Pl
‘They were two.’

(d)

NP

DMP

PDM

un

PRT

hI

NN

lOgUN

un hI lOgUN
Pron.3.Pl Prt.Intf people.M.Pl.Nom
‘Those people’

FIGURE 3.4: Annotation examples (a,b) adjective phrase (ADJP) (c) quantifier phrase
(QP) (d) demonstrative phrase (DMP).

75

A PREP phrase contains a preposition followed by an NP. The grammatical roles are

marked by using functional labels along with PP label. Ergative and dative subjects and

accusative objects are marked by using SUBJ and OBJ labels respectively. The OBL

label has been used to mark oblique constructions as shown by Figure 3.5(a). A PP con-

taining genitive case marker is normally attached under an NP. Therefore, a functional

label G is attached with inner PP to mark genitive case as shown by Figure 3.5(b).

(a)

S

PP-SUBJ

NP

PRP

mEN

PSP

nE

PP-OBL

NP

NN

mEz

PSP

par

NP-OBJ

NN

kitAb

VC

VBF

rakHI

mEN=nE mEz=par kitAb rakHi
Pron.1.Sg=Erg table.M.Sg=Loc book.F.Sg.Nom put-Perf.F.Sg
‘I put the book on the table.’

(b)

S

NP-SUBJ

PP-G

NP

NNP

Momina

PSP

kI

NN

umar

NP-PDL

Q

cHE

NN

sAl

VC

VBF

hE

Momina=kI umar cHE sAl hE
Momina.F.Sg=Gen age.F.Sg.Nom six year.M.Sg.Nom be-Pres.3.Sg
‘Momina’s age is six years.’

FIGURE 3.5: Post-positional phrase (PP) annotation examples (a) ergative and locative
case markers (b) genitive case marker.

76

3.2.1.5 Adverbial phrases

An adverbial phrase (ADVP) consists of adverbs and their combinations with

particles. An adverb is the head word of the ADVP. Figure 3.6 shows a parse tree con-

taining an ADVP where word bA-AsAnI ‘easily’ modifies the verb of the sentence. An

ADVP can also contain negation and particles along with adverbs. The adverb in the

example can be realized as AsAnI sE ‘with ease’ which constitutes a post-positional

phrase. All such adverbial clauses with post-positions are annotated as PPs due to sim-

ilar grammatical structure.

S

NP-SUBJ

PRP

vO

ADVP

RB

bA-AsAnI

VC

VBF

ponhc

AUXA

gyA
vO bA-AsAnI pohnc gyA
Pron.3.M.Sg easily reach go-Perf.M.Sg
‘He reached easily.’

FIGURE 3.6: Adverbial phrase (ADVP) example.

3.2.1.6 Conjunctions

Coordinate conjunctions separate two or more words in a constituent (Figure 3.7).

They also define relations between clauses. In Figure 3.7(a), subclauses have been anno-

tated at the same level in a sentence under the label ‘S’. Both elements have a coordinate

conjunction aOr ‘and’. Subordinate conjunctions have been used to annotate subclauses

as dependents of independent clauses. The phrase label SBAR has been used to mark

subordinate clauses as shown by Figure 3.7(b). A subordinate clause normally contains

77

an ‘S’ clause preceded by subordinate conjunction clitic or punctuation. In the exam-

ple of Figure 3.7(b), the Urdu sentence presents a subordinate conjunction, however its

English translation turns the main clause into a subordinate clause.

(a)

S

S

NP-SUBJ

NNP

Saim

VC

VBF

AyA

CC

aur

S

NP-SUBJ

PRP

mEN

VC

VBF

gyA

Saim AyA aur mEN gyA
Saim.M.Sg.Nom come-Perf.M.Sg and Pron.1.M.Sg go-Perf.M.Sg
‘Saim came and I went.’

(b)

S

NP-ADJ

NN

jab

NP-SUBJ

NNP

PolIs

VC

VBF

AI

SBAR

SC

tO

S

NP-SUBJ

Q

sab

NN

DAkU

VC

VBF

bHAg

AUXA

gyE

jab polIs AI tO sab DAkU
when police.F.Sg.Nom come-Perf.F.Sg then all people.M.Pl.Nom
bHAg gyE
run go-Perf.M.Pl
‘When police came then all the robbers ran away.’

FIGURE 3.7: Conjunction clause examples (a) coordinate conjunction (b) subordinate
conjunction.

3.2.1.7 Non-core Clauses

Infinitive and relative clauses appear without any kind of relative pronouns in a

sentence. These clauses have been annotated with ‘S’ label. These clauses may appear

78

under a noun phrase and a post-positional phrase as modifiers. For an NP, they are noun

modifying clauses and for a PP they mostly appear as infinitive clauses. In PPs, these

clauses are followed by case markers. At sentence level, they sometimes constitute core

arguments and are labeled with appropriate functional tags. Figure 3.8(a) shows a parse

tree with conjunctive participle having a word kar ‘do’ with POS tag SCK. In the POS

tag set, this tag is assigned to only two words kar and kE. kar represents the completion

of a task before the actual action in a sentence. These clauses have been annotated

under SBAR label. Figure 3.8(b) shows a parse tree with an infinitive clause as a noun

modifier hence attached under NP.

3.2.1.8 Foreign Fragment phrase

The foreign fragment phrase (FFP) is similar to noun phrase but it contains

foreign words rather than nouns. It normally occurs within a noun phrase when a phrase

of foreign language words is in parenthesis or quotes. FFPs are annotated in a flat

structure which means all foreign words are annotated at a same level with flat structure

and they have left-most token as head. The words from foreign languages which are

not written in the Urdu script are marked as foreign fragments using the FF tag. We

annotate all these fragments in FFP to keep their annotation simple and consistent.

3.2.1.9 Functional labels

The annotation scheme uses functional labels to represent grammatical relations

in parse trees. Ergative, nominative and dative subjects are marked with SUBJ label.

The clitic ‘nE’ represents the ergative case which is annotated as a post-positional

79

(a)

S

PP-SUBJ

NP

PRP

ham

PSP

nE

SBAR

S

NP-OBL

NN

sTESan

VC

VBF

pohnc

SCK

kar

NP-OBJ

NN

TikaTEN

VC

VBF

xarIdIN

ham=nE sTESan pohnc kar TikaTEN xarIdIN
Pron.1.Pl=Erg station.M.Sg.Nom reach do ticket.F.Pl.Nom purchase-Perf.F.Pl
‘We purchased tickets after reaching the station.’

(b)

S

NP-SUBJ

NN

nAryal

NP-PDL

S

ADJP-POF

JJ

farbA

VC-VALA

VBI

karnE

VALA

vAlI

NN

xorAk

VC

VBF

hE

nAryal farbA karnE vAlI xorAk hE
Coconut.M.Sg.Nom healthy do-Inf.M.Pl Prt diet.F.Sg.Nom be-Pres.3.Sg
‘Coconut is a fatty food.’

FIGURE 3.8: Annotation examples of non-core clauses.

phrase. Accusative and nominative objects are marked with OBJ label. Figure 3.9

shows parse trees with different functional labels. In Figure 3.9(a), the first NP contains

a genitive case and has been marked with the G label. The POF label represents a com-

plex predicate construction in which the head word elAn ‘to announce’ represents the

action in the sentence. It is not a verb rather a noun producing the meaning of an action

in combination with a light verb karE ‘do’. In this example, the noun elAn along with

verbal phrase make a complex predicate structure. In most cases, these kind of nouns,

80

adjectives and quantifiers have a pre-verbal position but it is not always the case. Our

annotation scheme marks POF constructions as separate constituents so that they can

be annotated independently of their position in a sentence. However, their dependency

remains at the head of a sentence which is normally a verbal complex.

Non-core obligatory arguments have been annotated as oblique with OBL label.

The OBL has also been used to mark non-canonical secondary arguments. Spacio-

temporal noun phrases which behave as adverbial clauses are marked with ADJ label.

However, spacial case markers have been annotated as post-positional phrases.

Figure 3.9(b) shows an example of a vocative relation which is annotated with

a VOC label. Vocative label represents an addressing action in a sentence. The INJ

has been used to mark interjections which show emotions, greetings and non-speech

representations as shown by Figure 3.9(c). Another functional label which is used to

mark verb complex is the VALA label. It marks a VC having a vAlA particle following

main infinitive verbs. Although, the vAlA particle is also part of a noun phrase when

it appears after a noun. In the annotation scheme of the CLE-UTB, functional labels

represent grammatical relations between different elements in a sentence.

3.2.1.10 Ellipsis

The noun and verb ellipsis exist without phonological content and are under-

stood from contextual clues. The CLE-UTB annotates sentences without adding delta

nodes which results in simplified trees. Figure 3.10 shows annotations of empty noun

phrases and empty verb constructions.

81

(a)

S

NP-POF

PP-G

NP

PRP

cHuTiyUN

PSP

kA

NN

elAn

NP-SUBJ

NN

intizAmiya

VC

VBF

karE

AUXA

gI

cHutiyUN=kA elAn intizAmiya karE-gI
holiday.F.PL=Gen announcement.M.Sg.Nom administration.F.Sg.Nom do-Fut.F.Sg
‘The administration will announce holidays.’

(b)

S

NP-VOC

NN

beTA

PU

!

NP-ADJ

NN

ab

NP-SUBJ

NN

waqat

VC

VBF

A

AUXA

cukA

AUXT

hE

beTA ab waqat A cukA hE
son.M.Sg=Voc now time.M.Sg.Nom come Pref.M.Sg be-Pres.3.Sg
‘Son! the time has come now.’

(c)

S

ADVP-INJ

INJ

xAbAx

NP-SUBJ

NN

mujHE

PP-OBL

NP

PRP

tum

PSP

sE

NP-PDL

PDM

yahI

NN

umId

VC

VBF

tHI

xAbAx mujHE tum=sE yahI umId tHI
nice=Inj Pron.1.Sg=Dat Pron.2.Sg=Abl this hope.F.Sg.Nom be.Pres.3.Sg
‘Nice! This is what I expected from you.’

FIGURE 3.9: Annotation of functional labels (a) complex predicate (POF) (b) vocative
(VOC) and (c) interjection (INJ).

82

(a)

S

S

PP-SUBJ

NP

NNP

Momina

PSP

nE

NP-OBJ

NN

kHAnA

VC

VBF

kHAyA

AUXT

hE

CC

jabkE

S

PP-SUBJ

NP

NNP

Saim

PSP

nE

VC

NEG

nahIN

VBF

kHAyA

Momina=nE kHAnA kHAyA hE jabkE Saim=nE
Momina.F.Sg=Erg meal.M.Sg.Nom eat-Perf.M.Sg be.Pres.3.Sg whereas Saim.M.Sg=Erg
nahIN kHAyA
no eat-Perf.M.Sg
‘Momina has eaten the meal whereas Saim has not.’

(b)

S

S

NP-SUBJ

NNP

Saim

NP-OBJ

NNP

cricket

VC

VBF

kHeltA

AUXT

hE

CC

aOr

S

NP-SUBJ

NNP

Waris

NP-OBJ

NNP

football

Saim cricket kHeltA hE aur
Saim.M.Sg.Nom cricket.F.Sg.Nom play-Pres.Hab.M.Sg be-Pres.3.Sg and
Waris football
Waris.M.Sg.Nom football.M.Sg.Nom
‘Saim plays cricket and Waris football.’

FIGURE 3.10: Annotation of ellipsis (a) empty noun phrase (b) empty verb complex.

In Figure 3.10(a), the sentence has a noun ellipsis in the coordinate clause. The

ergative subject and verb complex are present but nominal object is empty. The ob-

ject information is understood from the first clause. Similarly, the parse tree in Fig-

ure 3.10(b) shows an ellipsis of verb complex in a coordinate clause. There is a missing

verb complex and our annotation leaves it empty without adding extra nodes in the trees.

Our treebank has a simplified and a smaller annotation scheme, but it annotates

83

essential syntactic structure of the language. Our annotation scheme is also compat-

ible with the dependency structure. Section 3.2.2 describes the process of annotation

mapping from phrase structure to dependency structure.

3.2.2 Compatibility with Dependency Structure

A phrase structure parse tree represents the information of constituents and their

grammatical relations in a sentence. A dependency structure on the other hand, pro-

vides the dependency information at the level of words by using dependency labels.

The applications of natural language understanding require the information of depen-

dency relations. The dependency structure provides the structure at word level and their

contribution in the whole sentence. The annotation of the CLE-UTB has abstract phrase

structure annotation by using a relatively flat label set along with grammatical relations

which make it compatible to the dependency structure. The structure is helpful to em-

ploy an automated procedure which converts the phrase structure trees to dependency

structure without manual annotation. Figure 3.11 presents a dependency structure parse

tree against a phrase structure tree.

The phrase structure tree in Figure 3.11 presents the annotation of a sentence

having a subordinate clause. The matrix clause has a nominal subject and a copula

construction whereas the subordinate clause contains a nominal subject and an object

represented with an accusative case followed by a verb complex. This phrase struc-

ture can be converted to dependency structure after identifying head words for each

constituent. The grammatical relations can be used as dependency labels as shown by

dependency structure in Figure 3.11.

84

ROOT

S

NP-SUBJ

PP-G

NP

NN

mazmUn

PSP

kI

NN

zubAn

ADJP-PDL

Q

bohat

JJ

sAdA

VC

VBF

hE

SBAR

SC

tAkE

S

NP-SUBJ

Q

sab

NN

lOg

PP-OBJ

NP

NN

bAt

PSP

kO

VC

VBF

samajH

AUXM

sakEN

PU .

mazmUn kI zubAn bohat sAdA hE tAkE sab lOg bAt kO samajH sakEN .

PP-G
PSP

NP-SUBJ

Q ADJP-PDL

ROOT

SC

Q

NP-SUBJ
PP-OBJ

PSP

SBAR

AUXM

PU

mazmUn=kI zubAn bohat sAdA hE tAkE sab
article.M.Sg=Gen language.F.Sg.Nom very simple.M.Sg be.Pres.3.Sg SC all
lOg bAt=kO samajH sakEN
people.M.Pl.Nom content.F.Sg=Acc understand-Impr.M.Sg can.Pl
‘The language of the article is very simple so that everyone can understand its
content.’

FIGURE 3.11: A phrase structure parse tree by using the CLE-UTB analysis and its
dependency representation.

At the initial step, the verb complex of the matrix clause is converted to root

of the sentence. The nominal subject of the independent clause zubAn ‘language’ has

a dependency on the root with a label NP-SUBJ. Similarly, the genitive case which is

represented by the label PP-G has a dependency on the head word zubAn and the case

marker ‘kI’ has a dependency on the word mazmUn ‘article’. The predicate link anno-

tated by the label ADJP-PDL shows a dependency on the root as well. The subordinate

clause has a dependency on the root with a label SBAR. The main constituents of the

subordinate clause are dependency on its main verb samajH ‘understand’. The subject

85

lOg ‘people’ shows a dependency by using a label NP-SUBJ and the subject with la-

bel PP-OBJ. The leaf level constrictions mark their dependencies by using POS tags.

Sentence end marker shows the dependency relation on the root. The dependency tree

shows labels from our annotation scheme. An accurate head finding method along with

the label mapping would be able to accurately convert the phrase structure tree into de-

pendency structure. Figure 3.12 presents an equivalent dependency tree of tree from

Figure 3.11 by using universal dependency2 labels.

mazmUn kI zubAn bohat sAdA hE tAkE sab lOg bAt kO samajH sakEN .

nmod
case

nsubj
det

root

cop

mark

det

nsubj
obj

case

ccomp

aux

punct

FIGURE 3.12: An equivalent dependency tree by using universal dependency labels.

A noun phrase has right most noun as head word. The PP phrases contain an

NP followed by case markers. Therefore, they have NPs as heads. The head word

for ADJP is also the right most word. The head word for VC is left most verb. VCs

contain main verbs, finite or non-finite, which are followed by auxiliary verbs. Finite

and infinitive verbs are tagged with different POS tags VBF and VBI respectively. The

phrase structure labels shown in Figure 3.11 can be mapped on universal dependency

labels deterministically. The label PP-G can be mapped on nmod (nominal modifier)

which shows a genitive case. The label NP-SUBJ, representing the nominal subject,

will be mapped on nsubj. The PP-OBJ which is the part of subordinate clause, will be

mapped on obj dependency label. ADJP will be mapped on amod (adjectival modifier).

The matrix clause has a copula construction marked with the label ADJP-PDL. The
2https://universaldependencies.org

86

PDL label can be used to find copula constructions and the root or the verb of a clause

can be updated as shown in Figure 3.12. The dependency tree has sAdA ‘simple’ as root

and the verb hE shows a copula dependency on the root. After devising a head model

for Urdu and label mapping from phrase to universal dependencies, we can convert the

CLE-UTB to dependency structure. Appendix A presents the initial conversion of our

treebank to dependency structure and dependency parsing results.

3.3 CORPUS SELECTION AND PREPARATIONS

A balanced corpus is important for the annotation of linguistic resources. In this

section, we discuss the selected corpus and its preparation for the annotation process.

3.3.1 Corpus

The CLE-UTB has been annotated by using a part of the CLE Urdu Digest

corpus [150] 3 4. The corpus has been POS tagged by using a POS tag set developed in

[86]. It is a balanced corpus and has text from fifteen text genres. Table 3.4 shows the

number of sentences and tokens with respect to different genres.

The segmentation for sentences was performed manually because the sentence

end markers were absent for a number of sentences. The corpus has sentences with

different lengths and average sentence length is 18.9 tokens. Figure 3.13 further shows

number of sentences with respect to number of tokens in them.

3http://www.cle.org.pk
4https://urdudigest.pk

87

TABLE 3.4: Number of sentences and tokens against different text domains of the
corpus.

Sr# Domain No. of Sentences No. of Tokens

1 Book reviews 390 8,676

2 Culture 421 8,131

3 Education 267 5,828

4 Entertainment 248 5,047

5 Health 534 9,594

6 Interviews 577 11,680

7 Letters 650 11,267

8 Novels 551 10,433

9 Press 424 9,779

10 Religion 488 9,354

11 Science 405 8,294

12 Short stories 1,664 27,563

13 Sports 505 9,933

14 Technology 124 2,464

15 Translation of foreign languages 606 10,532

Total 7,854 148,575

3.3.2 Preprocessing

Preprocessing step includes cleaning and POS tagging. Extra and duplicate

punctuations and symbols were removed from the corpus. Further preprocessing was

performed in two steps. At first step, POS verification and sentence boundaries were

identified manually. An existing Urdu POS tagger5 was used which is based on the

well-known Tree Tagger [133]. The POS verification helped to achieve accurate and

consistent tagging throughout the corpus. The corpus was further divided into batches

5www.cle.org.pk/clestore/postagger.htm

88

0

500

1000

1500

2000

2500

S

en
te

nc
es

1-5 6-10 11-15 16-20 21-25 26-30 31-35 >35

Length groups

FIGURE 3.13: Corpus coverage according to number of tokens. No. of sentences are
on y-axis and length groups are on x-axis.

for annotation. At the second step, unique sentence numbers were assigned to each sen-

tence. The annotation was performed in the form of XML trees therefore, the number

was attached as an attribute to the ‘S’ label.

During the annotation, several assisting utilities were developed and employed

for the evaluation of the annotated corpus. These processes are as follows:

• Reference Corpus Selector: This process selected the random corpus referred to

compute the inter-annotator agreement.

• Grammar Extractor: Grammar extraction has been performed for the grammar-

based consistency evaluation. This process performs in two steps. In first step,

all grammar rules were extracted with their frequencies. Infrequent rules have

been reviewed with respect to the annotation guidelines and implausible rules

were extracted. The second step takes the implausible rules as input and gener-

ates a report showing the file names and sentence numbers which contain any of

89

those rules. The sentences pointed by the report were further reviewed to find the

annotation errors. Section 3.4.2.2 discusses the evaluation process in detail.

• Automatic Consistency-Checker: This tool evaluates the annotation consistency

with respect to the contexts of constructions. It has been used to evaluate the

treebank after the annotation was completed. Section 3.4.2.3 presents the details

of the consistency checker and its results.

• Testset Generation: This process has been developed to select test sentences from

the treebank. The sentences have been selected randomly from each domain with

respect to number of sentences in domains and authors. It helped to produce an

unbiased test data set.

• XML to Brackets: This process takes XML trees and converts them to bracket

notation. The process has been employed for the training and testing of statistical

parsers.

3.4 TREEBANK ANNOTATION EVALUATION

Accuracy and annotation consistency are crucial for the development of a lin-

guistic resource. Therefore, multiple evaluation tasks have been performed to evaluate

the treebank annotation. After completion, each batch was reviewed by a second an-

notator and the types of errors were communicated to the first annotator so that other

batches would have less inconsistencies. These evaluation tasks are described in the

following sections.

90

3.4.1 Completeness and Correctness Checking

The completeness evaluation task identified empty and incorrect POS and bracket

labels. Phrase and functional labels both were checked in this process. Table 3.5 shows

a sample report generated by this task and evaluation details are as follows:

TABLE 3.5: Completeness and correctness evaluation sample reports for (a) list of
phrases with no content (b) list of incorrect POS tags (c) list of incorrect phrase labels.

(a)

Sr# File name Sentence no. Rule

1 100K 562.xml CLE 100K TB S202 NP->

2 100K 562.xml CLE 100K TB S203 NP-POF->

3 100K 562.xml CLE 100K TB S205 NP-SUBJ->

4 100K 563.xml CLE 100K TB S231 ADJP-POF->

5 ...

(b)

Sr# File name Sentence no. Incorrect POS

1 100K 562.xml CLE 100K TB S202 AUXTF

2 100K 562.xml CLE 100K TB S205 PDM.

3 100K 562.xml CLE 100K TB S204 NNs

4 100K 562.xml CLE 100K TB S204 VBFrahA

5 ...

(c)

Sr# File name Sentence no. Incorrect label

1 100K 562.xml CLE 100K TB S214 NP-SUB

2 100K 562.xml CLE 100K TB S215 PP-GP

3 100K 562.xml CLE 100K TB S216 NP-OBJP

4 100K 563.xml CLE 100K TB S232 PP-SUB

5 ...

91

• Labels lacking text: The annotators marked phrase labels on the POS tagged Urdu

text and some of the constituents were mistakenly skipped with no context in

them. These types of errors produce empty phrases and only right-hand side of

the grammar rules as shown in the Table 3.5(a). The errors identified in this

process were manually corrected.

• POS errors: The annotation of POS tags were done by using a slash (/). If slash

delimiter is missing or tokens are marked with erroneous tags, this process re-

ports it with the concerned sentence and file name. All these type of errors were

corrected after reviewing the sentences manually.

• Bracketing errors: This process identified erroneous bracketing labels which in-

cluded both phrase and functional labels. It identified file names, sentence num-

bers and labels which were further corrected manually based on this report.

The completeness evaluation ensures that each token is assigned with a valid

POS tag and phrase labels are correct. The process evaluates human errors in case of

label annotation. However, if a valid POS tag is used to mark wrong word or a correct

phrase label has been used to annotate a wrong constituent then these mistakes were not

identified at this stage. The whole corpus was reviewed manually after the completion

of each batch which was helpful to refine the annotated corpus. It is still possible that

the corpus may have some inconsistencies. To identify annotation inconsistencies, we

further employed evaluation methods as described in Section 3.4.2.

92

3.4.2 Consistency Evaluation

To evaluate the annotation consistency, we have computed inter-annotator agree-

ment for random sentences from annotators. We devised a grammar-based evaluation

method which have been used to evaluate the whole treebank for phrase labels as well

as POS tags. Finally, an automatic treebank consistency checking tool has been em-

ployed to find outliers and annotation inconsistencies. The descriptions and evaluations

of these evaluation methods are as follows.

3.4.2.1 Inter-Annotator Agreement

We have used an existing POS tagger for Urdu to accelerate the POS annotation

process. However, the annotators corrected the incorrect tags manually during the an-

notation. The inter-annotator agreement has been computed for POS tags, phrase and

functional labels. For that purpose, random sentences were selected for both annotators.

The first annotator has done masters degree in linguistics and the other annotator is a

doctoral students in computational linguistics. To evaluate brackets from both annota-

tors, we have used parseval evaluation measures [5]. The measures helped to compute

the annotation similarities in the form of f-scores. Table 3.6 presents the inter-annotator

agreements.

Table 3.6 also shows an unseen corpus of two hundred sentences which was

collected separately and annotated by both annotators independently. The agreement

scores are given with respect to samples but overall phrase structure annotation scores

are above 90% which are acceptable [152, 116]. The agreement for POS tags is 98.4%

which is quite high. the agreement score for functional labels is 89.1%. We further

93

TABLE 3.6: Inter-annotator agreement against POS tags, phrase and functional labels.

Category Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Overall

POS 98.9% 98.8% 99.2% 98.5% 97.2% 98.4% 98.4%

Phrase labels 93.8% 90.3% 93.6% 90.3% 91.4% 93.9% 92.7%

Func. labels 90.5% 89.9% 89.6% 86.6% 85.9% 89.9% 89.1%

Sentences 36 36 40 105 40 200 457

Tokens 701 670 756 1,896 644 4,447 9,114

analyzed these scores against annotation categories with respect to top disagreements

as shown by Table 3.7.

The agreement for POS tagging is 98.4%. Most of disagreements between both

annotators are between demonstrative person pronouns (PDM) and personal pronouns

(PRP). A demonstrative pronoun specifies a common noun which appears right after

it. However, both pronouns are drawn from same set of words and therefore, cause

confusions sometimes. The second most highest POS disagreement is between finite

verbs marked with VBF tag and aspectual auxiliary marked with AUXA. The reason of

this disagreement is again the lexical similarities. The POS tagging scheme marks the

main verb as VBF or VBI which is followed by auxiliary verbs. Both of these types of

verbs have different lexical values within a single verb complex (VC) but in the corpus,

a main verb in one verbal construction can become an aspectual auxiliary in some other

construction and vice versa. For example, the phrase kar liyA ‘has done‘ presents a

verbal complex with kar as main verb with tag VBF and liyA as aspectual auxiliary

with tag AUXA. In another verbal construction liyA gyA ‘has taken’, the main verb is

liyA which is followed by the auxiliary verb gyA. These types of lexical similarities in

the corpus lead to some tagging confusions.

94

Another high disagreement was between adjectives (JJ) and common nouns

(NN). The disagreement is again due to lexical similarities as many words are marked by

these two tags based on their context. For instance, the word fOjI ‘soldier’ has NN tag

and is marked as common noun when appears independently. When the word appears as

the part of a phrase like fOjI tAqat ‘military power’, then it is the noun modifier and has

the tag of an adjective. In the same way, there are disagreements between subordinate

conjunctions and coordinates conjunctions with subordinate conjunction presentational

(SCP). The tag SCP marks a subordinate conjunction item when it appears at the start

of a sentence in the annotation scheme. However, its lexical value belongs to the set

of other conjunctions. The lexical similarity causes the confusion with other conjunc-

tions. It is quite clear that most of the disagreement are due to lexical similarities. The

automated consistency evaluation methods are further employed to overcome such in-

consistencies. Beside these disagreements, there were several random differences in the

POS tagging but the accumulative POS agreement is quite satisfying.

The agreement for phrase annotation is 92.7%. The highest disagreement is

between adjective phrase (ADJP) and noun phrase (NP). According to the annotation

guidelines, an adjective phrase is annotated when there are more than one noun modi-

fiers separated by a coordinate conjunction or the phrase is making a copula construc-

tion or it is part of the complex predicate structure. However, copula and complex

predicate constructions are marked by using functional labels to differentiate their role

in a parse tree. The reason behind this disagreement is the disagreement of POS tags

due to lexical similarities. The second most disagreement is between NPs and quanti-

fier phrases (QP). A quantifier is a noun modifying phrase and it is also part of copula

95

TABLE 3.7: Top ten disagreements with respect to POS tags, phrase and functional
label annotation.

POS Phrase Labels Functional Labels

Ann.1 Ann.2 Count Ann.1 Ann.2 Count Ann.1 Ann.2 Count

PDM PRP 14 NP ADJP 8 SUBJ OBJ 14

PRP PDM 13 NP QP 5 OBJ SUBJ 12

VBF AUXA 13 QP NP 5 OBJ OBL 9

NN JJ 10 NP ADVP 4 POF SUBJ 8

JJ NN 10 ADJP NP 4 POF OBJ 7

NN NNP 8 VC ADVP 2 POF PDL 5

AUXA VBF 8 NP PREP 1 SUBJ PDL 4

SCP SC 7 PP NP 1 PDL SUBJ 4

NNP NN 6 S VC 1 OBJ POF 4

CC SCP 4 NP S 1 PDL POF 3

and complex predicate structure. The reason for these disagreement is also the close

lexical resemblance and POS disagreements which is the main reason that most of the

disagreements are two sides. There are further disagreements between NPs and adver-

bial phrases (ADVP). The annotation guidelines mark interjections as ADVPs. There

were POS mismatches where interjections were tagged with common noun tag which

resulted in the NP constructions. There are disagreements between adverbial phrase and

verb complex structure. After the analysis, these disagreements came up again due to

POS mismatches. The adverbs were marked as verbs resulting them to become part of

verbal complex. There are also some arbitrary phrase label mismatches but the overall

phrase label agreement score is quite acceptable for a phrase structure treebank.

The overall agreement for functional labels is 89.1%. Table 3.7 also presents the

96

top 10 disagreements between the annotators. The most disagreements are between sub-

jects and objects in both directions. In the annotation guidelines, a subject is annotated

as a nominal subject or as an ergative/dative subject. Similarly, objects are annotated

as nominal objects or accusative objects. The first reason behind these disagreements

was observed the absence of direct subjects or objects and pronoun drops in the pas-

sive declarative sentences. The second reason is ellipsis as the annotation scheme does

not annotate ellipsis as external labels. These kind of annotations created confusions

hence resulted in disagreements. The third most disagreements are between objects and

oblique labels. The oblique (OBL) labels mark the non-core compulsory arguments

and recipients. The label OBL is attached with noun phrases as well as post-positional

phrases with the dative case marker kO. An accusative case is also represented by the

same clitic which created confusions. The functional labels for subject and object were

also confused with the part of function (POF) and predicate link (PDL) labels. These

two constructions usually have pre-verbal positions and sometimes make a sense of

agent or object resulting in disagreements. Both part of functions and predicate links

are annotated along with noun, adjective and quantifier phrases. This annotation prop-

erty also created some confusions between POF and PDL labels. Ellipsis and passive

sentences were also influential to some annotation disagreements. However, overall

agreement for functional labels is acceptable. Following sections describe annotation

consistency evaluations which were helpful to correct the annotation errors.

We have further calculated the Kappa coefficients for inter-annotator agreements

by computing Cohen’s Kappa [35]. The Kappa coefficients represent the agreements

97

between annotators and raters. The coefficients have been computed against POS tag-

ging, Phrase labeling and constituents. Table 3.8 shows the coefficient values computed

during the annotation of the CLE-UTB.

TABLE 3.8: Kappa coefficients for inter-annotator agreements against POS tagging,
constituent labeling, constituents based on the tokens in the reference corpus.

POS tagging Constituent labels Constituents Labeled constituents

0.982 0.904 0.815 0.791

The interpretation of Kappa coefficients is crucial to demonstrate the agreements

between annotators. The values between 0.01 and 0.20 are interpreted as poor agree-

ment, the values from 0.21 to 0.40 are considered as fair agreements, the score between

0.41 and 0.60 depicts the moderate agreement, the values from 0.61 to 0.80 show a

substantial agreement and the coefficient values from 0.81 to 1.0 present almost perfect

inter-annotator agreement [109]. The score for POS tagging is 0.982 which depicts a

perfect agreement between annotators. The coefficient for phrase labels is 0.904 which

is also quite high. The kappa scores for constituents and labeled constituents are 0.815

and 0.791 respectively. These agreement scores are acceptable as suggested in [109].

3.4.2.2 Grammar-based Consistency Checking

We devised a semi-automated process to perform post-annotation consistency

evaluation. Our grammar-base consistency checking mechanism, identifies the linguis-

tically implausible constituents which are reviewed and updated according to the anno-

tation guidelines. It finds the implausible constructions based on their frequencies in the

treebank. The constructions having higher frequencies are considered to be correct and

linguistically plausible. The constructions with low frequencies and rare occurrences

98

TABLE 3.9: A sample context-free grammar with rule frequencies sorted in non-
decreasing order.

Rule # Grammar rule Frequency

1 NP-SUBJ→PDM JJ PRT NN 1

2 S→PP PP-OBL NP-SUBJ NP-POF VC PU 1

3 ADJP→APNA JJ JJ JJ 1

4 S→NP-ADJ NP-SUBJ NP-ADJ PP-OBL VC SBAR PU 1

5 S→NP-SUBJ SBAR NP-ADJ NP-POF VC 1

...

9489 NP→PP-G NN 3094

9490 PP→NP PSP 6162

9491 NP→NN 6593

9492 VC→VBF 7221

9493 PP-G→NP PSP 8222

need to be checked whether they are correct or not. In this evaluation task, phrase labels

and POS tags were evaluated.

The evaluation process took the annotated parse trees as input and produced a

context-free grammar. The grammar further contains rule frequencies. Each rule has a

head which is a phrase label along with its functional label, rule body and its frequency.

The rule body has a combination of phrase labels and POS tags. The frequency is a

count of occurrences of that constituent throughout the treebank. The grammar for non-

terminal and terminal constructions were evaluated separately. The terminal grammar

contains POS tags as rule heads. At the first step, non-terminal grammar has been

evaluated. Table 3.9 shows some most and least occurring rules from the extracted

grammar.

99

The evaluation process was performed in two steps. In the first step, we pre-

pared a list of rules which were potentially implausible. For that purpose, all grammar

rules were reviewed starting from low frequent rules. The doubtful rules were put into

an implausible grammar. Table 3.10(a) presents a sample implausible grammar. In

some cases, the same constituent may appear under different phrase label. Therefore,

for such rules, we put the question mark (?) so that all such constructions could be ex-

tracted for review irrespective of their rule head. However, the right-hand sides should

not be empty. The second step, takes the implausible grammar as input and scans the

whole treebank against each rule and generates a report containing file names, sentence

numbers and grammar rules as shown in Table 3.10(b). The sentences in the generated

report were reviewed manually and updated in case of incorrect annotations. It is im-

portant to note that all the reported parse trees were reviewed but not all the trees were

updated because many constructions were found plausible during the review task.

To generate the report for potentially implausible constructions, the grammar

contained 575 rules which were used in the second step. By using the implausible

report, overall 1,397 annotated sentences were reviewed. The phrase and functional

labels both were evaluated. Table 3.11 shows the revision statistics with respect to

phrase and functional labels.

Table 3.11 shows the number of sentences against annotation labels. Most of

the sentences were reviewed for NPs followed by PPs and VCs. Before performing

the grammar-based evaluation, the context-free grammar contained 9,493 rules which

were reduced to 9,170 after revision. The reduction is of 323 rules. However, this

is not a big difference as the grammar has a large number of rules. The first reason

100

TABLE 3.10: (a) List of potentially implausible grammar rules prepared to extract
sentences for revision (b) Evaluation report based on a list of grammar rules

(a)

Sr# Rules

1 ? → NP PRT PSP PSP

2 PP→ NP PSP PSP PSP PRT

3 ? → PRT NN

4 ? → PRT

...

(b)

Sr# File name Sentence no. Grammar rule

1 file1.xml CLE 500K TB S6 PP-OBL→ NP PRT PSP PSP

2 file2.xml CLE 100K S373 NP-ADJ→ PRT NN

3 file3.xml CLE 100K S198 PP→ NP PSP PSP PSP PRT

...

is that the whole treebank was reviewed manually before grammar-based evaluation.

Second, the sentences generated by the grammar report were reviewed but there were

many constituents which were already annotated correctly therefore, not all sentences

were revised. The context-free grammar considers each rule independent of each other.

Therefore, there is a need for a method which evaluates the phrasal annotation with

respect to their contexts. Section 3.4.2.3 discusses an automated consistency checking

tool which uses contextual information to find implausible annotations.

The grammar-based consistency evaluation has been performed to check POS

tagging by using terminal rules. Terminal rules usually contain POS tag as head and

token as body. We have updated the grammar to find the tagging inconsistencies. A

single token can have more than one POS tags according to its context and syntactic

contribution. We counted how often each word occurred with each POS tag and sorted

101

TABLE 3.11: Statistics of sentences and labels which have been reviewed or revised
based on implausible grammar report.

Phrase labels Functional labels # Sentences reviewed

NP – 483

SUBJ 211

POF 37

PDL 37

OBJ 31

ADJ 15

VOC 10

OBL 6

INJ 3

PP – 82

G 43

SUBJ 27

OBL 25

OBJ 6

PDL 3

ADJP – 44

PDL 14

POF 6

SUBJ 2

OBJ 2

ADVP – 52

INJ 3

PDL 1

POF 1

VOC 1

QP – 4

SUBJ 2

VC – 151

S – 10

SBAR – 81

PREP – 3

FFP – 1

Total – 1,397

102

TABLE 3.12: Sample POS grammar containing POS tags against words and number
of unique tags and statistics of words with count of POS tags.

Sample POS grammar Word statistics with # POS tags

Word POS tags Category #Words #Instances

aOr ‘and’ CC,SCP,JJ,Q,PRT,AUXT Six POS words 2 3,445

sI ‘like’ PRT,NNP,VBF, JJ, NN Five POS words 8 5,223

kI ‘genitive’ PSP, VBF, NN, VBI Four POS words 25 11,054

un ‘pronoun’ PRP, PDM, NN Three POS words 130 29,361

mujHE ‘pronoun’ PRP, NN Two POS words 876 24,566

kitAb ‘book’ NN Single POS words 13,074 74,926

– – Total 14,115 148,575

the tags of each word by frequency. The sample POS grammar and POS statistics of the

treebank with respect to number of tags are shown in Table 3.12.

Table 3.12 shows a POS grammar in two forms. The form with word statistics

with respect to number of tags presents the number of uniques words have six tags to

one tag and there occurrences in the corpus. The sample POS grammar shows tokens

and all assigned tags to them. For example, word aOr ‘and’ has been marked with six

POS tags CC, SCP, JJ, Q, PRT and AUXT. The word aOr can have multiple senses

according to its usage. Mainly, it is used for coordinate conjunctions and hence have

CC tag. It also bears the meaning of ‘different’ and ‘more’ which are marked with tags

JJ and Q. In the POS tagging scheme, if a coordinate or subordinate conjunction appears

at the start of a sentences then it is marked with SCP tag. Hence, tags PRT and AUXT

which are used to mark particles and tense auxiliaries have been used incorrectly. The

incorrect tags for such tokens were reviewed and corrected throughout the treebank. In

this process, 1,041 words were reviewed and POS tags were corrected. The grammar-

based evaluation helped to identify annotation errors which were independent of their

103

contexts. The automatic consistency checker performed context-based evaluation as

presented in Section 3.4.2.3

3.4.2.3 Automatic Consistency Checker

The grammar-based consistency evaluation was helpful to identify annotation

consistencies by using context-free grammar rules. There is a need to evaluate treebank

annotation by looking at the context of constituents to identify outliers and annotation

inconsistencies. Therefore, we have further used an automated consistency checking

tool6 as presented in [82]. It creates groups of unique constructions with respect to

annotation labels and computes the skewness of groups in the treebank. The severity

of inconsistencies are depicted by skew values. A high skew-value represents a higher

annotation inconsistency. The tool returns a report which contains group items, their

skew values, annotation labels and corresponding sentence numbers in the treebank.

The skew-value is computed for each group with respect to frequency distribu-

tion of all constructions in the treebank. The formula to compute the skew-values is

presented by Equation 3.1.

Skewvalue(g) =

∑c∈C(fc−mean(fC))2 i f |C|> 1

−1 i f |C|= 1

(3.1)

Where g specifies a unique group, fc is the frequency of a category, C represents

all categories in the corpus, mean(fC) computes the statistical mean of frequencies and

|C| shows the total number of elements in C.

6https://github.com/Kaljurand/treebank-consistency-checking

104

TABLE 3.13: Sample results of consistency-checker for lexical items, POS tags and
phrase labels.

Category Group Skew-value Frequency Phrase labels Sentences no.

Lexical items ham nE 1404.5 54 PP -

1 NP 2519

POS INJ hAN 84.5 14 ADVP -

1 NP 5873

Phrase labels NP [sab] 264.5 24 NP -

1 S 3009

A skew-value represents the type and severity of inconsistencies for different

categories. The categories can be created for lexical items, POS tags and phrase labels.

The skew-value of -1 shows that a specific category has only one group and hence can

be considered as consistent. Higher skew-values are used to identify annotation errors.

The value near or equal to zero means that the group has almost even appearances in

different categories. There are three main reasons of higher skew-values. First, the an-

notation of a group is flexible and has possibility to appear in different contexts. Second,

difference of understanding between annotators which leads into annotation inconsis-

tencies. Third, ambiguity in the annotation scheme which resulted the annotation in

different categories randomly. All of these inconsistencies have been addressed and re-

solved by using the consistency checker. For that purpose, all groups with skew-values

greater than zero were reviewed. The groups were further evaluated by analyzing on

the basis of their contexts. Groups were crated for tokens, POS tags and phrase labels.

Table 3.13 presents a sample evaluation result report for three types of groups. The

table shows groups, their skew-values and frequency of occurrence under phrase labels

for each category.

105

Sample groups have been shown for each category in Table 3.13. For example,

the lexical group ham nE ‘pron.1.Pl=Erg‘ has 54 appearances in PP and only one oc-

currence under an NP. It has a skew-value of 1404.5. The last column of the table shows

sentence numbers if occurrences are less than ten. If a group has a frequency of ten or

higher then it was considered as consistent. Figure 3.14 shows the parse tree against

sentence number 2519. It is quite intuitive that the group annotated under NP needs to

be reviewed as it seems implausible.

S

NP

NP

PRP

ham

PSP

nE

NP

NN

unhyN

VC

VBF

kahA

SBAR

S

NP

NN

Ap

PP

NP

PRP

kisI

PSP

kO

NP

NN

sAtH

VC

VBF

lE

AUXA

jAyN

ham=nE unHyN kahA Ap kisI=kO sAtH lE jAyN
pron.1.Pl=Erg pron.3.Pl=Dat say-Perf.M.Sg pron.2.Pl pron.3.Sg=Dat with take go-Impr.M.Pl
We said to them that you should take someone with you

FIGURE 3.14: Parse tree for the sentence no. 2519 (from Table 3.13) in the treebank.

The second category shows POS tagging skewness. It shows the word hAN

‘yes’ which was annotated with a POS tag INJ under ADVP 14 times and under NP,

only once. In these categories the skew-value was 84.5. Similarly, the third category

computed the skew-value against an NP where sab ‘all’ is the next token. The group

has a skew-value of 264.5 and has been annotated as NP 24 times and as ‘S’ only

once. These inconsistencies can be reached by using the sentence numbers. In the

evaluation process, all groups have been reviewed with skew-value of greater than zero.

106

The tool has been employed by choosing context of zero and one for all three categories.

Table 3.14 presents the evaluation report with respect to number of sentences reviewed

for inconsistencies.

TABLE 3.14: Groups and sentences reviewed against lexical items, POS tags and
phrase labels for zero and one context.

Context Tokens POS tags Phrase labels

#Groups #Sentences #Groups #Sentences #Groups #Sentences

Zero 288 486 195 279 303 82

One 12 16 134 119 83 37

Table 3.14 shows number of sentences and groups which were reviewed during

the evaluation. Overall, 502 sentences were reviewed against category of tokens, 398

sentences were reviewed for POS tags and 119 sentences were reviewed for phrase

labels. The evaluation process was carried out in a sequential manner. Inconsistencies

for tokens were checked for context zero and one before the analysis of POS tags and

finally phrase labels were evaluated. Section 3.5 presents the treebank statistics of the

final version of the treebank.

3.5 TREEBANK STATISTICS

This section presents label-wise statistics of the treebank. A few phrase labels

have more frequency in the corpus as compared to others. Table 3.15 shows frequen-

cies of annotation labels. Similarly, Table 3.16 presents the statistics of POS tags after

evaluation.

The NP label has highest frequency in the treebank. The annotation scheme

marks all types of nouns including common nouns, spacio-temporal nouns and complex

107

TABLE 3.15: Frequencies of phrase and functional labels in the final treebank.

Phrase labels Frequency Functional labels Frequency

NP 48,359 SUBJ 10,507

VC 17,530 OBJ 4,067

PP 21,416 OBL 2,324

ADJP 3,331 ADJ 3,094

ADVP 2,114 POF 5,296

QP 1,136 PDL 3,061

S 20,791 VALA 213

SBAR 4,741 VOC 257

PREP 33 INJ 100

DMP 57 - -

FFP 138 - -

Total 119,646 Total 28,919

predicate structures (noun + verb) by using a single POS tags NN and hence with the

same phrase label NP. Proper nouns are also annotated with NP label. In the same way,

VCs have a prominent occurrences in the corpus. Each sentence usually has at least

one verbal construction but sentences with subordinate and coordinate conjunction and

non-core clauses, have additional verbal constructions which increased its frequency in

the corpus. The case system of the language is also depicted by higher frequency of

PP phrases. All types of case markers have been annotated as PP. The phrase label ‘S’

has been used to annotate all types of clauses and hence it has more occurrences even

way higher than the total number of sentences. SBAR label has been used to annotate

subordinate clauses and its frequency shows a sufficient representation in the corpus. A

few phrases including PREP, DMP and FFP have lower frequencies due to their lower

occurrences in the corpus.

108

Table 3.15 also presents the frequencies of functional labels. SUBJ has the

highest frequency in the corpus whereas OBJ label has less occurrences as compared

to SUBJ. Both SUBJ and OBJ have been annotated along with NPs and PPs. When

annotated with NPs, they mark nominal subject and object roles and with PP label,

SUBJ marks ergative and dative subjects and OBJ marks accusative objects. There are

many sentences without direct objects which resulted in low count of OBJ label. The

labels OBL, ADJ, POS and PDL have quite covering frequency in the corpus. The

labels VALA, VOC and INJ have lower frequencies as compared to other labels.

TABLE 3.16: Word statistics according to number of POS tags with number of unique
words, their instances and coverage in the final treebank.

Category No. of tokens No. of instances Percentage

Single POS words 13,148 83,722 56.3%

Two POS words 862 42,087 28.3%

Three POS words 88 14,793 10.0%

Four POS words 17 7,973 5.4%

Total 14,115 148,575 -

More than half of the word types have been consistently been annotated with one

and the same POS tag as shown in Table 3.16. 28.3% of the word types were annotated

with two different tags, 10% of the word types were annotated with three different tags

and 5.4% of the word types were annotated with four different tags in the corpus. There

are seventeen tokens which have four different POS tags, 88 tokens have been marked

by three tags, 862 tokens used two tags and 13,148 token are tagged by using single

POS tag in the corpus.

109

Table 3.17 shows domain-wise statistics of phrase labels. The number of sen-

tences and tokens are different within text domains. Therefore, we have computed per-

centages of labels with respect to total number of labels. These statistics are helpful to

understand syntactic and annotation variation across different domains. The labels NP,

PP, VC, ADJP and ADVP have quite distributive frequency among the domains. The

domain of letters has highest percentage of ‘S’ labels as compared to other domains.

The same trend can be observed for SBAR label which also has highest percentage in

Letters. In the annotation scheme, SBAR clause annotates subordinate clauses by anno-

tating an inner clause with ‘S’ label which resulted in this similarity. In the same way,

the lowest percentage of SBAR is 3.3% in press domain. The label ‘S’ also has lowest

percentage for the same domain. The labels PREP, DMP and FFP have low frequencies

in the corpus but they are present in several domains. Overall, the treebank has coverage

of phrase labels across different domains.

Table 3.18 further shows domain-wise statistics of functional labels in the tree-

bank. The percentages of labels are quite distributive among all domains. However,

some domains have higher percentages. For example, NP-SUBJ has higher percentage

for domains of entertainment, novels and science. Interestingly, domains of health and

technology contain lower percentages of PP-SUBJ. These domains usually have texts in

the form of instructions by using present tense and PP-SUBJ represents ergative and da-

tive subjects which are usually annotated for past perfect sentences. Urdu uses complex

predicate structure in all kind of texts which is shown by the coverage of POF label.

POF label shows an even distribution in the corpus. Similarly, the copula construction

marked with PDL, has representation in all domains. The label VOC and INJ have

110

TABLE 3.17: Domain-wise statistics (%) of phrase labels in the final treebank.

Domain NP PP VC ADJP ADVP S SBAR QP PREP DMP FFP

Book reviews 37.5 21.5 17.1 3.2 1.4 14.2 3.9 1.0 0.02 0.08 0.14

Culture 34.8 20.8 18.0 3.9 1.7 15.1 4.9 0.7 0.02 0.0 0.04

Education 35.8 21.2 17.2 4.3 2.2 14.8 3.5 0.8 0.0 0.0 0.16

Entertainment 35.7 20.4 17.8 4.1 2.1 15.2 3.5 1.0 0.07 0.0 0.17

Health 32.3 18.7 19.1 4.4 2.3 17.5 4.3 1.2 0.04 0.04 0.09

Interviews 36.0 20.0 18.1 3.3 2.1 15.4 3.8 1.1 0.01 0.1 0.09

Letters 32.5 17.3 20.0 3.5 2.4 18.2 5.2 0.9 0.01 0.04 0.04

Novels 34.8 17.0 20.2 2.3 2.6 17.7 4.6 0.8 0.09 0.03 0.01

Press 37.1 21.9 16.8 3.7 1.8 14.2 3.3 1.2 0.02 0.04 0.05

Religion 37.1 18.9 18.8 2.8 2.1 14.9 4.6 0.7 0.03 0.03 0.06

Science 36.3 20.1 17.1 4.2 1.9 14.5 3.8 1.2 0.04 0.1 0.66

Short stories 35.5 16.2 20.1 2.7 2.9 16.9 4.8 0.7 0.03 0.07 0.02

Sports 35.7 21.3 17.3 3.8 2.0 14.3 3.6 1.8 0.0 0.05 0.17

Technology 36.2 19.5 17.7 4.2 1.9 14.3 3.8 1.1 0.0 0.29 0.93

Translations* 36.3 17.5 19.6 2.6 2.2 16.5 4.2 0.8 0.03 0.06 0.04

*Translations of foreign languages

lower percentages but they are part of several text domains. Conclusively, the treebank

has coverage of all phrase and functional labels with respect to text domains as it has

been developed by using a balanced corpus.

111

TABLE 3.18: Domain-wise statistics of functional labels in the treebank.

Domain NP-SUBJ PP-SUBJ NP-OBJ PP-OBJ OBL POF PDL ADJ VOC INJ

Book reviews 38.0 11.1 12.3 5.5 6.4 11.1 10.1 4.7 0.09 0.0

Culture 32.8 10.0 17.1 5.9 7.6 11.5 6.6 7.8 0.0 0.0

Education 37.1 9.0 14.9 3.5 4.9 13.8 9 6.1 0.0 0.14

Entertainment 40.8 6.8 12.9 2.9 5.5 10.8 9.5 9.8 0.14 0.0

Health 41.3 4.7 17.6 3.1 6.3 14.3 5.9 6.1 0.0 0.0

Interviews 38.3 9.3 15.4 2.3 5.6 12.9 7.6 7.2 0.29 0.06

Letters 38.5 5.5 20.8 4.0 5.9 11.7 7.6 4.8 0.25 0.13

Novels 41.2 11.0 15.2 2.6 3.6 10.8 4.8 8.5 0.89 0.14

Press 37.5 11.0 13.3 4.0 4.7 14.5 7.6 6.2 0.08 0.0

Religion 34.8 14.0 16.0 3.7 5.2 11.4 7.5 6.5 0.33 0.2

Science 41.9 8.0 12.1 3.6 5.7 11.1 9.1 6.8 0.18 0.0

Short stories 39.7 12.7 13.2 3.0 4.7 11.6 5.3 7.7 1.15 0.41

Sports 37.1 11.7 16.1 3.3 4.6 12.9 6.7 6 0.07 0.0

Technology 39.2 4.2 19.7 4.2 3.2 13.3 9.1 5.2 0.0 0.0

Translations* 38.6 12.7 14.2 2.5 4.8 11.6 6.3 7.4 0.87 0.06

*Translations of foreign languages

112

4. STATISTICAL PARSING

This chapter presents the parsing models and syntactic features which have been

trained to parse the CLE-UTB. We discuss the preparation of data sets, statistical con-

stituency parsers and syntactic features. We have performed experiments with several

parsing formalisms which include probabilistic context-free grammars (PCFGs), lexi-

calized grammars, tree substitutions grammars (TSGs), recursive neural network based

parsing and Bi-directional long-short term memory network based models. We have fur-

ther performed transfer learning by training word representations to improve the parsing

results.

Urdu is a morphologically rich language. Therefore, for statistical parsing, a

large data set is required to cover all its surface forms. To overcome data sparsity,

we have experimented with several linguistic and computational features to improve

the statistical learning. These features include, POS tag upgradation, markovizations,

Urdu-head word identification, lemmatization and word clustering. These features were

helpful for the improvement of parsing scores when trained with different models. Un-

lexicalized PCFG based models and tree substitutions grammars have been trained by

using discontinuous data-oriented parsing framework (disco-dop) 1. Following sections

describe our dataset, parsing models and features in more detail.

1https://discodop.readthedocs.io/en/latest/

113

4.1 DATASET

For the statistical parsing of morphologically-rich languages, the third issue is

the data requirements as raised in [148]. A dataset with sufficient samples is crucial

for training statistical parsers. The CLE-UTB uses a simplified annotation scheme for

POS tagging as well as phrase labeling. Therefore, the treebank has sufficient samples

to learn syntactic categories of the language. The corpus contains text from a number

of domains written by several authors. Therefore, a balanced test set is necessary to

present valid results. The test set has been prepared according to text domains as shown

in Table 4.1.

The test set has been prepared by selecting random sentences with respect to

number of sentences in different text domains. The test set also covers the various

lengths of sentences. The length coverage of the test set is shown in Figure 4.1. The

trend in the test set is quite similar to the overall length coverage of the whole corpus as

shown in Figure 3.13.

0

50

100

150

200

250

300

S

en
te

nc
es

1-5 6-10 11-15 16-20 21-25 26-30 31-35 >35

Length groups

FIGURE 4.1: Length coverage of the test set.

It has been observed that parsers perform well on shorter sentences as compared

114

TABLE 4.1: Domain-wise train and test set division.

Sr# Domains # Train sents. # Train tokens # Test sents. # Test tokens

1 Book reviews 320 7,399 70 1,277

2 Culture 369 7,087 52 1,044

3 Education 218 4,903 49 925

4 Entertainment 195 4,037 53 1,010

5 Health 482 8,614 52 980

6 Interviews 525 10,673 52 1,007

7 Letters 592 10,264 58 1,003

8 Novels 468 8,762 83 1,671

9 Press 372 8,743 52 1,036

10 Religion 438 8,462 50 892

11 Science 354 7,362 51 932

12 Short stories 1,496 24,589 168 2,974

13 Sports 454 8,980 51 953

14 Technology 85 1,691 39 773

15 Translations* 513 8,539 93 1,993

Total 6,881 130,105 973 18,470

*Translations of foreign languages

to longer ones. Therefore, we have further divided our test set into three groups ac-

cording to the number of tokens. These groups include, small sentences with 10 or less

tokens, medium sentences with length between 11 and 25 and long sentences with 25

or more tokens. Table 4.2 shows the length based division of our test set.

TABLE 4.2: Length-wise division of the test set.

Test set Small(〈=10) Medium(11-25) Long(〉25) Total

Sentences. 229 526 218 973

Tokens 1,919 9,136 7,415 18,470

115

The small set contains 229 sentences having 10 tokens or less, medium set con-

tains 526 sentences with number of tokens between 11 and 25 and the long set contains

218 sentences with 25 tokens or more. The sub-categorization of the test set would

be helpful for the analysis of the performances of the parsers. The annotation of the

CLE-UTB covers all syntactic constructions and probable word orders of the language.

However, an ordered test set has been prepared which contains sentences with different

word orders. This test set has been used to analyze the parsers’ learning for different

word orders. Section 4.3.6 presents the ordered test set in detail.

4.2 CONSTITUENCY PARSERS

A constituency parser provides the analysis of a sentence and assigns the syn-

tactic categories to the phrases and clauses. The syntactic structure is also helpful to

understand semantics. The syntax is represented in the form of a parse tree. A parse

tree shows the break down of a sentence into sub-phrases. A parse tree contains a root,

non-leaf nodes and leaf nodes. In the annotation of the CLE-UTB, a root node has a

label ‘S’, non-leaf nodes are annotated with phrase labels of the annotation scheme and

leaf nodes are actual words of a language. The POS tags are referred as pre-leaf nodes

as the parsers predict the phrase level relations whereas POS tags are predicted by using

POS taggers. However, the accuracy of POS tagging is influential on the parsing scores.

The syntactic annotation of a language faces an issue of structural ambiguity.

Generally, the ambiguity is referred as the possibility of multiple parse trees hence with

multiple meanings of a single sentence. The structural ambiguity is quite common in

116

the natural languages. Figure 4.2 shows an example of structural ambiguity in an Urdu

sentence.

(a) S

PP-SUBJ

NP

NN

leRkE

PSP

nE

PP

NP

NN

glAs

PSP

sE

NP-OBJ

Q

zyAdA

NN

pAnI

VC

VBF

piyA

lerkE=nE glAs=sE zyAdA pAnI piyA
boy.Sg=Erg glass.Sg=Ins more water.Nom.Sg drink.Perf.M.Sg
The boy drank more water with a glass.

(b) S

PP-SUBJ

NP

NN

leRkE

PSP

nE

NP-OBJ

PP

NP

NN

glAs

PSP

sE

Q

zyAdA

NN

pAnI

VC

VBF

piyA

lerkE=nE glAs=sE zyAdA pAnI piyA
boy.Nom.Sg=Erg glass.Sg=Com more water.Nom.Sg drink.perf.M.Sg
The boy drank more than a glass of water.

FIGURE 4.2: An example of structural ambiguity.

The example in Figure 4.2 shows two parse trees for an Urdu sentence. The post-

positional subject and verb complex are similar in both parse trees. The attachment of

the post-positional phrase changes the meaning in two representations. The first parse

tree gives a meaning that the boy drank more water with a glass. The second tree

depicts that the boy drank more than a glass of water. The grammar of a language may

117

generate more parse trees which shows severity of the structural ambiguity. Statistical

parsers perform structural disambiguation and return most probable parse trees. In this

work, we have experimented with a range of parsing techniques by using a number

of syntactic features. Following sections describe grammar formalisms and parsing

techniques which have been trained on the CLE-UTB.

4.2.1 Probabilistic Context-Free Grammars (PCFGs)

A PCFG is derived from an annotated corpus and is used for the prediction of

parse trees for unseen sentences. The grammar rules are treated independent without

using the contextual information. Each rule has a probability in the grammar. The

probability is calculated by dividing the frequency of a rule by the frequency of the rule

head. The left-hand side of a rule is referred as head of a rule. The head frequency

is computed by counting the rules containing same head throughout the grammar of

a treebank. Equation 4.1 shows the process to compute independent probabilities for

grammar rules.

P(A→ B) =
Count (A→ B)

∑RCount (A→ R)
=

Count (A→ B)
Count (A)

(4.1)

A is a single non-terminal and B is a sequence of terminal and non-terminal

symbols. A is the head of the rule A→ B. The sum ∑RCount (A→ R)R presents the

count of rules in which the head is A. The probability of a parse tree is computed by the

product of probabilities of rules in the parse tree. The probability of a parse tree P(T)

can be calculated as shown by Equation 4.2.

118

P(T,S) = P(T) =
x

∏
i

P(A→ B) (4.2)

A is a single non-terminal and B is a sequence of terminal and non-terminal symbols. i

is the starting grammar rule of a parse tree till the last x rule. The most probable parse

tree can be computed by maximizing tree probabilities as depicted by Equation 4.3.

P(S) = arg max
T∈parses(S)

P(T) (4.3)

PCFGs make efficient parsers with respect to processing speed as they do not

compute contextual information when implemented straight away. Context of phrases

in a parse tree could be helpful to achieve more accurate parses. A few treebank repre-

sentations could be helpful to embed contextual information with PCFGs. Section 4.3.2

describes the details of treebank representations for parsing with PCFG based parsers.

Lexical conditioning can provide the contextual information to the parse trees.

The lexicalized grammars use the lexical information from phrases and sub-phrases.

For this purpose, phrasal heads are computed to acquire the syntactic contribution of

dominant words within the phrases. These grammars produced accurate parsers for

English [38, 31, 104, 94]. The head word computation is a language dependent task. For

parsing, an accurate head model is indispensable. Figure 4.3 shows an Urdu sentence

parsed by using a simple PCFG and a lexicalized parser.

Both grammars have parsed the complex predicate structure into different phrases.

A complex predicate structure is represented by noun pES ‘to present’ which is followed

by a verb complex (VC). The head of the VC is a light verb kar ‘do’. In the annotation

119

(a)

S

NP

NN

mAhrIn

NP

Q

matAded

NN

mesAlEN

NN

pES

VC

VBF

kar

AUXM

saktE

AUXT

hyN

(b)

S〈kar〉

NP〈mAhrIn〉

NN〈mAhrIn〉

mAhrIn

NP〈mesAlEN〉

Q〈matAded〉

matAded

NN〈mesAlEN〉

mesAlEN

NP〈pES〉

NN〈pES〉

pES

VC〈kar〉

VBF〈kar〉

kar

AUXM〈saktE〉

saktE

AUXT〈hyN〉

hyN

mAhrIn matAded mesAlEN pES kar SaktE hyN
expert.Pl many example.Pl present do.Sg can.mod.M.Pl be.pres.Pl
Experts can present many examples.

FIGURE 4.3: Two parse trees for the same sentence ‘mAhrIn matAded mesAlEN pES
kar SaktE hyN’ (a) parse tree from a PCFG grammar (b) Parse tree via a lexicalized

grammar.

guidelines, a complex predicate structure is annotated in two different constituents as

shown by the second parse tree. The first parse tree is an output of a PCFG parser which

did not include lexical conditioning hence produced an implausible structure. The ex-

ample is evident that lexicalized parsers can produce better parsing results by employing

a head-word algorithm. For experiments with lexicalized parsing, we have trained the

parser presented in [94] by using an Urdu head model. Section 4.3.3 presents a head

model for Urdu which we devised to perform parsing experiments on the CLE-UTB.

120

4.2.2 Tree Substitution Grammar (TSG)

TSGs make probabilistic parsers. They were proposed by [131] and were fur-

ther formalized by [20]. The parsing based on TSGs is also called data-oriented parsing

(DOP). A DOP model considers all possible subtrees in a parse tree and predicts parses

for unseen sentences. These subtrees are called fragments. Several variations of DOP

model are available with different applications. The DOP model can produce a huge

number of fragments with respect to number of parse trees in a treebank. Many frag-

ments may produce a lot of candidate parse trees for one sentence. The DOP model

computes the probability distribution to perform disambiguation. It calculates fragment

probabilities and derivations for estimation. The sum of probabilities of all fragments

with the same root label is equal to one as shown by Equation 4.4.

∑
f∈Fx

P(f) = 1 (4.4)

In Equation 4.4, Fx represents the set of all subtrees with root x. A sequence of

fragments which produces a parse tree t by using the left-most substitution is called a

derivation. Equation 4.5 shows the probability calculation for a derivation d.

P(d) = P(f1, ..., fn) =
n

∏
i=1

P(fi) (4.5)

The relative frequency estimate (RFE) produces the simplest probability esti-

mate against a fragment . RFE is calculated by dividing the frequency of a fragment f

with sum of all fragments having same root in the treebank. f ′ ∈ Froot (f) shows all

121

the fragments with same root.

PRFE (f) =
Count (f)

∑ f ′∈Froot(f)Count (f ′)
(4.6)

RFE does not provide a complete probabilistic interpretation. It contributes a

biased estimate by assigning a higher probability value to larger fragments. Therefore,

[66] proposed an equal weight estimate as shown by Equation 4.8.

WEWE (f) = ∑
t∈T B

Count (f , t)
|{ f ′ ∈ t}|

(4.7)

PEWE (f) =
WEWE (f)

∑ f ′∈Froot(t)WEWE (f ′)
(4.8)

Equation 4.7 adds the division of sums against a fragment f for a tree t with all

fragments. P(f) can be calculated by dividing the equal weight estimate by the sum of

the equal weight estimates of all fragments having same root. To calculate the proba-

bility of a tree t, DOP sums the probabilities of all derivations of a tree t and maximizes

the likelihood for the estimation of most probable tree as presented by Equations 4.9

and 4.10.

P(t) = ∑
d∈D(t)

P(d) = ∑
d∈D(t)

∏
f∈d

P(f) (4.9)

t = argmaxP(t) (4.10)

122

In this work, we have trained a double DOP model which was presented in [130]. The

DOP model produced the contextual information by considering all possible subtrees.

We have performed experiments for different subtree heights. The higher tree depths

are helpful to attain more context of constituents.

4.2.3 Recursive Neural Network based Parser

A compositional vector grammar (CVG) was introduced by [141] which per-

forms syntactic parsing by learning syntax and semantics of words in the treebank.

They combined the syntactic categories achieved from a grammar based parser with a

recursive neural network (RNN) model. Figure 4.4 shows a sample tree with a recursive

neural network. The same weight matrix is replicated and used to compute all non-leaf

node representations.

X1 X2 X3 X4

W

W

W

y1=tanh(W[x1;y2]+b)

y2=tanh(W[x2;y1]+b)

y1=tanh(W[x3;x4]+b)

FIGURE 4.4: A sample tree with a simple recursive neural network.

The technique improved parsing results for English and achieved an f-score of

90.4. The parser was a continuation of parsing model proposed in [140]. Word embed-

dings were trained along with the parsing which were proposed in [149]. The POS tags

were appended with the word vectors so that each pair contains a word representation

123

in the form of vector and POS tag. The CVG computes a score by adding up scores for

all nodes of a tree. Max-margin algorithm performs predictions and objective function

along with CVG and produces a tree with highest score as correct one from all possi-

ble parses. The objective function and optimization used for training are described by

Equations 4.11, 4.12 and 4.13.

J (θ) =
1
m

m

∑
i=1

ri (θ)+
λ

2
||θ ||22 (4.11)

ri (θ) = maxŷ∈Y (xi) (s(CV G(xi, ŷ))+∆(yi, ŷ))− s(CV G(xi,yi)) (4.12)

∆(yi, ŷ) = ∑
d∈N(ŷ)

k{d /∈ N (yi)} (4.13)

Where input sentence is represented as xi, all possible parse trees for xi are

represented by Y (xi), correct prediction for xi is yi, ∆(yi, ŷ) is the margin loss, k was

set to 0.1 for all experiments, (xi,yi) represents all training samples, score function is

represented by s, parameter collection is represented by θ , λ = 10−4 for training and

N (yi) represents all nodes for the parse tree yi.

The word vectors have been used to find the correct parent for a pair of child

nodes (p→ ab). A parent and its children have the same dimensionality. The vectors

from child nodes are joined which result to have a dimension of 2n×1. The dimension

of weight matrix was set to x× 2n and tanh was used for nonlinearity. Similarly, the

124

output vector was used for the prediction of parent nodes. CVG considers the syntactic

constructions extracted from the treebank by using a PCFG parser. The weights were

learned by training a syntactically-united recursive neural network (SU-RNN). Child

nodes were also influential in the weight matrix. A node score was computed by adding

up the linear score of a parent and log probability of the rule (P→ AB) as demonstrated

by Equation 4.14.

s
(

p(1)
)
=
(

v(A,B)
)T

p(1)+ logP(P1→ AB) (4.14)

Where v is the parameter vector and the CVG computed scores for a parse tree

by summing all node scores.

s(CV G(θ ,x, ŷ)) = ∑
d∈(ŷ)

s
(

pd
)

(4.15)

A lexicalized PCFG parser has been used for caching top 200 parse trees against

each training sample of the CLE-UTB. RNN parser has been trained with an object

as shown in Equation 4.11. Beam search was used to optimize the speed for top 200

parses. In the experiment, we set λ = 10−4, the batch size was set to 20, the learning

rate for AdaGrad was α = 0.1 and word embedding dimensionality was set to 25. For

our treebank, word embeddings were trained on a plain corpus having 35 millions Urdu

words.

125

4.2.4 BiLSTM Parser (Proposed)

Recurrent neural networks (RNNs) are able to provide a learning framework

to model word sequences by using the entire context. Our parsing model has been

developed on bidirectional long-short term memory (BiLSTM) network, a variant of

conventional RNN. For parsing, we have converted the problem to sequence labeling.

The parse trees have been converted to linear structures along with tree labels and POS

tags. The BiLSTM model was quite capable to predict the sequential labels. Figure 4.5

shows the model architecture having two LSTM layers, one in forward direction and

other in backwards.

. . . LSTM LSTM LSTM LSTM . . .

LSTMLSTMLSTMLSTM.

~x2 ~x3 ~x4 ~x5

~h5~h4~h3~h2

~h→2 ~h→3 ~h→4

.

~h←3 ~h←4 ~h←5

FIGURE 4.5: Bi-directional long-short term memory model for sequence labeling.

Conventional RNNs have the ability to learn shorter contexts but in case of

longer sequences, they face a problem of vanishing gradient which makes them less

practical for longer sequences. One solution is the LSTM networks which add the

capability of forgetting the irrelevant previous information and remembers essential

context. An LSTM cell contains multiple layers to perform tasks of forgetting and

126

σ σ σtanh

tanh

xt

ht-1

Ct-1

ft it ot

ht
Ct

ht

C̃t

FIGURE 4.6: Basic structure of LSTM

remembering. Figure 4.6 shows the internal architecture of an LSTM cell. Equa-

tions 4.16, 4.17, 4.18, 4.19, 4.20 and 4.21 show the functions of hidden layers of a

cell.

The first step of an LSTM cell decides what information to forget and what

information to pass on to the next layer and to which degree. For that purpose, it takes

xt at time t and a previous hidden state ht − 1 as input and outputs a number between

zero and one by using a sigmoid (σ) layer also called forget gates and is represented by

a function ft (Equation 4.16). The number decided which percentage of the information

to forget.

ft = σ
(
Wf .[ht−1,xt]+b f

)
(4.16)

The second step decides about the storing of new information. This step works

in two steps. These two layers are represented by functions it and C̃t . it takes input xt

and the previous hidden state ht − 1 and produces a number between zero and one. C̃t

is computed in the form of a vector by using a tanh layer against input and the previous

hidden state (Equation 4.17, 4.18).

127

it = σ (Wi.[ht−1,xt]+bi) (4.17)

C̃t = tanh(WC.[ht−1,xt]+bC) (4.18)

The third step updates the previous cell state Ct−1 to produce new cell state Ct .

For that purpose, forget layer ft , information layer it and new candidate C̃t are used. At

first, the previous cell state Ct−1 is multiplied with ft then add it ∗C̃t to achieve the new

cell state Ct . The new cell state will be forwarded to the next LSTM cell (t + 1). The

computation of cell state Ct is shown by Equation 4.19.

Ct = ft ∗Ct−1 + it ∗C̃t (4.19)

At the final step, the cell produces an output which is the hidden state of the cell.

It is based on the new cell state. Similar to it , a sigmoid (σ) layer is used to decide what

information to output (ot) and then multiplies with the cell state after filtering it through

a tanh layer. It is the output (ht) of a cell which is forwarded to the next LSTM cell

t +1. Equations 4.20 and 4.21 show the computations of ot and ht respectively.

ot = σ (Wo.[ht−1,xt]+bo) (4.20)

ht = ot ∗ tanh(Ct) (4.21)

128

Input layer

Word embeddings

Pre-trained word
representations

POS representations
W1 W2 Wn

...

...

...

Hidden layers
Train samples

D
en

se
 (s

of
tm

ax
)

BL
ST

M
 (2

56
 u

ni
ts

)

W
or

d
re

pr
es

en
ta

tio
ns

Predicted labels

C
on

te
xt

ua
l

re
pr

es
en

ta
tio

ns

W1 P1 L1
W2 P2 L2
W3 P3 L3

. . . .

Wn Pn Ln
Ve

ct
or

 e
nc

od
in

gs

Pr
ob

ab
ilit

ie
s

Pred_L1

Pred_L2
Pred_L3

. . . .

Pred_Ln

FIGURE 4.7: BiLSTM based parsing architecture.

LSTM based network architectures provide better learning for a sequence label-

ing problem. We have trained a bidirectional LSTM model to parse the Urdu treebank.

The BiLSTM output vector at position i for the input sentence w1:n is defined by Equa-

tion 4.22. It is a vector hi with conditioning previous context w1 : i and in addition, the

next sequence wi : n. A further dense layer was applied by using so f tmax for multi-

class classification which outputs the tree labels against the input sequence as shown by

Equation 4.23.

BiLST M (w1:n, i) = LST M f (w1:i)◦LST Mr (wn:i) (4.22)

oi = So f tmax(Whi +b) (4.23)

For a given sentence of n words (x1,x2, ...,xn), along with their POS tags (t1, t2, ..., tn)

were represented by using embedding vectors. At index i, the input vector was com-

puted by concatenating word vector emb(wi) and POS vector emb(ti) i.e. emb(wi) ◦

emb(ti). Figure 4.7 shows our long-short term memory networks based parsing archi-

tecture.

129

At first step, vector encodings are achieved from train samples. The input layer

concatenates word embeddings, pre-trained word representations and POS embeddings

to create a single vector for each token. These representations are further fed to hidden

BiLSTM layers to achieve contextual representations. Finally, the output (so f tmax)

layer performs the multi-class classification to produce the predicted labels. We fur-

ther performed transfer learning to improve the learning of LSTM layers by including

pre-trained word representations. The details of transfer learning are presented in Sec-

tion 4.2.5.

4.2.4.1 Proposed Sequential Labeling

We transformed the parse trees into sequential format. For that purpose, we have

used a baseline transforming method as discussed in [62]. The labeling output was in

ConLL format in which token had POS tags and tree labels. The treebank labels contain

a number and a label. The number which is the part of a label represents the number

of common ancestors. The phrase label attached with the number which represents a

common label between successive token at the lowest level in the tree. However, the

unary branches were handled separately by attaching them with POS tags. Figure 4.8

shows an Urdu parse tree along with our proposed linear labeling as compared to relative

labeling presented in [62].

The simple linear encoding produces a label by using the common number of

phrase labels between wi and wi + 1. However, it usually produces large number of

labels. The second encoding method proposed by [62] uses the difference of common

130

ROOT

S

NP

PP

NP

NN

SikAr

PSP

kA

NN

SOq

NP

PRP

mujHE

PP

NP

PRP

un

PSP

sE

PP

NP

NN

verAsat

PSP

mEN

VC

VBF

milA

PU

-

SikAr=kA SOq mujHE un=sE varAsat=mEN
hunting.Sg=Gen passion.Sg.Nom Pron.1.Sg pron.3.Pl=Abl inheritance.Sg=Loc
milA
find.Past.3.Sg
I inherited the passion of hunting from him.

SikAr kA SOq mujHE un sE varAsat mEN milA -
Relative labeling of [62]:
3 PP -1 NP -1 S 0 S 1 PP -1 S 1 PP -1 S 0 S NONE
Absolute labeling:
3 PP 2 NP 1 S 1 S 2 PP 1 S 2 PP 1 S 1 S NONE
Proposed Labeling:
PP 2 NP 1 S 1 S PP 1 S PP 1 S 1 S NONE

FIGURE 4.8: A sample Urdu parse tree along with linearized labels.

ancestors from next wt +1 and previous token wt−1. For example, the token kA (geni-

tive case marker) has a relative scale label -1 NP. The token has two common ancestors,

NP and S, with next token SOq ‘passion’ and three common ancestors, PP, NP and S,

with previous token SikAr ‘hunting’. Therefore, the difference is -1 and the lowest com-

mon ancestor label is NP which produces a linear label -1 NP. This method is referred

as relative scale and produces remarkably less number of labels as compared to absolute

scale encoding. The unary branch labels were produced separately as first step of the

131

labeling which are further added with POS tags for conversion back to brackets. There-

fore, experiments have been performed in two passes. First pass predicts unary labels

and the second pass predicts the relative phrase labels. The output is further converted

back to parse trees for f-score evaluation.

However, the analysis and experiments of relative and absolute sequential label-

ing has been performed for English Penn Treebank. The annotation of the CLE-UTB

has relatively flat structure hence with less number of labels. Therefore, we have pro-

posed a labeling scheme which has further fewer labels. The average entropy of our

proposed labeling is also lower than the relative labeling. The most importantly, the

proposed label set produces better parsing scores and outperformed the relative labeling

up to one percent. Table 4.3 presents the comparison of both labeling schemes.

TABLE 4.3: Comparison of our proposed sequential labeling with the labeling of [62]
with respect to the Urdu Treebank

Labeling # of Labels Average Entropy Best F-score

Relative[62] 180 3.15 88.1

Proposed 143 2.65 89.1

Table 4.3 presents number of labels, average label entropy of all sentences and

best parsing f-score when trained on the CLE-UTB. The entropy values depict random-

ness of the labels in a sentence. The entropy value of the proposed scheme is less than

relative labeling showing that our labeling has less randomness hence have more learn-

ing potential in training. F-score values further represent the syntactic learning of our

proposed sequential labeling. The proposed labeling scheme is based on the absolute

labeling method which simply label common number of phrase labels of token and its

132

next token. The label further concatenates the lowest common phrase label to obtain a

sequential label. A label contains a number followed by a phrase tag.

The absolute labels were analyzed against the annotation of the CLE-UTB to

find predictable patterns. There were several patterns due to the simplified and flatter

syntactic structure of the treebank. We have exploited them to reduce overall labels for

training. For instance, the number of common phrases, for a PP label, is always one

higher than the number of next label. In the absolute labeling, the first label is 3 PP

and the second label is 2 NP. Similarly, fifth and seventh tokens have 2 PP label and

their next label is 1 S. This sequence is found throughout the treebank. We therefore,

dropped the number from all PP labels which reduced the size of label set. Same pattern

was observed for PP-G labels and the labels were further reduced.

Another pattern was observed for the VC label. The number of common phrase

labels are always one higher than the common phrase labels of the previous label in

any sentence. The number was also removed from all VC labels in the treebank la-

beling. The demonstrative phrase (DMP) also showed a pattern which was similar to

post-positional labels. The DMP labels were also simplified to reduce to labels by re-

moving the number from them. These number were recovered back after get a predicted

output of the parser. There were some patterns with NP labels as well but they rather

decreased the parsing scores. However, the simplified labeling reduced the tag set to

143 as compared to relative labels and produced an improved parsing f-score of 89.1 as

shown in Table 4.3.

BiLSTM models can process inputs of arbitrary length. In case of batch pro-

cessing, the longest sentence of the batch determines the length and shorter sentences

133

are padded to this length. Therefore, we limited the model to use 100 tokens for each

sentence. The embeddings of words and POS tags were concatenated to achieve input

vectors. Two hidden LSTM layers have been used having 200 dimensions each. The

Adam optimizer was used with a learning rate of 10e-3. The training was done for 20

epochs with a batch size of 64. We further developed a POS tagger which was also

based on LSTM networks. The tagger was trained with a single bi-directional LSTM

layer having 256 dimensions and trained for 24 epochs. For BiLSTM parser and POS

tagger, keras open-source software library has been used with tensorflow background.

The performance of both, parser and tagger, was improved by employing transfer learn-

ing.

4.2.5 Transfer Learning

The transfer learning uses the solution or knowledge from one problem and

applies it to solve another but related problem. For instance, annotated data for tasks

of POS tagging and parsing may not cover all possible constructions for a language

because the process of annotation is quite costly. In this case, transfer learning becomes

a suitable option. Pre-trained models are usually used to embed into the current models.

We have performed syntactic parsing and POS tagging by using transfer learning. Word

representations have been trained on large plain Urdu corpus. We have experimented

with Word2Vec [110] and deep contextualized word representations (ELMo) [123] for

parsing and POS tagging by using BiLSTM models. For parsing, the same corpus was

used to train word representations with RNN and BiLSTM parser. The POS tagger

achieved better accuracy with ELMo embeddings while the parser performed well with

134

Word2Vec embeddings.

To train word representations, the Urdu corpus contained 1.71 million sentences

with about 35 million words23.Word2Vec embeddings were trained with a vocabulary

size of 72 thousands and 100 dimensions for each vector. However the ELMo represen-

tations were trained for 128 dimensions. The parsing results by using transfer learning

are presented in Chapter 5.

4.3 SYNTACTIC FEATURES

To parse morphologically rich languages, the language representation, input

type, label sets and the size of training set are important. The models for constituency

parsing may not work well on morphologically rich languages like Urdu. Therefore, it is

important to use syntactic features in the training process for the achievement of better

results. The features should be selected in such a way that they are helpful to overcome

the issue of data sparsity and provide better syntactic learning. We have investigated

a number of features which were helpful to improve parsing scores. A simple PCFG

model has been used as baseline parser in our experiments and it uses default language

representation and POS tag set. Following sub-sections describe syntactic features in

more detail.

4.3.1 Updated POS Tags (POS2)

The existing POS tag set is designed to have fewer tags resulting to be flat for

several word classes. The tag set has been designed to cover the morphologically rich

2http://www.cle.org.pk
3https://www.urdudigest.pk

135

nature of the language. The post-positional tag, for example, has a single tag PSP, re-

gardless of syntactic usage of the clitics. A single tag has been used to mark all types of

common nouns. In the same way, single tag for adjectives, adverbs etc. The punctua-

tion symbols are also tagged by using a single tag, PU. However, the well-known Penn

Treebank POS tag set has several tags for different types of prepositions and punctua-

tions. Therefore, we have experimented with different syntactic sub-categorization of

the tag set and proposed an updated version based on the initial parsing results. We have

divided the tags for post-positions and punctuation into additional categories as shown

in Table 4.4.

TABLE 4.4: Updated POS tags for post-positions and punctuations.

Category Clitic POS Updated POS Description

Post-position nE PSP PSP-E Ergative

kO PSP PSP-A Accusative/Dative

kA, kI, kE PSP PSP-G Genitive

sE PSP PSP-SE Ablative/Instrumental

az, tA PSP PSP-I Internal

- PSP PSP All other post-positions

Punctuation ‘,’,‘;’ PU PU-C Comma/Semicolon

‘�’,‘?’ PU PU-P Period/Question mark

‘ ! ’,‘ : ’ PU PU-E Exclamation/Colon

- PU PU All other punctuations

The categorization of cases and case markers has been described in [85]. The tag

PSP-E represents the ergative case which uses a case marker nE. It appears to mark an

ergative subject of a sentence. The tag PSP-A has been categorized to mark accusative

and dative case markers. Both cases use the same case marker kO. Similarly, three clitics

(kA, kI and kE) represent genitive cases and we have given them a single tag PSP-G.

136

Ablative and instrumental cases are represented by a case marker sE with an updated

tag PSP-SE. Urdu also uses internal clitics like az and tA, for example, kam az kam ‘at

least’. The POS tag set annotates such clitics as post-positions. We have categorized

such clitics to have an updated tag PSP-I because their syntactic structure is different

from other post-positions. All other case markers were tagged with the tag PSP.

In the same way, the tags for punctuation symbols have been divided into four

categories. Commas and semicolons have been tagged with PU-C, periods and question

marks have been marked with PU-P, the exclamation symbol and colon are marked with

PU-E and all remaining punctuations have been tagged by using the default PU tag. The

tagging division has been performed on the bases of initial parsing experiments. The

sub-categorization of these POS tags helped to achieve better parsing results by keeping

its size to be practical.

4.3.2 Markovization

Context-free grammars induce the grammar rules from a treebank by consider-

ing each rule independent of other rules. The probabilities are calculated by counting

the occurrences of specific constituents and their rules heads (left-hand sides). For ex-

ample, production rules with head NP are treated and computed in a similar way even

if they have different parents. Figure 4.9 shows a parse tree with two NPs.

The NP attachment under a PP represents the subject of the sentence as it is

137

S

PP

NP

NN

leRkE

PSP

nE

NP

NN

sEb

VC

VBF

kHAyA

lerkE=nE sEb kHAyA
boy.Sg=Erg apple.Nom.Sg eat.Past.Sg.Masc
The boy ate an apple.

FIGURE 4.9: A parse tree for a sentence ‘leRkE nE sEb KHAyA’ without contextual
annotation.

followed by an ergative case marker nE. On the other hand, the second NP has been at-

tached under ‘S’ label and it represents the object of the sentence. The example demon-

strates that the independent rule probability may not produce complete syntactic infor-

mation about some constitutes. However, a treebank representation method is available

which could help to include contextual information in the parse trees. A parental anno-

tation method was proposed in [80]. Figure 4.9 shows the updated parse tree by using

parental annotations.

The parental annotation attaches the parent label with the child node which re-

sults into a new label. The node annotation can be vertical as well as horizontal. In the

horizontal annotation, the sibling nodes are attached with tree nodes at the same depth.

The node annotation method could be helpful in parsing when treebank annotation is

flat. However, too much higher parental or sibling annotation depth may result into

data sparsity. To achieve the optimal annotation depths, a series of experiments have

138

S

PPˆS

NPˆPP

NN

leRkE

PSP

nE

NPˆS

NN

sEb

VCˆS

VBF

kHAyA

lerkE=nE sEb kHAyA
boy.Sg=Erg apple.Nom.Sg eat.Past.Sg.Masc
The boy ate an apple.

FIGURE 4.10: Parse tree for the sentence in Figure 4.9 with parental annotation.

been performed on the Urdu treebank. We have experimented with both horizontal and

vertical markovization values. Figure 4.11 shows f-scores based on different values of

vertical and horizontal markovizations. It is clear that by increasing the vertical and

horizontal contexts, the parsing scores would be improved. However there is a subtle

difference in the results for values between two and three.

v=0 v=1 v=2 v=3

65

70

75

64.3

70.7

75.4 75.9

F-
sc

or
e

Vertical Markovization
h=0 h=1 h=2 h=3

65

70

75

80

64.3

76.6

79.6 79.6

F-
sc

or
e

Horizontal Markovization

FIGURE 4.11: The parsing scores with respect to vertical and horizontal makoviza-
tions.

We have further experimented with different combinations of markovization val-

ues. Table 4.5 shows a confusion matrix for both markovizations when set from zero to

139

three.

TABLE 4.5: F-scores with respect to vertical and horizontal makovization values when
evaluated on the test set by training a PCFG parser.

Markovization h = 0 h = 1 h = 2 h = 3

v = 0 64.3 76.6 79.6 79.6

v = 1 70.7 78.5 79.6 79.9

v = 2 75.4 80.1 80.6 80.5

v = 3 75.9 80.7 81.5 80.8

It is important to select optimal markovization values during experiments as

higher values could create an issue of data sparsity by increasing the size of the label

set by appending the contextual labels. For our parsing experiments we have selected

the value of two for both vertical and horizontal markovizations. All grammar-based

parsing models have been trained by setting these values.

4.3.3 Head-Word Model

Lexicalized grammars use phrasal heads to learn the contextual information.

The head words provide syntactic contribution of phrases in a sentence. Head-driven

grammars produced more accurate parsing models for English [36, 38, 94]. Simple

PCFG based parsers do not consider lexical conditioning in the parse trees. For parsing

of morphologically rich languages, like Urdu, could be a challenging task as it has many

surface forms. However, the lexical conditioning could be used to reduce ambiguities

[38]. To implement lexical conditioning in a grammar based parser, an accurate head-

word model is indispensable. We have devised a model for Urdu and evaluated it on a

140

small head-based test set. This test set contained 100 sentences which were annotated

by phrasal heads manually.

4.3.3.1 Head-Word Algorithm

The extraction of head-words is a language specific task. One way is a straight

forward left head identification which will make the left most word as the head of a

phrase. This kind of head model would work for languages having fixed word order.

For Urdu, we need to devise a model which is appropriate for the language. We have

devised a head model for Urdu which is based on the syntactic annotation of phrases.

Urdu is a head-final language and has a right most words as phrasal heads in most of the

cases. The verbal structure of Urdu contains a main verb followed by auxiliary verbs

making first lexical item as head. Syntactic cases are usually represented by using case

markers which appear after an NP. Therefore, PPs will have left head like verb complex

(VC) phrase. For other phrases including NPs, ADJPs, QPs, ADVPs, PREPs and DMPs,

we have right most words as heads. The phrases, SBAR and FFP have left heads. The

head on an S is the first verb from left to right. The POS tags and phrase labels further

help to find accurate heads. Table 4.6 shows the mechanism of our head-word model.

The left most column in Table 4.6 shows phrase labels. The second column

presents the search direction to find a head-word based on the POS tags and phrase

labels given in third column. The priority of tags and labels is from left to right as

shown in the third column. For a label, the algorithms finds the head according to the

given direction either left to right or right to left from the list of tags or labels given in

the third column. However, the list of tags is scanned from left to right. A noun phrase

141

TABLE 4.6: Urdu head-word identification.

Phrase labels Direction Tags/Labels

VC left to right VBF, VBI, AUXA, AUXT, AUXM, AUXP, VC,

ADJP, NN, NP

PP left to right NN, NNP, NP, PSP-G, PSP-SE, PSP-NE, PSP-KO,

PSP-I, PSP

NP right to left NN, NNP, ADJP, CD, JJ, RB, QP

left to right NP

ADJP right to left JJ, QP, NN, ADVP, VBI, AUXP, ADJP, NP, Q,

SBAR, RB

QP right to left NN, JJ, RB, Q, CD, OD, QP

ADVP right to left RB, ADVP, CD, JJ, SCK, NP, NN

S left to right VC, S, SBAR, ADJP, NP

SBAR left to right SCK, Q, S, SBAR

PREP right to left NP, NN, NNP, PRE

DMP right to left PDM, PRP

FFP left to right FF

has two possibilities hence to search head in both directions. It has a right head with

respect to given labels but we chose left word if an NP is annotated to have more than

one NPs in it. The head word model has been used for training grammar based parsing

models.

4.3.3.2 Urdu Head Model

The proposed model has been evaluated on manually annotated 100 sentences.

The sentences were annotated independent of the head model based on the content

words according to the context. The general language intuition may not follow the

devised model for all cases. Table 4.7 presents results of our proposed head model.

142

TABLE 4.7: Head model evaluation for manually annotated sentences.

Constituent Count Accuracy

NP 631 96.3%

PP 274 100%

VC 224 99.5%

ADJP 36 91.7%

ADVP 25 96.0%

S 261 86.6%

SBAR 66 90.9%

QP 16 87.5%

Overall 1,536 95.4%

For the evaluation, random sentences were selected which contained more fre-

quent phrase labels as shown in Table 4.7. It presents results for eight phrase labels.

Other labels including PREP, DMP and FFP have less samples as shown in Section 3.5.

The table also shows the frequency of phrase labels. The highest accuracy was achieved

for PP phrases. VC phrases have an accuracy of 99.5%. Some phrases like S and QP

produced lower accuracy. However, The overall accuracy for automatic phrasal head

identification is above 95%.

4.3.4 Lemmatization

An Urdu verb has seventeen surface forms of non-causatives verbs. It has same

number of additional forms for causatives and bi-causatives [79]. Urdu verbs have

further underlying forms for four honorifics. For nouns, it has surface forms for num-

ber, gender and case. A sufficient data set is required to train statistical parsers for a

morphologically-rich language. Therefore, the lemmatization process is anticipated to

143

be helpful to reduce the data sparsity. It will replace the surface forms with root forms.

We have trained lexicalized parser after performing lemmatization on the train and test

sets. Lemmas have been mapped for open class words based on their POS tags. An ex-

isting finite state morphological analyzer has been used for lemmatization as described

in [79]. The process was carried out for verbs, common nouns, adverbs and adjec-

tives. We have performed parsing experiments in three steps. In the first step, all the

fours classes were replaced with root forms. In the second step, nouns, adjectives and

adverbs were replaced with root forms and in the third step, only verbs were mapped

on their roots. All verb classes were used in the lemmatization which include; infinite

verbs, finite verbs and all four auxiliary verbs.

4.3.5 Word Clustering

Lemmatization reduces the number of inflectional forms in the corpus. However,

the parsing accuracy is dependent on the coverage and performance of lemmatizers. To

cope with the data sparsity issue, we further adopted a word clustering mechanism.

A clustering algorithm creates groups of words based on syntactic similarities. Each

cluster is labeled with a unique tag. This process helps to group open class words into

different clusters according to their syntactic usage in the corpus. The categorization is

dependent on the chosen number of clusters. For this purpose, we trained a predictive

exchange word clustering algorithm4 presented in [48]. The clustering is based on a

predictive exchange algorithm [67] and is called bi-directional, interpolated, refining

and alternating (BIRA) algorithm. The algorithm performs clustering on bi-directional

4https://github.com/jonsafari/clustercat

144

bigram language models with alternating interpolated weights for iterations. The clus-

tering process is shown by Equations 4.24 and 4.25.

P(wi|wi−1,wi+1) = P(wi|ci)(λP(ci|wi−1)+(1−λ)P(ci|wi+1)) (4.24)

Where wi refers the ith word, ci is the ith class and λ is the interpolated weight.

λi =

1−λ0 i f imod a = 0

λ0 otherwise

(4.25)

The weight λ is equal to 1− λ when imod a = 0 and a is the number of the

iteration. The running time of the algorithm is O(2× (B+ |V |)×|C|× I). Where B is

the total number of bi-grams, |V | is the corpus vocabulary, |C| is the number of clusters

to be computed and I is the number of iterations performed for clustering. A plain text

corpus has been used to achieve cluster classes. We achieved seven clustered datasets

based on the number of clusters in them ranging from one thousand to seven thousand

clusters. The lexicalized parser has been used for each cluster labeling and results were

analyzed.

4.3.6 Free Word-order

Urdu has a flexible word order like many other South Asian languages [126].

The property of the language allows different word orders of a sentence bearing plau-

sible syntax with the same meaning. A treebank should cover probable word orders of

145

a language. A suitable parsing method is also essential to learn this property of a lan-

guage. In Urdu, the phrases can have a flexible order but within phrases the word order

remains intact mostly. Different word orders of a sentence are shown by Figure 4.12.

(a) mAN=nE baC-E=kO utH-A-ya
mother.SG=ERG child.SG=ACC pick.CAUS.PAST.SG.MASC
Mother picked up the child

(b) baC-E=kO mAN=nE utH-A-ya
child.SG=ACC mother.SG=ERG pick.CAUS.PAST.SG.MASC
Mother picked up the child

(c) mAN=nE utH-A-ya baC-E=kO
mother.SG=ERG pick.CAUS.PAST.SG.MASC child.SG=ACC
Mother picked up the child

FIGURE 4.12: Parse trees with three word orders of the same sentence ‘mAN nE baCE
kO utHAyA’.

Figure 4.12 shows three most probable word orders in our corpus. However,

more combinations of phrase orders can be produced but we chose three word orders

according to their frequent occurrences in the corpus. These word orders include SOV

(subject-object-verb), OSV (object-subject-verb) and SVO (subject-verb-object). To

analyze the learning ability of parsers on different ordered sentences, we prepared an

ordered test set which contains sentences of these word orders. The sentences were

selected from the existing test corpus having length of fifteen tokens or less. Subordinate

146

and coordinates conjunctions were avoided to create a test set with unambiguous orders.

Table 4.8 shows the details of our ordered test set.

TABLE 4.8: Ordered test set having three word orders.

Word orders SOV OSV SV All

Sentences 83 80 147 310

Tokens 1,015 922 1,207 3,144

The ordered test set contains sentences of SOV, OSV and SV structures. The

OSV structure has less frequency in the corpus. Therefore, we updated some of the

sentences to have OSV order from SOV. For this purpose, subject and object positions

were swapped. The parsing results were computed against gold and predicted POS tags.

Chapter 5 presents the parsing results against ordered test set and their interpretations.

147

5. RESULTS AND DISCUSSIONS

We have parsed the treebank by training the parsing techniques presented in

Chapter 4. These techniques include grammar-based parsers, tree substitution gram-

mars, recursive neural networks based model and the proposed bidirectional long-short

term memory based parser. Non-lexicalized and lexicalized grammars have been trained

under grammar-based models. Beside the parsing models, several syntactic features

have been trained to improve the parsing results. Updated POS tag set and markoviza-

tions were experimented with all grammar based models. Lemmatization and word

clusters were further used with lexicalized parser. The ordered test set was evaluated

for data-oriented parser. The word representations were trained to perform transfer

learning with RNN and BiLSTM parsers.

5.1 CONSTITUENCY PARSING RESULTS

We have used Parseval measures to calculate parsing results. The measures

compute labeled recall, labeled precision and labeled f-scores. The labeled measures

consider a constituent correct if the constituent is identical in the reference corpus

with respect to phrase labels and contains same tokens having correct phrasal bound-

aries. Equations for Parseval measures (Recall, Precision and F-score) are given in

Section 2.3.4.

148

The labeled f-score was computed by giving equal weights to recall and preci-

sion. Therefore, f-score is referred as F1. The test set was further divided into three

subsets containing sentences of categories; small, medium and long. Additionally, we

have evaluated the parsers against gold as well as predicted POS tags. For the gold POS

tags, we have used original text along with actual POS tags. The predicted tags were

achieved by using a POS tagger. The tagging performance was achieved as accuracy

to show the percentage of correct tags predicted with respect to gold tags. Following

sections present the parsing results and discuss their interpretations.

5.1.1 Grammar-based models

This section presents the results for constituency parsing achieved by training

the grammar-based parsers. They include simple PCFGs1 and lexicalized PCFG [94]

parsers. The experiments have been performed by using gold POS tags as well as pre-

dicted tags. Table 5.1 presents the parsing results.

Table 5.1 further shows the results for the same parser by using predicted POS

tags. It presents baseline f-scores for our treebank by training PCFG parser which are

further trained by using different features. The table shows columns for parsing models,

evaluation measures used, scores against small, medium, long sentences and accumula-

tive scores for the whole test set. The accumulative f-scores have been highlighted with

bold text. It is quite clear that parsing evaluations by using gold POS tags are higher as

compared to predicted tags. Results further show that the syntactic features are helpful

to improve parsing scores. Starting from our baseline PCFG f-scores which are 76.2 and

71.4 for gold and predicted POS tags, the f-scores were improved significantly by using
1https://discodop.readthedocs.io

149

TABLE 5.1: Grammar-based parsing results by using gold and predicted POS tags.

Parsing models Urdu text + Gold POS
Measure Small Medium Long Accum.

Baseline PCFG LR 86.6 78.0 70.4 75.8
LP 85.7 78.3 72.3 76.7
F1 86.1 78.1 71.3 76.2

PCFG + POS2 LR 90.7 84.5 78.5 82.7
LP 89.2 84.8 80.5 83.6
F1 90.0 84.7 79.5 83.1

PCFG + POS2 LR 91.2 85.3 82.7 84.9
+Markovization LP 89.7 84.9 83.7 84.9

F1 90.5 85.1 83.2 84.9
Lex-PCFG LR 92.5 85.5 80.9 84.3

+Left-Head LP 91.0 83.4 80.0 82.8
F1 91.7 84.4 80.4 83.5

Lex-PCFG LR 92.7 88.0 84.6 87.1
+Urdu-Head LP 89.8 85.7 83.0 85.1

F1 91.2 86.8 83.8 86.1
Urdu text + Predicted POS

Measure Small Medium Long Accum. POS
Baseline PCFG LR 80.2 72.9 65.4 70.6 94.5%

LP 80.3 73.8 68.0 72.2
F1 80.3 73.4 66.7 71.4

PCFG + POS2 LR 84.7 80.0 74.2 78.2 94.9%
LP 84.3 81.0 76.9 79.7
F1 84.5 80.5 75.5 78.9

PCFG + POS2 LR 85.3 80.9 77.7 80.1 95.1%
+Markovization LP 84.9 81.4 79.4 81.0

F1 85.1 81.2 78.5 80.5
Lex-PCFG LR 88.6 82.3 77.7 81.1 95.2%

+Left-Head LP 87.3 80.2 77.2 79.7
F1 88.0 81.3 77.5 80.4

Lex-PCFG LR 87.7 85.4 81.8 84.2 95.7%
+Urdu-Head LP 85.0 83.1 80.3 82.2

F1 86.3 84.2 81.0 83.2

updated POS (POS2) tags as presented in Section 4.3.1. The scores were improved to

83.1 and 78.9 for both test sets. Vertical and horizontal markovizations were further

experimented along with POS2 tag set. The f-scores were improved to 84.9 and 80.5

150

for both input representations. These features were also helpful to improve the POS

tagging accuracies.

Table 5.1 also presents experiments for the lexicalized PCFG parser by using

two head-models. However, for the experiments, we used the same setup containing

POS2 and markovization values. The left-head model uses the left factored grammar

by employing left-hand-side word as head for all constituents. The results are 83.5

and 80.4 for gold and predicted tags which are even lower than baseline PCFG. These

results are evident that Urdu does not follow a left-head model and it requires a sophis-

ticated, language dependent head finding mechanism. Therefore, we then experimented

by using the proposed head-model which has been described in Section 4.3.3. The Urdu

head-model provided improved results with f-scores of 86.1 and 83.2 for gold and pre-

dicted tags and the POS tagging accuracy was also improved to 95.7% which is quite

promising for a morphologically-rich language Urdu. The morphologically-rich nature

of the language could cause data sparsity for statistical parsing. Therefore, we exper-

imented with lemmatization by training the same lexicalized parser. The results are

presented in Table 5.2.

We implemented a lemmatizer by using an Urdu morphological analyzer [79].

The experiments have been done in three steps. The first step replaces the lemmas

for common nouns, adjectives, adverbs and all types of verbs which are part of a verb

complex. We achieved parsing f-scores of 85.9 and 82.4 for gold and predicted POS

tags when trained the lexicalized parser. However, these scores are lower when trained

without lemmatization. In the second step, we used lemmas for nouns, adjectives and

adverbs. The scores against gold POS remains same to 85.9 and there was an increase

151

TABLE 5.2: Lexicalized parsing results with lemmatization.

Parsing models Urdu text + Gold POS
Measure Small Medium Long Accum.

LexPCFG + Lem. LR 93.0 87.8 84.4 87.0
(NN/JJ/RB/VC) LP 90.4 85.6 82.7 85.0

F1 91.7 86.7 83.6 85.9
LexPCFG + Lem. LR 92.7 87.8 84.3 86.9
(NN/JJ/RB) LP 89.8 85.5 82.7 84.8

F1 91.2 86.6 83.5 85.9
LexPCFG + Lem. LR 93.1 88.1 84.6 87.2
(VC) LP 90.5 86.0 82.9 85.2

F1 91.8 87.0 83.8 86.2
Urdu text + Predicted POS

Measure Small Medium Long Accum. POS
LexPCFG + Lem. LR 87.4 84.5 80.9 83.4 94.5%
(NN/JJ/RB/VC) LP 85.1 82.3 79.4 81.4

F1 86.2 83.4 80.2 82.4
LexPCFG + Lem. LR 87.5 85.1 81.6 83.9 95.5%
(NN/JJ/RB) LP 85.1 82.8 79.9 81.9

F1 86.3 83.9 80.7 82.9
LexPCFG + Lem. LR 88.3 85.4 82.3 84.4 95.1%
(VC) LP 85.7 83.1 80.7 82.4

F1 87.0 84.2 81.5 83.4

of 0.5 in the f-score for predicted tags. The POS accuracy also increased from 94.5%

to 95.1%. The third step used the lemmas for only verb complex by replacing lemmas

for non-finite and finite verbs and all types of auxiliary verbs. The achieved f-scores

are 86.2 and 83.4 which are a little higher then the scores without lemmatization. We

evaluated the morphological analyzer on quantitative bases to analyze the contribution

of lemmas in parsing. Table 5.3 shows the quantitative results of the morphological

analyzer on the treebank.

TABLE 5.3: Quantitative evaluation of the lemmatizer.

Category Verbs Auxiliary verbs Nouns Adjectives Adverbs

Percentage 69.5% 74.7% 20% 18.1% 10.9%

152

Table 5.3 shows the percentage of different categories which were mapped on

their lemmas. Under verb complex, 69.5% verbs and 74.7% of auxiliary verbs were

mapped on their lemmas in the corpus. On the other hand, the percentage of nouns,

adjectives and adverbs were 20%, 18.1% and 10.9% respectively. The percentage of

verbs is higher and hence produced relatively higher f-scores. It can be concluded

that lemmatization helps to improve lexicalized parsing. However, the accuracy of the

lemmatizer is largely influential on the results.

We adopted another method to cope with the data sparsity of the language by

using word clusters. For that purpose, an unsupervised clustering algorithm was trained

to achieve the word clusters. Words were grouped into clusters having similar syntac-

tic contributions in the corpus as presented in Section 4.3.5. We performed parsing by

replacing words with their cluster labels. We performed five experiments with lexical-

ized parser starting with one thousand clusters up to seven thousand clusters. Table 5.4

presents parsing results against different number of clusters. The experiments also have

been performed by including gold and predicted POS tags.

The word clusters provided improved f-scores as compared to lemmatized cor-

pus. Even with one thousand clusters, the parsing scores were higher than the lem-

matized parsing. As we increase the number of clusters, the parsing scores show an

upwards trend till five thousands clusters by using the gold tags. The f-score against

five thousand clusters is 86.9. However, the f-scores for small test set produced better

results when trained with one thousand clusters as compared to five thousands. Similar

trend can be observed for predicted POS tags. Two thousand clusters produced highest

153

TABLE 5.4: Lexicalzed parsing results by applying word clustering.

Urdu text + Gold POS
Clusters Measure Small Medium Long Accum.
1K LR 93.8 87.9 85.4 87.5

LP 91.2 85.9 84.4 85.9
F1 92.5 86.9 84.9 86.7

2K LR 93.9 88.4 85.04 87.6
LP 91.6 86.4 84.18 86.1
F1 92.8 87.4 84.61 86.8

3K LR 93.0 88.2 85.3 87.5
LP 90.8 86.3 84.5 86.0
F1 91.9 87.2 84.9 86.8

4K LR 93.0 88.1 84.6 87.2
LP 90.3 85.8 83.3 85.3
F1 91.6 86.9 83.9 86.2

5K LR 92.6 88.2 85.6 87.6
LP 90.7 86.3 84.8 86.2
F1 91.6 87.2 85.2 86.9

6K LR 93.0 87.8 85.5 87.4
LP 90.8 86.0 84.8 86.0
F1 91.9 86.9 85.1 86.7

7K LR 92.7 88.0 85.7 87.6
LP 90.4 86.1 84.8 86.0
F1 91.5 87.1 85.2 86.7

Urdu text + Predicted POS
Clusters Measure Small Medium Long Accum. POS
1K LR 90.1 85.6 82.7 84.9 95.0%

LP 88.0 83.6 81.3 83.1
F1 89.0 84.6 81.98 84.0

2K LR 89.6 86.3 83.1 85.3 95.5%
LP 87.8 84.2 81.9 83.6
F1 88.7 85.2 82.5 84.5

3K LR 88.4 86.2 82.7 85.0 95.7%
LP 86.2 84.2 81.5 83.3
F1 87.3 85.2 82.1 84.2

4K LR 88.7 86.1 83.2 85.2 95.9%
LP 86.3 83.8 81.7 83.2
F1 87.5 84.9 82.4 84.2

5K LR 88.4 86.2 83.5 85.3 96.0%
LP 85.6 84.0 82.4 83.5
F1 87.0 85.1 82.9 84.4

6K LR 88.9 86.0 83.2 85.2 96.0%
LP 86.3 83.7 81.9 83.3
F1 87.6 84.9 82.5 84.2

7K LR 87.7 85.9 83.1 85.0 95.9%
LP 85.2 83.7 81.8 83.1
F1 86.4 84.8 82.5 84.0

154

f-score of 84.5 with a POS accuracy of 95.5%. However, five thousands cluster pro-

vide an f-score of 84.4 with a POS tagging accuracy of 96% which is quite promising.

Training with higher number of clusters resulted in lowing the scores. Therefore, it is

concluded that five thousands clusters provide optimal parsing scores for a lexicalized

parser on the CLE-UTB.

5.1.2 Data-oriented parsing

Table 5.5 presents the parsing results by training a data-oriented parser which

is based on tree substitution grammars. The parser has been trained by using updated

POS tags set and markovization values. We have further performed experiments with

different tree heights starting from height one up to three.

The DOP parser produced best f-score of 87.1 when trained with maximum

subtree of height one against gold POS tags. Training with heights two and three, the

results decreased to 86.9. However, the predicted POS tags produce best f-scores when

trained with maximum height of three. The POS accuracy for different heights remains

almost similar. The DOP parser performs better than lexicalized parser as it caters the

context by computing probability of subtrees including POS tags and lexical values.

The DOP parser was further evaluated against the ordered test set (Section 4.3.6)

to analyze its ability to learn different word orders of the language and the coverage of

the probable orders in the teebanks. Table 5.6 presents the DOP results on the ordered

test set when trained with maximum subtree height of one.

Table 5.6 presents the parsing scores against three word orders SOV, OSV and

SV. The results have been computed for gold and predicted POS tags. F-scores for gold

155

TABLE 5.5: Data-oriented parsing results against gold and predicted POS tags.

Parsing models Urdu text + Gold POS

Measure Small Medium Long Accum.

DOP maxheight=1 LR 93.1 88.7 84.4 87.4

+Markovization LP 91.3 87.5 84.8 86.8

F1 92.2 88.1 84.6 87.1

DOP maxheight=2 LR 94.0 88.0 84.5 87.2

+Markovization LP 92.3 86.9 84.7 86.6

F1 93.1 87.4 84.6 86.9

DOP maxheight=3 LR 93.8 88.3 84.1 87.2

+Markovization LP 92.0 87.0 84.8 86.6

F1 92.9 87.7 84.5 86.9

Urdu text + Predicted POS

Measure Small Medium Long Acc. POS

DOP maxheight=1 LR 87.9 85.0 80.0 83.3 95.5%

+Markovization LP 87.0 84.3 81.7 83.6

F1 87.5 84.7 80.8 83.4

DOP maxheight=2 LR 89.2 84.7 80.3 83.4 95.6%

+Markovization LP 88.4 84.2 81.8 83.7

F1 88.8 84.4 81.1 83.5

DOP maxheight=3 LR 88.2 84.8 80.4 83.4 95.5%

+Markovization LP 87.7 84.5 82.1 83.9

F1 88.0 84.6 81.2 83.6

POS are quite high for all three word orders. SOV, OSV and SV orders provide f-scores

of 92.9, 91.7 and 92.5 respectively. On the order hand, the DOP parser performs with

f-scores of 87.8, 87.7 and 86.2 for SOV, OSV and SV orders receptively. The POS

tagging accuracies are also promising. The results for ordered test set depict that the

corpus has the coverage of probable word orders.

156

TABLE 5.6: Parsing results with SOV, OSV and SV word orders.

Parser Urdu text + Gold POS

Order LR LP F1

DOP maxheight=1 SOV 94.0 91.7 92.9

+Markovization OSV 92.5 91.0 91.7

SV 93.5 91.5 92.5

Urdu text + Predicted

Order LR LP F1 POS

DOP maxheight=1 SOV 88.4 87.2 87.8 96.0

+Markovization OSV 88.2 87.1 87.7 95.7

SV 87.3 85.2 86.2 94.5

5.1.3 Neural Parsing

Neural parsers use the powers of neural networks to provide the improved con-

stituency parsing. Recursive neural network based parser has been trained on top 200

parse trees produced by a lexicalized PCFG parser and BiLSTM parser converts the

parse trees into labels and performs sequence labeling by employing two LSTM layers.

We have performed transfer learning along with both parsers which was helpful to im-

prove the parsing scores. We have also included character embeddings with BiLSTM

parser to capture the morphological information of the language. Character embeddings

are contextual vectors achieved by the context of characters in the train set by using an

LSTM layer. We further developed a BiLSTM network based POS tagger which per-

formed with an accuracy of 96.3%. We also performed parsing by including functional

tags to achieve the accuracy for grammatical relations along with phrase labels. Ta-

ble 5.7 presents the results of neural parsers with and without transfer learning.

The RNN parser produced the accumulative f-scores of 87.1 and 86.4 with and

157

TABLE 5.7: Neural parsing results for gold and predicted POS tags.

Parsing models Urdu text + Gold POS
Measure Small Medium Long Accum.

RNN Parser LR 92.7 87.9 84.9 87.2
+No emb. LP 91.2 85.6 84.2 85.7

F1 91.9 86.7 84.5 86.4
RNN Parser LR 92.2 88.2 86.0 87.7

+35M WV LP 90.7 86.4 85.6 86.5
F1 91.4 87.3 85.8 87.1

BiLSTM Parser LR 87.4 81.9 78.0 80.9
+No emb LP 90.1 84.7 82.8 84.5
+Relative labels F1 88.7 83.3 80.3 82.7

BiLSTM Parser LR 92.6 87.3 85.5 87.1
+35M WV LP 94.4 88.5 88.3 89.2
+Relative labels F1 93.5 87.9 86.9 88.1

BiLSTM Parser LR 92.8 89.7 86.5 88.7
+35M WV LP 93.5 89.7 88.3 89.5
+Proposed labels F1 93.2 89.7 87.4 89.1

Urdu text + Predicted POS
Measure Small Medium Long Accum. POS

RNN Parser LR 88.1 85.1 81.2 83.9 95.0
+No emb. LP 87.1 84.0 81.4 83.3

F1 87.6 84.6 81.3 83.6
RNN Parser LR 86.4 85.8 82.0 84.3 95.3

+35M WV LP 86.6 84.9 82.4 84.0
F1 86.5 85.3 82.2 84.2

BiLSTM Parser LR 84.4 80.9 77.8 80.0 96.3
+No emb LP 86.0 82.1 79.9 81.6
+Relative labels F1 85.2 81.5 78.8 80.8

BiLSTM Parser LR 89.9 86.6 83.5 85.7 96.3
+35M WV LP 90.7 87.2 85.1 86.7
+Relative labels F1 90.3 86.9 84.3 86.2

BiLSTM Parser LR 91.6 87.5 84.8 86.8 96.3
+35M WV LP 92.9 88.3 86.9 88.2
+Proposed labels F1 92.3 87.9 85.8 87.5

without using pre-trained word embeddings. Our BiLSTM parser outperforms the RNN

parser by using word embeddings with an f-score of 88.1. However, it produces low

scores when trained without pre-trained word embeddings and gives an accumulative

158

f-score of 82.7. The transfer learning improved the f-score by 5.4 points. For RNN

parser the difference is of 0.7 points. By using the predicted POS tags, the BiLSTM

parser performed with a best f-score of 86.2 which is highest amongst our previously

trained models. The RNN parser uses pre-cached parse trees achieved from a lexicalized

grammar based parser and BiLSTM parser performs the sequence labeling by using the

sentences from the treebank. However, the performance of RNN parser is equal to the

DOP parser.

We further proposed a sequential labeling for the Urdu treebank and trained the

BiLSTM parser along with the pre-trained word embeddings. Our proposed labeling

offered significantly lower number of labels hence helped to improve parsing scores.

Similar to other models, it has been evaluated against small, medium and long sen-

tences. The proposed labeling outperforms relative labels and it produced a best f-score

of 89.1 which is one percent higher than 88.1 the previous best f-score. On the other

hand, the model has been evaluated by using predicted POS tags and it achieved an

f-score of 87.5 as compared to the previous best of 86.2. The f-score improvements are

also observed for all three groups of the test set.

We further performed the analysis of parsing results by achieving the scores with

respect to phrase labels. Table 5.8 shows phrase-wise parsing results from the BiLSTM

parser by using the proposed labeling against gold and predicted POS tags.

The highest parsing scores are achieved for VC phrase which are 97.8 and 95.5

for gold and predicted POS tags respectively. The second highest scores are achieved

for PP phrases which are 89.6 and 87.6. Similarly, NP phrase produced f-scores of 87.2

and 84.2. The phrase PREP and DMP produce lower f-scores. The reason is the low

159

TABLE 5.8: Parsing results of the BiLSTM parser with respect to phrase labels.

Urdu text + Gold POS Urdu text + Predicted POS
Phrase labels LR LP F1 LR LP F1

NP 87.4 86.9 87.2 84.6 83.9 84.2
PP 88.1 91.1 89.6 86.1 89.1 87.6
S 84.2 86.8 85.5 83.5 87.2 85.3
VC 98.3 97.3 97.8 95.7 95.3 95.5
SBAR 83.0 82.4 82.7 81.5 83.5 82.5
ADJP 72.6 77.2 74.8 64.4 77.5 70.4
ADVP 87.8 86.7 87.2 81.0 79.3 80.2
QP 69.4 70.8 70.1 65.3 72.7 68.8
FFP 71.4 78.9 75.0 61.9 65.0 63.4
DMP 20.0 100.0 33.3 20.0 12.5 15.4
PREP 0 nan nan 0 nan nan

frequency of these labels in the train and test sets. Table 5.9 further shows the confusion

values amongst different phrase labels. However, the patterns are quite similar for both

cases. The counts are ordered in decreasing order. By looking at the confusion values

when evaluated with gold POS tags, the highest confusion was among NP and PP labels.

In this case, the gold label was PP and predicted label was NP and this occurred 46

times. Similarly, PP was confused with NP for just two times. The syntactic structure

of PP phrases is more predictable as compared to NPs. A PP phrase contains an NP

followed by a post-position with a POS tag of PSP. There was a confusion between NP

and S labels 16 times however, S label was predicted against NP for 11 times. The

ADJP label was confused by the parser with NP 14 times whereas the NP was confused

with ADJP for only five times. The reason is syntactic structure of the ADJP phrase as

they contain adjectives with POS tag of JJ in them. The label S was confused with PP

nine times and PP was not confused with S in the results when included gold POS tags

in the training.

In the same fashion, Table 5.9 shows the values against all the labels when

160

TABLE 5.9: Category Statistics (all categories / errors) with respect to reference cor-
pus.

Urdu text + Gold POS Urdu text + Predicted POS
Candidate Gold Count Candidate Gold Count
NP PP 46 NP PP 48
NP S 16 NP ADJP 35
ADJP NP 14 NP S 22
S NP 11 ADJP NP 18
S PP 9 NP ADVP 13
NP ADJP 5 S PP 10
VC ADVP 4 ADVP NP 9
QP NP 4 VC NP 8
NP ADVP 4 S NP 8
SBAR S 4 QP NP 7
NP QP 3 NP QP 5
S ADJP 3 VC ADVP 4
VC NP 2 S SBAR 4
NP PREP 2 S ADJP 3
VC S 2 PP S 3
PP NP 2 NP FFP 3
QP ADVP 1 PP NP 3
ADVP S 1 SBAR S 3
DMP ADJP 1 ADVP VC 3
ADVP PP 1 NP PREP 2
PP ADJP 1 VC S 2
NP FFP 1 ADVP ADJP 2
ADVP QP 1 NP VC 2
QP S 1 ADVP QP 2
QP ADJP 1 QP ADVP 1
S SBAR 1 SBAR ADJP 1
ADJP PP 1 VC ADJP 1
SBAR PP 1 S VC 1
ADVP NP 1 NP SBAR 1
– – – ADVP PP 1
– – – PP ADJP 1
– – – ADJP VC 1
– – – S ADVP 1
– – – QP S 1
– – – DMP ADVP 1
– – – FFP ADJP 1
– – – FFP NP 1
– – – SBAR PP 1
– – – ADVP S 1

161

achieved results from our parser. The evaluation by using predicted tags also produce

similar values against phrase labels.

We have further experimented with BiLSTM parser to parse the functional la-

bels. The functional labels provide the information of grammatical roles in a sentences.

As we have seen that our corpus has a coverage of frequent word orders, it is important

to learn functional labels. Table 5.10 shows the parsing results along with functional

accuracies when trained on the best performing BiLSTM parser. We have trained the

parser by using relative labels as well as the proposed labeling.

TABLE 5.10: Neural parsing results by including functional labels.

Parsing models Urdu text + Gold POS

Measure Small Medium Long Accum.

BiLSTM Parser LR 91.5 86.5 83.1 85.7

+35M WV LP 93.2 88.5 85.6 87.8

+Relative labels F1 92.4 87.5 84.4 86.7
Func. 81.3% 82.2% 81.7% 81.9%

BiLSTM Parser LR 92.8 88.5 84.8 87.5

+35M WV LP 93.4 89.4 87.1 88.9

+Proposed labels F1 93.1 89.0 85.9 88.2
Func. 80.5% 83.3% 82.5% 82.7%

Urdu text + Predicted POS

Measure Small Medium Long Accum. POS

BiLSTM Parser LR 89.3 85.5 83.5 85.1 96.3%

+35M WV LP 91.8 87.1 85.5 87.0

+Relative labels F1 90.5 86.3 84.5 86.0
Func. 82.3% 84.0% 84.2% 83.8%

BiLSTM Parser LR 91.5 87.0 82.5 85.6

+35M WV LP 91.9 87.5 85.1 87.0

+Proposed labels F1 91.7 87.2 83.8 86.3
Func. 80.7% 83.4% 82.1% 82.6%

The parsing results with relative labels as f-scores of constituency parsing are

162

86.7 and 86.0 against gold and predicted tags. Similarly, the accuracies for functional

labels are 81.9% and 83.8% which are quite promising when achieved from a con-

stituency parser trained on a language with flexible word order. However, the proposed

labels, which were trained on the same configurations of the parser, outperform the rel-

ative labels by producing state of the art functional results for the CLE-UTB. The parser

produced f-score of 88.2 and 86.2 against gold and predicted POS tags. The functional

accuracies are 82.7% and 82.6%, which are promising.

Table 5.11 presents accuracies of individual functional labels. The label ‘G’

which marks the genitive post-positional phrase produces the highest f-score of 99.1%

against both gold and predicted POS tags. The SUBJ label produces f-scores of 85.1%

and 84.5%. The POF label which has been used to mark complex predicate structures,

performs with accuracies of 83.7% and 82.8%. The labels INJ and OBL produce low

accuracies. The INJ has less occurrences in the corpus while the OBL has been used to

mark PP phrases as well as NPs. Table 5.12 shows the error analysis by presenting the

predicted confusions among the functional labels.

TABLE 5.11: Parsing results of BiLSTM parser with respect to individual functional
labels

Urdu text + Gold POS Urdu text + Predicted POS
Functional labels LR LP F1 LR LP F1

SUBJ 85.9 84.1 85.1 82.2 86.8 84.5
G 99.5 98.7 99.1 99.7 98.5 99.1
POF 84.6 82.9 83.7 83.7 82.0 82.8
OBJ 61.2 61.5 61.4 63.2 60.1 61.6
ADJ 82.5 83.0 82.8 84.6 80.5 82.5
PDL 76.4 82.1 79.2 81.1 81.1 81.1
OBL 28.7 40.8 33.7 32.5 44.7 37.6
VOC 66.7 88.9 76.2 56.5 76.5 65.0
VALA 100 87.5 93.3 90.0 90.0 90.0
INJ 80.0 66.7 72.7 100 100 100

163

The confusion results are also computed against functional labels with respect.

It is important to note the functional accuracies are quite similar for both gold and

predicted tags. First two rows of Table 5.12 show the confusions among SUBJ and OBJ

labels. These both labels are used to mark grammatical roles with PPs and NPs. In case

of PPs, the syntactic structure is quite predictable. For example, a subject PP contains

an NP followed by an ergative case maker nE which has a POS tag of PSP-E. In case

of a PP object, it contains an NP followed by an accusative case marker kO with a

tag PSP-A. On the other hand, subject and object NPs are annotated in a similar manner

resulting a fewer confusions. The labels POF, PDL, OBL and ADJ are also marked with

NPs and caused some confusions in the learning process. However, POF and PDL are

also marked with ADJPs and QPs. The table further shows all the confused labels and

their counts while trained with the BiLSTM parser. Overall, the accuracy of functional

labels is quite promising.

5.1.4 Summary of Results

Detailed results have been presented in this chapter which show precision, recall

and f-scores for all the trained parsing models. This section summarizes the results by

presenting these measures for accumulative scores. Table 5.13 shows the best parsing

results from all models.

Table 5.13 presents the parsing results of best performing models against the

whole test set. The F1 scores are appearing as bold faced numbers. Overall, the results

show upwards trends. We started the experiments from base-line probabilistic context-

free grammars (PCFGs) towards the state of the art neural parsing for the CLE-UTB.

164

TABLE 5.12: Error analysis of functional labels with respect to reference corpus.

Urdu text + Gold POS Urdu text + Predicted POS
Candidate Gold Count Candidate Gold Count
SUBJ OBJ 66 OBJ SUBJ 74
OBJ SUBJ 56 SUBJ OBJ 51
OBJ POF 30 POF OBJ 39
POF OBJ 28 OBJ POF 30
POF PDL 27 POF PDL 24
SUBJ PDL 23 PDL SUBJ 21
PDL POF 17 SUBJ PDL 16
OBJ OBL 17 PDL POF 14
SUBJ POF 16 OBJ OBL 14
OBL OBJ 16 POF SUBJ 10
PDL SUBJ 14 SUBJ POF 10
OBL SUBJ 11 OBL OBJ 8
POF SUBJ 10 ADJ POF 8
OBL ADJ 9 OBL SUBJ 8
ADJ OBL 8 ADJ SUBJ 7
SUBJ OBL 7 ADJ OBL 7
SUBJ ADJ 6 POF ADJ 6
ADJ OBJ 5 PDL OBL 5
ADJ SUBJ 5 OBL ADJ 5
PDL OBJ 4 SUBJ ADJ 5
ADJ POF 4 SUBJ OBL 5
POF ADJ 4 OBJ ADJ 4
PDL OBL 3 POF OBL 4
OBJ PDL 3 PDL OBJ 3
ADJ PDL 3 ADJ OBJ 2
OBJ ADJ 2 OBJ PDL 2
POF OBL 2 G SUBJ 1
G SUBJ 1 PDL ADJ 1
PDL ADJ 1 OBL PDL 1
SUBJ VOC 1 VOC SUBJ 1
OBL POF 1 PDL G 1
– – – ADJ PDL 1
– – – OBL POF 1
– – – SUBJ VOC 1

The PCFG based model performed with base-line scores of 76.2 and 71.4 against gold

POS and predicted POS tags respectively. By incorporating an updated POS tagset as

165

TABLE 5.13: Summary of parsing results with respect accumulative scores of best
performing models.

Parsing models Gold POS Predicted POS

LR LP F1 LR LP F1 POS Acc.

Baseline PCFG 75.8 76.7 76.2 70.6 72.2 71.4 94.5%

PCFG + POS2 82.7 83.6 83.1 78.2 79.7 78.9 94.9%

PCFG + POS2 + Markov. 84.9 84.9 84.9 80.1 81.0 80.5 95.1%

Lex-PCFG + Urdu heads 87.1 85.1 86.1 84.2 82.2 83.2 95.7%

Lex-PCFG + Lemmas 87.2 85.2 86.2 84.4 82.4 83.4 95.1%

Lex-PCFG + Clusters(5K) 87.6 86.2 86.9 85.3 83.5 84.4 96.0%

DOP + h=1 + Markov. 87.4 86.8 87.1 83.3 83.6 83.4 95.5%

RNN Parser + Emb. 87.7 86.5 87.1 84.3 84.0 84.2 95.3%

BiLSTM Parser + Emb. 87.1 89.2 88.1 85.7 86.7 86.2 96.3%

BiLSTM Parser + Emb. 88.7 89.5 89.1 86.8 88.2 87.5 96.3%

+ Proposed labels

POS2, these scores were significantly increased to 83.1 and 78.9. The markovization

was also helpful to increase the score by including contextual information in the context-

free grammars and the improved scores are 84.9 and 80.5.

The lexicalized grammar based models have been experimented along with dif-

ferent linguistic features including an Urdu head model, lemmatization and word clus-

tering. Different number of word clusters have been used for training starting from one

thousand to seven thousands clusters and the model performs well on five thousands

word cluster labels and performed with f-scores of 86.9 and 84.4. The data-oriented

parsing (DOP) and recursive neural network (RNN) based parsers also perform well on

the CLE-UTB. The RNN based model produced f-scores of 87.1 and 84.2.

However, the proposed parser which is based on bidirectional long-short term

166

memory (BiLSTM) networks, performed with the state of the art scores on the CLE-

UTB. We also developed a POS tagger based on BiLSTM networks and the tagging

has been done for our neural model. We trained the parsing model by using an existing

relative labeling and achieved f-scores of 88.1 and 86.2. We further proposed a labeling

technique for the CLE-UTB which is based on the syntactic structure and annotation

of the treebank. The proposed labels improved the parsing scores significantly and

produced f-scores of 89.1 and 87.5 which are quite promising for a morphologically-

rich and free word order language.

5.1.5 Discussions

Tsarfaty et al. [148] raised three questions and their answers are crucial to parse

morphologically rich languages. The first question is about the language representation

and input type of the data set. We have used three types of inputs and language repre-

sentations for training and testing the statistical parsers. The first input representation

was the text written in Urdu script along with POS tags. All the parsers have been

evaluated against gold and predicted POS tags. The grammar-based parser which uses

the lexical information performed with f-scores of 86.1 and 83.2 including gold and

predicted POS tags respectively. The same representation has been trained with DOP

and neural parsers. DOP parser performed parsing with best f-scores of 87.1 and 83.6

and our BiLSTM parser along with relative labeling produced the parsing results with

f-scores of 88.1 and 86.2 by using gold and predicted POS respectively. We further

derived an updated sequence labeling for the CLE-UTB which produced state of the art

parsing results with f-scores of 89.1 and 87.5.

167

The morphologically rich nature of Urdu could cause the issue of data sparsity.

To cater this property of the language, we have used two other representations. The

second representation of the corpus contained lemmas for each word. For that purpose,

we implemented a lemmatizer which mapped each word on its root form in the cor-

pus. The lemmatized dataset produced a subtle improvement in the parsing results. The

parsing accuracy is dependent on the accuracy of the lemmatizer. The third representa-

tion produced word clusters and replaced the words with their cluster tags. The clusters

tags were achieved with respect to syntactic similarities of words in the corpus. We

experimented with clustered data set by training the same lexicalized parser. The best

parsing results were produced by five thousand clusters with f-scores of 86.9 and 84.4

for gold and predicted POS tags. The clustered dataset produced the improvements of

0.8 and 0.6 points as compared to plain Urdu text. However, the neural parser based on

bi-directional LSTM networks produced top of the list results and catered the morpho-

logical aspect by implementing character embeddings during training of the networks.

The neural parsers further used the transfer learning by including pre-trained word rep-

resentations which were also helpful to learn the surface forms and out of vocabulary

words. Our parsing experiments and results are evident that the input type and language

representations are important to improve the parsing scores for morphologically-rich

languages.

The second question raised by Tsarfaty et al. [148] is about influence of mor-

phology on POS and phrase labels. A POS tags should have the ability to mark all word

classes of a language with sufficient number of tags. A morphologically-rich language

may have a large number of surface forms which makes it impractical to have separate

168

tag for each surface form. The number of tags should be sufficiently enough to mark

the words of such languages because huge number of tags will require more data to

train statistical taggers. The POS tagger which has been used for the annotation of the

CLE-UTB contains 35 tags. It marks the main classes of open class words by one tag.

For example, it marks nouns, adjectives, adverbs and verbs by using single tag for each.

The tag set reduced the data requirement while keeping its effectiveness for training a

statistical tagger.

Similarly, the phrase annotation is relatively flat and the label set contains 11

phrase labels. This label set has been derived from a universal label set which proposed

abstract labels by merging related labels. However, the label set contains sufficient num-

ber of tags to mark syntactic structure of the language. To perform the statistical parsing

for the CLE-UTB, we further derived additional representations of tags set as well. We

derived an updated POS tags set (POS2) by syntactic categorization of post-positions

and punctuations. The updated tags helped to improve the parsing results by a factor

of seven points for the baseline PCFG parser. All later experiments were performed by

using updated POS tag set. Phrase label set was further extended by using vertical and

horizontal markovizations. The markovizations help to include contextual information

in the parse trees. This representation improved the parsing results by 1.8 points and

they have been used with all grammar-based parsers. Our annotation scheme also has

ten functional labels to mark grammatical roles. Parsing with functional labels was also

helpful to include contextual and grammatical information in the parse trees and the

BiLSTM parser produced quite satisfactory parsing scores and functional accuracies.

Simplified annotation label sets are helpful to annotate and parse morphologically-rich

169

languages.

The third question raised by Tsarfaty et al. [148] is about the size of dataset.

The size of the dataset depends on the label sets and the coverage of surface forms of

a morphologically-rich language. The data requirements can be reduced by using a lin-

guistically well-defined label set. We have used compact POS and phrase label sets for

the annotation of the CLE-UTB which were further updated for statistical parsing. The

treebank size is quiet sufficient to train statistical parsers. It has the coverage of prob-

able word orders. The parsing results on ordered test set are quite promising to claim

that the treebank has the coverage of probable word orders. Similarly, our BiLSTM

POS tagger performed with an accuracy of 96.3% which is quite acceptable. Transfer

learning helped to provide the morphological coverage in the statistical training to over-

come the issues of data sparsity and out of vocabulary words and produced state of the

art parsing results on the CLE-UTB.

This research presented the development of a phrase structure treebank and com-

prehensive comparison of parsing methods. The parsing techniques include grammar-

based and neural parsers. Grammar-based parsers include simple PCFG parser, lexical-

ized PCFG parser and tree-substitution grammars and neural parsers contain an RNN

parser and a BiLSTM parser. Additionally, several linguistic features have been de-

rived and trained to achieve improved results. These features include updated POS tags,

lemmatization, word clustering and markovizations. Lexicalized PCFG parser performs

with best f-scores of 86.9 and 84.4 when evaluated by using gold and predicted POS

tags. These scores were achieved by training word clusters with five thousand cluster

labels. Data-oriented parsing, based on tree-substitution grammars, outperformed the

170

lexicalized parser when evaluated on gold POS tags and produces best f-score of 87.1.

The RNN parser gives competitive parsing score with comparison to data-oriented pars-

ing. However, our BiLSTM parser outperforms the grammar-based and RNN parsers

and produced f-scores of 88.1 and 86.1 when evaluated with gold and predicted POS

tags respectively. Pre-trained word representations help to provide significant improve-

ments in the results by transfer learning. The BiLSTM parser also performs better when

trained with functional labels and provides a best functional accuracy of 83.8% while

keeping the f-score around 86. The three groups of the test set are helpful to analyze

the parsing results. All the parsers perform well on smaller sentences as compared to

longer ones. Overall, the BiLSTM parser and POS tagger outperform grammar-based

parsers.

171

6. CONCLUSIONS

This research presents the development of a phrase structure treebank (CLE-

UTB) for Urdu. The annotation scheme has been derived from various sources to make

it compatible with existing treebanks. The annotation is suitable for a consistent phrase

structure of Urdu being a free word order language. A balanced corpus containing text

from a number of text domains, has been used. The functional labels were used to mark

the grammatical relations in the treebank which added a layer on the phrase labels. The

phrase annotation shows the capability for the annotation of several linguistic aspects

of Urdu like flexible argument structure, complex predication and case system.

Several processes have been applied to perform treebank evaluation during the

annotation. At the first step, completeness and correctness were checked which was

followed by a manual revision of the whole corpus. The second step was performed

semi-automatically to identify linguistically implausible structures. For that purpose,

we devised a grammar-based evaluation to identify implausible grammar rules. The

method reported the constituents with low frequency in the treebank. The reported

constituents were further reviewed and corrected. At the third step, an automatic con-

sistency checking tool was used to check context-based phrasal inconsistencies. The

checker identified outliers in the form of a report which were further corrected after

review. The inter-annotator agreement was above 90 which was calculated by using a

172

reference corpus.

For statistical parsing, several parsers have been training including grammar-

based parsers, data-oriented and neural network based models. Additionally, syntactic

features have been used like POS sub-categorization, lemmatization, markovization and

word clusters. The language representation, input types and phrase labeling are cru-

cial to parse a morphologically-rich language. Lemmatization and word cluster were

helpful to improve the parsing scores of lexicalized parsing. However, neural parsers

outperformed the grammar-based parsers by using transfer learning. The word embed-

dings were used for neural parsing which were trained on a large plain text corpus.

External word embeddings provided a large range of vocabulary as well as their se-

mantic information. Word embeddings reduced the effect of data sparsity cause by the

morphologically-rich nature of the language. A bidirectional long-short term memory

based parser was trained on the final version of the treebank. Our parser produced

an f-score of 89.1 which is quite satisfactory for a morphologically rich and a free

word order language. Transfer leaning helps to achieve better statistical parsing for a

morphologically-rich languages.

The phrase annotation of our treebank is compatible with dependency structure

due to flat annotation scheme and functional labeling. We have automatically converted

the phrase structure into dependency structure. Phrasal head rules and dependency la-

bel mappings were devised to find correct dependencies. Furthermore, the dependency

parsing has been performed by using MaltParser and a neural dependency parser. How-

ever, dependency conversion and parsing are additional tasks which will be matured in

future.

173

6.1 FUTURE WORK

The dependency conversion is still in progress. In future, we will perform a

comprehensive evaluation of the treebank by using an annotated reference corpus. We

will study the annotation and structural compatibility of the dependency treebank with

existing resources.

174

BIBLIOGRAPHY

[1] Qaiser Abbas. Building a Hierarchical Annotated Corpus of Urdu: The

URDU.KON-TB Treebank. In International Conference on Intelligent Text Pro-

cessing and Computational Linguistics, pages 66–79. Springer, 2012.

[2] Qaiser Abbas. Building computational resources: The URDU.KON-TB treebank

and the Urdu parser. Konstanzer Online-Publication-System (KOPS), 2014.

[3] Anne Abeillé and Nicolas Barrier. Enriching a French Treebank. In LREC, 2004.

[4] Anne Abeillé, Lionel Clément, and François Toussenel. Building a treebank for

French. In Treebanks, pages 165–187. Springer, 2003.

[5] Steven Abney, S Flickenger, Claudia Gdaniec, C Grishman, Philip Harrison,

Donald Hindle, Robert Ingria, Frederick Jelinek, Judith Klavans, Mark Liber-

man, et al. Procedure for quantitatively comparing the syntactic coverage of

English grammars. In Proceedings of the workshop on Speech and Natural Lan-

guage, pages 306–311. Association for Computational Linguistics, 1991.

[6] Susana Afonso, Eckhard Bick, Renato Haber, and Diana Santos. Floresta sintá

(c) tica: a Treebank for Portuguese. In quot; In Manuel González Rodrigues;

Carmen Paz Suarez Araujo (ed) Proceedings of the Third International Confer-

ence on Language Resources and Evaluation (LREC 2002)(Las Palmas de Gran

Canaria Espanha 29-31 de Maio de 2002) Paris: ELRA. ELRA, 2002.

[7] Tafseer Ahmed and Miriam Butt. Discovering Semantic Classes for Urdu N-V

Complex Predicates. In Proceedings of the Ninth International Conference on

Computational Semantics (IWCS 2011), 2011.

175

[8] Misbah Akram and Sarmad Hussain. Word segmentation for Urdu OCR sys-

tem. In Proceedings of the 8th Workshop on Asian Language Resources, Beijing,

China, pages 88–94, 2010.

[9] Juan Aparicio, Mariona Taulé, and Maria Antònia Martı́. AnCora-Verb: A Lexi-

cal Resource for the Semantic Annotation of Corpora. In LREC, 2008.

[10] Justin Bayer and Christian Osendorfer. Learning stochastic recurrent networks.

arXiv preprint arXiv:1411.7610, 2014.

[11] Akshar Bharati, Vineet Chaitanya, Rajeev Sangal, and KV Ramakrishna-

macharyulu. Natural Language Processing: A Paninian Perspective. Prentice-

Hall of India New Delhi, 1995.

[12] Akshar Bharati, Rajeev Sangal, and Dipti M Sharma. SSF: Shakti Standard For-

mat Guide. Language Technologies Research Centre, International Institute of

Information Technology, Hyderabad, India, pages 1–25, 2007.

[13] Riyaz Ahmad Bhat, Irshad Ahmad Bhat, and Dipti Misra Sharma. Improving

transition-based dependency parsing of Hindi and Urdu by modeling syntacti-

cally relevant phenomena. ACM Transactions on Asian and Low-Resource Lan-

guage Information Processing (TALLIP), 16(3):17, 2017.

[14] Riyaz Ahmad Bhat, Rajesh Bhatt, Annahita Farudi, Prescott Klassen, Bhuvana

Narasimhan, Martha Palmer, Owen Rambow, Dipti Misra Sharma, Ashwini

Vaidya, Sri Ramagurumurthy Vishnu, et al. The Hindi/Urdu Treebank Project.

pages 659–697, 2017.

[15] Rajesh Bhatt, Annahita Farudi, and Owen Rambow. Hindi-Urdu Phrase Struc-

ture Annotation Guidelines. 2013.

[16] Ann Bies, Mark Ferguson, Karen Katz, Robert MacIntyre, Victoria Tredin-

nick, Grace Kim, Mary Ann Marcinkiewicz, and Britta Schasberger. Bracketing

Guidelines for Treebank II Style Penn Treebank Project. University of Pennsyl-

vania, 97:100, 1995.

176

[17] Daniel M Bikel. Design of a Multi-Lingual, Parallel-Processing Statistical Pars-

ing Engine. In Proceedings of the Second International Conference on Human

Language Technology Research, pages 178–182. Citeseer, 2002.

[18] Haris Bin Zia, Agha Ali Raza, and Awais Athar. Urdu Word Segmentation us-

ing Conditional Random Fields (CRFs). In Proceedings of the 27th Interna-

tional Conference on Computational Linguistics, pages 2562–2569, Santa Fe,

New Mexico, USA, August 2018. Association for Computational Linguistics.

URL https://www.aclweb.org/anthology/C18-1217.

[19] Ezra Black, Steven Abney, Dan Flickinger, Claudia Gdaniec, Ralph Grishman,

Phil Harrison, Donald Hindle, Robert Ingria, Frederick Jelinek, Judith L Klavans,

et al. A Procedure for Quantitatively Comparing the Syntactic Coverage of En-

glish Grammars. In Speech and Natural Language: Proceedings of a Workshop

Held at Pacific Grove, California, February 19-22, 1991, 1991.

[20] Rens Bod. A computational model of language performance: Data oriented pars-

ing. In Proceedings of the 14th conference on Computational linguistics-Volume

3, pages 855–859. Association for Computational Linguistics, 1992.

[21] Tina Bögel and Miriam Butt. Possessive clitics and ezafe in Urdu. Morphosyn-

tactic Categories and the Expression of Possession, 199(291):86–129, 2013.

[22] Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George

Smith. The TIGER Treebank. In Proceedings of the workshop on treebanks and

linguistic theories, volume 168, 2002.

[23] Miriam Butt. The Structure of Complex Predicates in Urdu. Center for the Study

of Language (CSLI), 1995.

[24] Miriam Butt. Theories of case. Cambridge University Press, 2006.

[25] Miriam Butt and Tracy Holloway King. Urdu and the Parallel Grammar Project.

In Proceedings of the 3rd workshop on Asian language resources and inter-

national standardization-Volume 12, pages 1–3. Association for Computational

Linguistics, 2002.

177

https://www.aclweb.org/anthology/C18-1217

[26] Miriam Butt and Tracy Holloway King. The Status of Case. In Clause structure

in South Asian languages, pages 153–198. Springer, 2004.

[27] Miriam Butt and Tracy Holloway King. Questions and Information Structure in

Urdu/Hindi. In Proceedings of the LFG14 Conference, pages 158–178. Stanford:

CSLI Publications, 2014.

[28] Miriam Butt and Gillian Ramchand. Complex Aspectual Structure in

Hindi/Urdu. M. Liakata, B. Jensen, & D. Maillat, Eds The Syntax of Aspect,

pages 1–30, 2001.

[29] Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Chris-

tian Rohrer. The Parallel Grammar Project. In COLING-02: Grammar Engi-

neering and Evaluation, 2002.

[30] Miriam Butt, Tina Bögel, Annette Hautli, Sebastian Sulger, and Tafseer Ahmed.

Identifying Urdu complex Predication via Bigram Extraction. In International

Conference on Computational Linguistics, pages 409–424, 2012.

[31] Eugene Charniak. Statistical Parsing with a Context-Free Grammar and Word

Statistics. AAAI/IAAI, 2005(598-603):18, 1997.

[32] Danqi Chen and Christopher Manning. A Fast and Accurate Dependency Parser

using Neural Networks. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pages 740–750, 2014.

[33] Noam Chomsky. The minimalist program. MIT press, 2014.

[34] Montserrat Civit and Ma Antònia Martı́. Building Cast3LB: A Spanish Treebank.

Research on Language and Computation, 2(4):549–574, 2004.

[35] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and

psychological measurement, 20(1):37–46, 1960.

[36] Michael Collins. Three Generative, Lexicalised Models for Statistical Parsing.

In Proceedings of the eighth conference on European chapter of the Associa-

tion for Computational Linguistics, pages 16–23. Association for Computational

Linguistics, 1997.

178

[37] Michael Collins. Head-Driven Models for Natural Language Parsing. Ph.D.

Thesis, Dept. of Computer and Information Science, University of Pennsylvania,

1999.

[38] Michael Collins. Head-driven Statistical Models for Natural Language Parsing.

Computational linguistics, 29(4):589–637, 2003.

[39] Michael Collins, Lance Ramshaw, Jan Hajič, and Christoph Tillmann. A Statis-

tical Parser for Czech. In Proceedings of the 37th annual meeting of the Asso-

ciation for Computational Linguistics on Computational Linguistics, pages 505–

512. Association for Computational Linguistics, 1999.

[40] Michael John Collins. A New Statistical Parser Based on Bigram Lexical Depen-

dencies. In Proceedings of the 34th annual meeting on Association for Compu-

tational Linguistics, pages 184–191. Association for Computational Linguistics,

1996.

[41] Anna Corazza, Alberto Lavelli, Giogio Satta, and Roberto Zanoli. Analyzing

an Italian Treebank with State-of-the-Art Statistical Parsers. In Proceedings of

the Third Third Workshop on Treebanks and Linguistic Theories (TLT 2004),

volume 1, page 155, 2004.

[42] Rodolfo Corona, Jesse Thomason, and Raymond Mooney. Improving black-box

speech recognition using semantic parsing. In Proceedings of the Eighth Inter-

national Joint Conference on Natural Language Processing (Volume 2: Short

Papers), pages 122–127, 2017.

[43] Arnoldo Nunes da Silva, Osvaldo de Souza, and José Neuman de Souza. Sen-

timent parser based on X-Bar theory to Brazilian Portuguese. In 2020 Interna-

tional Conference on Computing, Electronics & Communications Engineering

(iCCECE), pages 166–171. IEEE, 2020.

[44] Marie-Catherine De Marneffe and Christopher D Manning. The Stanford Typed

Dependencies Representation. In Coling 2008: proceedings of the workshop on

cross-framework and cross-domain parser evaluation, pages 1–8, 2008.

179

[45] Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al.

Generating Typed Dependency Parses from Phrase Structure Parses. In Lrec,

volume 6, pages 449–454, 2006.

[46] Marie-Catherine De Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen,

Filip Ginter, Joakim Nivre, and Christopher D Manning. Universal Stanford

Dependencies: A Cross-Linguistic Typology. In LREC, volume 14, pages 4585–

4592, 2014.

[47] Jon Dehdari, Lamia Tounsi, and Josef van Genabith. Morphological Features for

Parsing Morphologically-Rich Languages: A Case of Arabic. In Proceedings of

the Second Workshop on Statistical Parsing of Morphologically Rich Languages,

pages 12–21, 2011.

[48] Jon Dehdari, Liling Tan, and Josef van Genabith. BIRA: Improved Predictive

Exchange Word Clustering. In Proceedings of the 2016 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 1169–1174, 2016.

[49] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

Pre-training of Deep Bidirectional Transformers for language Understanding.

arXiv preprint arXiv:1810.04805, 2018.

[50] Amit Dubey. What to Do When Lexicalization Fails: Parsing German with Suffix

Analysis and Smoothing. In Proceedings of the 43rd Annual Meeting on Associ-

ation for Computational Linguistics, pages 314–321. Association for Computa-

tional Linguistics, 2005.

[51] Amit Dubey and Frank Keller. Probabilistic Parsing for German Using Sister-

Head Dependencies. In Proceedings of the 41st Annual Meeting on Association

for Computational Linguistics-Volume 1, pages 96–103. Association for Compu-

tational Linguistics, 2003.

180

[52] Nadir Durrani and Sarmad Hussain. Urdu word segmentation. In Human Lan-

guage Technologies: The 2010 Annual Conference of the North American Chap-

ter of the Association for Computational Linguistics, pages 528–536. Association

for Computational Linguistics, 2010.

[53] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. Recur-

rent Neural Network Grammars. arXiv preprint arXiv:1602.07776, 2016.

[54] Toqeer Ehsan and Miriam Butt. Dependency Parsing for Urdu: Resources, Con-

versions and Learning. In Proceedings of The 12th Language Resources and

Evaluation Conference, pages 5202–5207, 2020.

[55] Toqeer Ehsan and Sarmad Hussain. Development and Evaluation of an Urdu

Treebank (CLE-UTB) and a Statistical Parser. Language Resources and Eval-

uation, Jul 2020. ISSN 1574-0218. doi: 10.1007/s10579-020-09492-7. URL

https://doi.org/10.1007/s10579-020-09492-7.

[56] Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun Cho. Learning to

parse and translate improves neural machine translation. arXiv preprint

arXiv:1702.03525, 2017.

[57] Ryan Gabbard, Seth Kulick, and Mitch Marcus. Fully Parsing the Penn Treebank.

In Proceedings of the Human Language Technology Conference of the NAACL,

Main Conference, pages 184–191, 2006.

[58] Charlotte Galves and Pablo Faria. Tycho Brahe Parsed Corpus of Historical Por-

tuguese. URL: http://www. tycho. iel. unicamp. br/tycho/corpus/en/index. html,

2010.

[59] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Continual prediction

using LSTM with forget gates. In Neural Nets WIRN Vietri-99, pages 133–138.

Springer, 1999.

[60] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-

tinual prediction with LSTM. In 9th International Conference on Artificial Neu-

ral Networks: ICANN ’99, pages 850–855. IET, 1999.

181

https://doi.org/10.1007/s10579-020-09492-7

[61] Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber. Learning precise

timing with LSTM recurrent networks. Journal of Machine Learning Research,

3(Aug):115–143, 2002.

[62] Carlos Gómez-Rodrı́guez and David Vilares. Constituent Parsing as Sequence

Labeling. In Conference on Empirical Methods in Natural Language Processing,

EMNLP2018, pages 1314—-1324. Association for Computational Linguistics,

2018.

[63] Anne Göhring. Spanish Expansion of a Parallel Treebank. Lizentiatsarbeit, Uni-

versity of Zurich, 2009.

[64] Yoav Goldberg and Joakim Nivre. A dynamic oracle for arc-eager dependency

parsing. Proceedings of COLING 2012, pages 959–976, 2012.

[65] Joshua Goodman. Probabilistic Feature Grammars. In Advances in Probabilistic

and Other Parsing Technologies, pages 63–84. Springer, 2000.

[66] Joshua Goodman, Rens Bod, and Remko Scha. Efficient parsing of DOP with

PCFG-reductions. 2003.

[67] JT Goodman. A BIT of Progress in Language Modeling Extended Version. Ma-

chine Learning and Applied Statistics Group Microsoft Research. Technical Re-

port, MSR-TR-2001-72, 2001.

[68] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirectional LSTM

networks for improved phoneme classification and recognition. In International

Conference on Artificial Neural Networks, pages 799–804. Springer, 2005.

[69] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber.

Connectionist temporal classification: labelling unsegmented sequence data with

recurrent neural networks. In Proceedings of the 23rd international conference

on Machine learning, pages 369–376, 2006.

[70] Haohan Guo, Frank K Soong, Lei He, and Lei Xie. Exploiting syntactic features

in a parsed tree to improve end-to-end TTS. arXiv preprint arXiv:1904.04764,

2019.

182

[71] Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar, and Mike Lewis. Se-

mantic parsing for task oriented dialog using hierarchical representations. arXiv

preprint arXiv:1810.07942, 2018.

[72] Jan Hajič, Eva Hajičová, Marie Mikulová, and Jiřı́ Mı́rovskỳ. Prague dependency

treebank. In Handbook of Linguistic Annotation, pages 555–594. Springer, 2017.

[73] Aaron Li-Feng Han, Derek F Wong, Lidia S Chao, Yi Lu, Liangye He, and Liang

Tian. A Universal Phrase Tagset for Multilingual Treebanks. pages 247–258,

2014.

[74] Chung-hye Han, Na-Rae Han, and Eon-Suk Ko. Bracketing Guidelines for Penn

Korean Treebank. IRCS Technical Reports Series, page 26, 2001.

[75] Chung-hye Han, Na-Rae Han, Eon-Suk Ko, Martha Palmer, and Heejong Yi.

Penn Korean Treebank: Development and Evaluation. In Proceedings of the

16th Pacific Asia Conference on Language, Information and Computation, pages

69–78, 2001.

[76] Na-Rae Han and Shijong Ryu. Guidelines for Penn Korean Treebank Version

2.0. IRCS Technical Reports Series, page 7, 2005.

[77] Andrew Hardie. Developing a tagset for automated part-of-speech tagging in

Urdu. In Proceedings of the Corpus Linguistics Conference, 2003.

[78] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[79] Sara Hussain. Finite-state morphological analyzer for Urdu. Unpublished MS

thesis, Center for Research in Urdu Language Processing, National University

of Computer and Emerging Sciences, Pakistan, 2004.

[80] Mark Johnson. PCFG Models of Linguistic Tree Representations. Computational

Linguistics, 24(4):613–632. MIT Press., 1998.

[81] Dan Jurafsky. Speech & Language Processing. Pearson Education India, 2000.

[82] Kaarel Kaljurand. Checking treebank consistency to find annotation errors, 2004.

183

[83] Yoshihide Kato and Shigeki Matsubara. Parsing Gapping Constructions Based

on Grammatical and Semantic Roles. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing (EMNLP), pages 2747–

2752, 2020.

[84] Yasuhiro Kawata and Julia Bartels. Stylebook for the Japanese Treebank in

VERBMOBIL. In Verbmobil-Report 240, Seminar für Sprachwissenschaft, Uni-

versität Tübingen, 2000.

[85] Tafseer Ahmad Khan. Spatial expressions and case in South Asian languages.

Konstanzer Online-Publication-System (KOPS), 2009.

[86] Tafseer Ahmed Khan, Saba Urooj, Sarmad Hussain, Asad Mustafa, Rahila

Parveen, Farah Adeeba, Annette Hautli, and Miriam Butt. The CLE Urdu POS

tagset. In LREC 2014, Ninth International Conference on Language Resources

and Evaluation, pages 2920–2925, 2015.

[87] Tafseer Ahmed Khan, Toqeer Ehsan, Almas Ashraf, Mutee U Rahman, Sarmad

Hussain, and Miriam Butt. A Multilayered Urdu Treebank. In 7th International

Conference on Language and Technology (CLT20), 2020.

[88] Paul Kingsbury, Martha Palmer, and Mitch Marcus. Adding Semantic Annota-

tion to The Penn Treebank. In Proceedings of the human language technology

conference, pages 252–256. San Diego, California, 2002.

[89] Eliyahu Kiperwasser and Yoav Goldberg. Simple and Accurate Dependency

Parsing using Bidirectional LSTM Feature Representations. Transactions of the

Association for Computational Linguistics, 4:313–327, 2016.

[90] Christo Kirov, Ryan Cotterell, John Sylak-Glassman, Géraldine Walther, Ekate-

rina Vylomova, Patrick Xia, Manaal Faruqui, Sebastian Mielke, Arya D Mc-

Carthy, Sandra Kübler, et al. UniMorph 2.0: Universal Morphology. arXiv

preprint arXiv:1810.11101, 2018.

[91] Nikita Kitaev and Dan Klein. Constituency Parsing with a Self-Attentive En-

coder. arXiv preprint arXiv:1805.01052, 2018.

184

[92] Nikita Kitaev and Dan Klein. Tetra-Tagging: Word-Synchronous Parsing with

Linear-Time Inference. arXiv preprint arXiv:1904.09745, 2019.

[93] Dan Klein and Christopher D Manning. Accurate Unlexicalized Parsing. In

Proceedings of the 41st Annual Meeting on Association for Computational

Linguistics-Volume 1, pages 423–430. Association for Computational Linguis-

tics, 2003.

[94] Dan Klein and Christopher D Manning. Fast Exact Inference with a Factored

Model for Natural Language Parsing. In Advances in Neural Information Pro-

cessing Systems, pages 3–10, 2003.

[95] Sandra Kübler. The PaGe 2008 Shared Task on Parsing German. In Proceedings

of the Workshop on Parsing German, pages 55–63. Association for Computa-

tional Linguistics, 2008.

[96] Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Giorgio Satta. Dynamic pro-

gramming algorithms for transition-based dependency parsers. In Proceedings

of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies-Volume 1, pages 673–682. Association for Com-

putational Linguistics, 2011.

[97] Yonggan Li, Xueguang Zhou, Yan Sun, and Huanguo Zhang. Design and imple-

mentation of Weibo sentiment analysis based on LDA and dependency parsing.

China Communications, 13(11):91–105, 2016.

[98] Zhenghua Li, Min Zhang, Yue Zhang, Zhanyi Liu, Wenliang Chen, Hua Wu, and

Haifeng Wang. Active learning for dependency parsing with partial annotation.

In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 344–354, 2016.

[99] Jiangming Liu and Yue Zhang. In-Order Transition-Based Constituent Parsing.

Transactions of the Association for Computational Linguistics, 5:413–424, 2017.

185

[100] Ting Liu, Jinshan Ma, and Sheng Li. Building a Dependency Treebank for Im-

proving Chinese Parser. Journal of Chinese Language and Computing, 16(4):

207–224, 2006.

[101] Liangchen Luo. A Description of the CTB-to-Dependency Convertor. Technical

report, Peking University, Beijing, 2018. URL https://github.com/Luolc/

CTB2Dep/blob/master/description.pdf. Semester project report.

[102] Mohamed Maamouri and Ann Bies. Developing an Arabic Treebank: Methods,

Guidelines, Procedures, and Tools. In Proceedings of the Workshop on Compu-

tational Approaches to Arabic Script-based languages, pages 2–9, 2004.

[103] Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. The Penn

Arabic treebank: Building a large-scale annotated Arabic corpus. In NEMLAR

conference on Arabic language resources and tools, volume 27, pages 466–467.

Cairo, 2004.

[104] David M Magerman. Statistical Decision-Tree Models for Parsing. In Proceed-

ings of the 33rd Annual Meeting of the Association for Computational Linguis-

tics, pages 276–283. Association for Computational Linguistics, 1995.

[105] Muhammad Kamran Malik, Tafseer Ahmed, Sebastian Sulger, Tina Bögel, Atif

Gulzar, Ghulam Raza, Sarmad Hussain, and Miriam Butt. Transliterating Urdu

for a broad-coverage Urdu/Hindi LFG grammar. In LREC 2010, Seventh Inter-

national Conference on Language Resources and Evaluation, pages 2921–2927,

2010.

[106] Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann

Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. The Penn Treebank:

Annotating Predicate Argument Structure. In Proceedings of the workshop on

Human Language Technology, pages 114–119. Association for Computational

Linguistics, 1994.

[107] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Build-

ing a Large Annotated Corpus of English: The Penn Treebank. Computational

Linguistics, 19(2):313–330, 1993.

186

https://github.com/Luolc/CTB2Dep/blob/master/description.pdf
https://github.com/Luolc/CTB2Dep/blob/master/description.pdf

[108] Yuval Marton, Nizar Habash, and Owen Rambow. Improving Arabic Depen-

dency Parsing with Lexical and Inflectional Morphological Features. In Pro-

ceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of

Morphologically-Rich Languages, pages 13–21, 2010.

[109] Mary L McHugh. Interrater reliability: The kappa statistic. Biochemia medica:

Biochemia medica, 22(3):276–282, 2012.

[110] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[111] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In Ad-

vances in Neural Information Processing Systems, pages 3111–3119, 2013.

[112] Tara Mohanan. Argument Structure in Hindi. Center for the Study of Language

(CSLI), 1994.

[113] Simonetta Montemagni, Francesco Barsotti, Marco Battista, Nicoletta Calzo-

lari, Ornella Corazzari, Antonio Zampolli, Francesca Fanciulli, Maria Massetani,

Remo Raffaelli, Roberto Basili, et al. The Italian Syntactic-Semantic Treebank:

Architecture, Annotation, Tools and Evaluation. 2003.

[114] Antonio Moreno, Ralph Grishman, Susana López, Fernando Sánchez, and

Satoshi Sekine. A Treebank of Spanish and its Application to Parsing. In LREC,

2000.

[115] Phuong Thai Nguyen, Xuan Luong Vu, Thi Minh Huyen Nguyen, Hong Phuong

Le, et al. Building a Large Syntactically-Annotated Corpus of Vietnamese. 2009.

[116] Phuong-Thai Nguyen, Anh-Cuong Le, Tu-Bao Ho, and Van-Hiep Nguyen. Viet-

namese treebank construction and entropy-based error detection. Language Re-

sources and Evaluation, 49(3):487–519, 2015.

[117] Quy T Nguyen, Yusuke Miyao, Ha TT Le, and Nhung TH Nguyen. Ensuring an-

notation consistency and accuracy for Vietnamese treebank. Language Resources

and Evaluation, pages 1–47, 2017.

187

[118] Joakim Nivre, Mitchell Abrams, Ž Agić, et al. Universal Dependencies 2.4

(2019). LINDAT/CLARIN digital library at the Institute of Formal and Applied

Linguistics (UFAL), Faculty of Mathematics and Physics, Charles University.

[119] Joakim Nivre, Jens Nilsson, and Johan Hall. Talbanken05: A Swedish Treebank

with Phrase Structure and Dependency Annotation. In LREC, pages 1392–1395,

2006.

[120] Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülşen Eryigit, San-

dra Kübler, Svetoslav Marinov, and Erwin Marsi. Maltparser: A Language-

Independent System for Data-Driven Dependency Parsing. Natural Language

Engineering, 13(2):95–135, 2007.

[121] Joakim Nivre, Željko Agić, Lars Ahrenberg, et al. Universal Dependencies 2.0.

LINDAT/CLARIN digital library at the institute of Formal and Applied Linguis-

tics, Charles University, Prague, 2017.

[122] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajič, Christo-

pher D Manning, Sampo Pyysalo, Sebastian Schuster, Francis Tyers, and Daniel

Zeman. Universal Dependencies v2: An Evergrowing Multilingual Treebank

Collection. arXiv preprint arXiv:2004.10643, 2020.

[123] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. Deep Contextualized Word Repre-

sentations. arXiv preprint arXiv:1802.05365, 2018.

[124] Slav Petrov and Dan Klein. Improved Inference for Unlexicalized Parsing. In

Human Language Technologies 2007: The Conference of the North American

Chapter of the Association for Computational Linguistics; Proceedings of the

Main Conference, pages 404–411, 2007.

[125] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning Accurate,

Compact, and Interpretable Tree Annotation. In Proceedings of the 21st Interna-

tional Conference on Computational Linguistics and the 44th annual meeting of

the Association for Computational Linguistics, pages 433–440. Association for

Computational Linguistics, 2006.

188

[126] Ghulam Raza, Tafseer Ahmed, Miriam Butt, and Tracy Holloway King. Argu-

ment scrambling within Urdu NPs. Proceedings of LFG11 Conference, pages

461–481, 2011.

[127] Taneth Ruangrajitpakorn, Kanokorn Trakultaweekoon, and Thepchai Supnithi. A

Syntactic Resource for Thai: CG Treebank. In Proceedings of the 7th Workshop

on Asian Language Resources (ALR7), pages 96–102, 2009.

[128] Hassan Sajjad. Statistical part of speech tagger for Urdu. Unpublished MS The-

sis, National University of Computer and Emerging Sciences, Lahore, Pakistan,

2007.

[129] Hassan Sajjad and Helmut Schmid. Tagging urdu text with parts of speech: A

tagger comparison. In Proceedings of the 12th Conference of the European Chap-

ter of the Association for Computational Linguistics, pages 692–700. Association

for Computational Linguistics, 2009.

[130] Federico Sangati and Willem Zuidema. Accurate parsing with compact tree-

substitution grammars: Double-DOP. In Proceedings of the conference on em-

pirical methods in natural language processing, pages 84–95. Association for

Computational Linguistics, 2011.

[131] R Scha. Language Theory and Language Technology; Competence and Perfor-

mance (in Dutch). In de Kort, Q. and Leerdam, G., editors. Computertoepassin-

gen in de Neerlandistiek, 1990.

[132] Helmut Schmid. Treetagger — a language independent part-of-speech tagger.

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart, 43:28, 1995.

[133] Helmut Schmid. Improvements in part-of-speech tagging with an application

to GERMAN. In Natural language processing using very large corpora, pages

13–25. Springer, 1999.

[134] Djamé Seddah, Grzegorz Chrupała, Özlem Çetinoğlu, Josef Van Genabith, and

Marie Candito. Lemmatization and Lexicalized Statistical Parsing of Morpho-

logically Rich Languages: The Case of French. In Proceedings of the NAACL

189

HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Lan-

guages, pages 85–93. Association for Computational Linguistics, 2010.

[135] Anthony Sigogne, Matthieu Constant, and Eric Laporte. French Parsing En-

hanced with a Word Clustering Method Based on a Syntactic Lexicon. In Pro-

ceedings of the Second Workshop on Statistical Parsing of Morphologically Rich

Languages, pages 22–27, 2011.

[136] Natalia Silveira, Timothy Dozat, Marie-Catherine De Marneffe, Samuel R Bow-

man, Miriam Connor, John Bauer, and Christopher D Manning. A Gold Standard

Dependency Corpus for English. In LREC 2014, Ninth International Conference

on Language Resources and Evaluation, pages 2897–2904, 2014.

[137] Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman, and Noa Nativ. Building

a Tree-Bank of Modern Hebrew Text. Traitement Automatique des Langues, 42

(2):247–380, 2001.

[138] Gary F Simons and Charles D Fennig. Ethnologue: Languages of the world. SIL

International, 20, 2017.

[139] Wojciech Skut, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit. An Anno-

tation Scheme for Free Word Order Languages. arXiv preprint cmp-lg/9702004,

1997.

[140] Richard Socher, Christopher D Manning, and Andrew Y Ng. Learning con-

tinuous phrase representations and syntactic parsing with recursive neural net-

works. In Proceedings of the NIPS-2010 Deep Learning and Unsupervised Fea-

ture Learning Workshop, volume 2010, pages 1–9, 2010.

[141] Richard Socher, John Bauer, Christopher D Manning, et al. Parsing with com-

positional vector grammars. In Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), volume 1,

pages 455–465, 2013.

[142] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Man-

ning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic

190

compositionality over a sentiment treebank. In Proceedings of the 2013 confer-

ence on empirical methods in natural language processing, pages 1631–1642,

2013.

[143] Mitchell Stern, Jacob Andreas, and Dan Klein. A Minimal Span-Based Neural

Constituency Parser. arXiv preprint arXiv:1705.03919, 2017.

[144] Juhi Tandon, Himani Chaudhry, Riyaz Ahmad Bhat, and Dipti Misra Sharma.

Conversion from Paninian Karakas to Universal Dependencies for Hindi Depen-

dency Treebank. In Proceedings of the 10th Linguistic Annotation Workshop held

in conjunction with ACL 2016 (LAW-X 2016), pages 141–150, 2016.

[145] Mariona Taulé, Maria Antònia Martı́, and Marta Recasens. AnCora: Multilevel

Annotated Corpora for Catalan and Spanish. In Lrec, 2008.

[146] Reut Tsarfaty and Khalil Sima’an. Three-Dimensional Parametrization for Pars-

ing Morphologically Rich Languages. In Proceedings of the Tenth International

Conference on Parsing Technologies, pages 156–167, 2007.

[147] Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra Kübler, Marie Candito,

Jennifer Foster, Yannick Versley, Ines Rehbein, and Lamia Tounsi. Statistical

Parsing of Morphologically Rich Languages (SPMRL): What, How and Whither.

In Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing

of Morphologically-Rich Languages, pages 1–12. Association for Computational

Linguistics, 2010.

[148] Reut Tsarfaty, Djamé Seddah, Sandra Kübler, and Joakim Nivre. Parsing Mor-

phologically Rich Languages: Introduction to the Special Issue. Computational

linguistics, 39(1):15–22, 2013.

[149] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: A simple

and general method for semi-supervised learning. In Proceedings of the 48th

annual meeting of the association for computational linguistics, pages 384–394.

Association for Computational Linguistics, 2010.

191

[150] Saba Urooj, Sarmad Hussain, Farah Adeeba, Farhat Jabeen, and Rahila Parveen.

CLE Urdu digest corpus. LANGUAGE & TECHNOLOGY, 47, 2012.

[151] Xinyi Wang, Hieu Pham, Pengcheng Yin, and Graham Neubig. A tree-based

decoder for neural machine translation. arXiv preprint arXiv:1808.09374, 2018.

[152] Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta Palmer. The Penn Chinese

Treebank: Phrase structure annotation of a large corpus. Natural language engi-

neering, 11(2):207–238, 2005.

[153] Nianwen Xue and Martha Palmer. Annotating the Propositions in The Penn Chi-

nese Treebank. In Proceedings of the second SIGHAN workshop on Chinese

language processing, pages 47–54, 2003.

[154] Nianwen Xue, Fei Xia, Shizhe Huang, and Anthony Kroch. The Bracketing

Guidelines for The Penn Chinese Treebank (3.0). IRCS Technical Reports Series,

page 39, 2000.

[155] Daniel Zeman, Joakim Nivre, et al. Universal Dependencies 2.5. Institute of

Formal and Applied Linguistics, LINDAT/CLARIN, Charles University, Prague,

Czech Republic, LINDAT/CLARIN PID: http://hdl. handle. net/11234/1-3105,

2019.

[156] Junru Zhou, Zuchao Li, and Hai Zhao. Parsing all: Syntax and Semantics, De-

pendencies and Spans. arXiv preprint arXiv:1908.11522, 2019.

[157] Andreas Zollmann and Khalil Sima’an. A Consistent and Efficient Estimator for

Data-Oriented Parsing. Journal of Automata Languages and Combinatorics, 10

(2/3):367, 2005.

192

APPENDIX A. DEPENDENCY STRUCTURE

A phrase structure (PS) treebank provides the constituency structure of the clauses

and their hierarchical organization in a sentence. The information of the arguments is

encoded at phrase level in the form of a linear order. On the other hand, the depen-

dency structure (DS) focuses on the functional dependencies between lexical items of

the clauses and dependency relations between constituents. It rules out the linear order

and provides grammatical relations between predicates and their arguments.

The grammatical relations are crucial to obtain the information about event par-

ticipants in the applications of natural language understanding (NLU). Phrase structure

parsers usually provide the information of clauses in sentences which lack the semantic

relations. However, functional labels can be attached with phrase labels to represent

grammatical functions. On the other hand, the dependency treebanks and parsers pro-

vide the grammatical relations in the first place by ignoring the linear order of the con-

stituents in contrast with phrase structure. Both types of treebanks exist for Urdu with

various sizes and annotation schemes. The promising way forward is to convert exist-

ing phrase structure treebanks into a common dependency structure to train high-quality

dependency parsers.

In this section, we present the conversion of our phrase structure treebank [55]

into dependency structure by using Universal Dependencies label sets. To achieve an

193

equivalent dependency structure, we devised a head word model for Urdu and a map-

ping from phrase to dependency labels. Additionally, several post-conversion rules were

employed to achieve an accurate conversion.

The remainder of the chapter is organized as follows. Section A.1 briefly de-

scribes the compatibility of the phrase structure treebank with dependency structure.

Section A.2 presents the conversion process by providing the details of head-word

model, phrase to dependency label mapping and conversion rules. Section A.3 presents

the treebank evaluation by showing the dependency parsing results.

A.1 COMPATIBILITY WITH DEPENDENCY STRUCTURE

We have developed a phrase structure treebank (CLE-UTB) which has a rela-

tively flat annotation structure. The flat structure is helpful to annotate the flexible word

order of the language. The annotation scheme has the ability to represent frequently ob-

served syntactic constructions of the language including flexible word order, complex

predicate structures, question phrases, subordinations, conjunctions, genitives and other

cases, possessive phrases and relative clauses. Additionally, the treebank has a set of

functional labels to mark grammatical relations. Figure A.1 presents a sample sentence

from the CLE-UTB.

The PS parse tree in Figure A.1 shows the annotation of genitive case and a

copula construction in the independent clause. The genitive case has been annotated

by using a post-positional phrase (PP) and a functional label ‘G’. The PP phrase is a

component of a nominal subject which has ticket as the head. The independent clause

further annotates a copula construction which marks an adjective phrase (ADJP) with a

194

S

NP-SUBJ

PP-G

NP

NN

rEl

PSP

kI

NN

ticket

ADJP-PDL

Q

bohat

JJ

sastI

VC

VBF

hE

SBAR

SC

tAkE

S

NP-SUBJ

JJ

GarIb

NN

lOg

PRT

bHI

NP-POF

NN

safar

VC

VBF

kar

AUXM

sakEN

PU .

rEl=kI ticket bohat sastI hE tAkE GarIb
train.F.Sg=Gen ticket.F.Sg.Nom very cheap be.Pres.3.Sg SC poor.Nom
lOg bHI safar kar sakEN .
people.Pl.Nom also.PRT travel.Nom do can.Pres.Mod.Pl Punct
‘The train ticket is very cheap so that poor people can also travel’.

FIGURE A.1: A sample phrase structure parse tree.

functional label PDL (Predicate Link). The PDL construction makes a link with predi-

cate which, in this case, is a copula verb hE ‘be.Pres.3.Sg’.

The subordinate clause on the other hand contains a nominal subject and a com-

plex predicate structure. The NP-SUBJ phrase also contains an intensifier bHI ‘also’.

The nominal subject follows a complex predicate structure which has been marked by

using a POF (Part of Function) label. The noun phrase along with POF provides a

verbal meaning with the VC (Verb Complex). In case of complex predicate structure,

the predicate contains a light verb, kar ‘do’ in this case, which is usually followed by

auxiliary verbs.

It is important to observe that all the arguments and predicates have been at-

tached at the clausal level in the parse tree. This annotation allows the representation

of sentences having different word orders. In the complex predicate structure, con-

tributing noun, adjective or quantifier phrases usually have a pre-verbal order but this is

not always the case. The functional layer makes this annotation flexible and complex

195

predicates can be marked irrespective of their appearance in the sentence. In the same

way, copula constructions can be annotated independent of their position. Similarly,

predicates and their arguments including subjects, objects, obliques, conjuncts, infini-

tive clauses, subordinate and relative clauses are annotated without restricting them to

have specific positions. The annotation of the CLE-UTB makes it compatible with the

dependency structure which represents the relations between lexical items and clauses.

A detailed discussion of the compatibility of our PS annotation with DS is discussed in

Section 3.2.2.

A.2 PHRASE TO DEPENDENCY CONVERSION

This section describes the Urdu head word model, phrase to dependency label

mapping and post-conversion rules.

A.2.1 Head-word model

In the dependency structure, a head word is marked with the core dependency

labels. A head word is the prominent lexical item which represents an argument. A head

model finds the head words from the clauses by employing language dependent head

rules [104]. We have proposed a model to identify heads in our PS treebank. For the

conversion, we have updated an existing algorithm1 [101] for the conversion. Table A.1

shows our head model.

Table A.1 presents word finding direction and label priority for each phrase label

in the treebank. A verb complex usually contains a main verb followed by auxiliary

1https://github.com/Luolc/CTB2Dep

196

TABLE A.1: Head word model for Urdu treebank.

Phrase Label Direction Priority

VC left VBF, VBI, AUXA, AUXM,

AUXP, AUXT, VC, NEG

PP left NP, S, QP, NNP, NN, PP, PSP

NP right NP, NNP, NN, PRP, PRR, S

ADJP right ADJP, JJ, Q, QP, RB

QP right QP, Q, CD, OD, FR, QM, JJ

ADVP right ADVP, RB, NP, NN

PREP right NP, NNP, NNP, PREP

DMP right PDM, PRP, PRT

FFP left FF, NNP, NN

S left VC, S, SBAR, NP, ADJP, QP

NNP, NN, PRP,

SBAR left S, SBAR, SCK

verbs. Therefore, the head finding direction is from left to right with respect to label

priorities. A VC normally has finite or infinitive verbs as main verbs, therefore, the POS

tags VBF and VBI have high priorities. The verbal constituent in (13) shows a typical

Urdu verbal structure which contains a main verb likH ‘write’, an aspectual auxiliary

verb liyA ‘take.Perf.M.Sg’ and a tense auxiliary verb hE ‘be.Pres.3.Sg’. The main verb

should be the head to have the core dependency label which appears at left hand side. It

is important to note that Urdu is written from write to left but its internal representation

is a sequence of Unicodes. The directions in our head model have been devised for

internal representations of the writing script.

197

(13) likH

write.Imperf.Sg

liyA

take.Perf.M.Sg

hE

be.Pres.3.Sg

‘has written’

Similarly, the post-positional phrases have left heads as they contain at least one

noun phrase which appears before a case marker. Therefore, the PP has NP to have

highest priorities followed by other clause labels. In (14), a PP sequence contains a

noun phrase surx mEz ‘red table’ followed by a locative case marker par. The head of

the noun phrase is the head of the PP phrase. Therefore, the overall head direction of

the PP is from left. Beside NPs, a PP can also contain ‘S’, QP etc., which have been

added in its priority list.

(14) surx

red.Sg

mEz=par

table.M.Sg=Loc

‘on the red table’

A noun phrase shown in (15) contains a genitive case hence an internal post-

positional phase. The head of the NP is the word pensil ‘pencil’ which appears at the

right hand side of the phrase. Similarly, the NP sequence presented in (16) shows a

canonical NP structure which contains a head noun Am ‘mango’ after a noun modifier

mItHA ‘sweet’. The head direction of noun phrase in Urdu is from right. A noun phrase

can also have internal NPs, common and proper nouns and pronouns which all are right

headed.

198

(15) sAim=kI

Saim.M.Sg=Gen

pensil

pencil.F.Sg.Nom

‘Saim’s pencil’

(16) mItHA

sweet.Sg

Am

mango.M.Sg.Nom

‘sweet mango’

The noun modifiers also have right heads as shown in (17) and (18). An ad-

jective phrase, in the annotation, usually has quantifiers, cardinals, ordinals and main

adjectives. The order of the adjective phrase is similar to NPs. The head modifier ap-

pears on the right hand side of the constituent. In the same way, the quantifier phrase

also has right head as shown in (18).

(17) buhat

very

mazbUt

strong.M.Sg.Adj

‘very strong’

(18) buhat

very

kam

less.M.Sg.Adj

‘very less’

199

An adverbial phrase (ADVP) usually contains a single lexical entry for an adverb

as presented in (19). In some cases, the ADVP contains infinitive clause in it but the

head word remains on the right side of the constituent.

(19) acAnak

suddenly.Sg.Adv

‘suddenly’

Urdu also has prepositional phrase but they are not frequent in the corpus. A

prepositional phrase contains an NP following the preposition clitic making it right

headed as shown in (20). The preposition clitic fI ‘per’ appears before a noun phrase

making the noun as the head of the constituent.

(20) fI

per

gHanTA

hour.M.Sg.Nom

‘per hour’

The demonstrative phrase (DMP) contains a demonstrative pronoun usually fol-

lowed by a particle making its head finding method straight forward from right. Simi-

larly, the FFP annotates the foreign fragment phrases which contain words from foreign

languages usually from English and Arabic in our corpus. All the foreign words have

been assigned a single POS tag i.e. FF. Therefore, we assume it left headed constituent.

The ‘S’ label is used to annotate the clauses and a whole sentence. A sentence can have

subordinate and coordinate clauses in it. The SBAR label has been used to annotate

the subordinate clauses which further annotation at least one clause with label ‘S’. The

200

rEl kI ticket bohat sastI hE tAkE GarIb lOg bHI safar kar sakEN .
NN PSP-G NN Q JJ VBF SC JJ NN PRT NN VBF AUXM PUP

PP-G
PSP-G

NP-SUBJ

Q ADJP-PDL

root

SC

JJ

NP-SUBJ

PRT NP-POF

SBAR

AUXM

PUP

FIGURE A.2: An intermediate dependency representation from PS parse tree of Fig-
ure A.1 after head identification.

clause or sentence has the main verbal head as the head of the sentence. Therefore it

finds the left head of the matrix clause as the head of the whole sentence. A hierarchical

analysis and parental annotation has been performed to compute the heads for clause

label ‘S’. The parental annotation was helpful to attain the context of the phrases as

the flat annotation does not provide much contextual information. The annotation was

further helpful for the phrase to dependency label mappings.

Figure A.2 presents an intermediate dependency representation of the sentence

from Figure A.1. The intermediate representation has been achieved by finding depen-

dency arcs for the head words. The remaining items of the constituents show depen-

dency arcs on the respective heads. The intermediate representation shows the phrase

and functional labels as dependency relations. Beside the labels, the dependency arcs

are quite correct. The sentence has the verb complex from independent clause as the

root. The construction including subordinate clause, subjects, complex predicate, gen-

itive case and auxiliary verbs have the dependency arcs on correct heads. A phrase to

dependency label mapping is required to convert the intermediate representation to the

dependency structure.

201

A.2.2 PS to DS Label Mappings

The intermediate dependency representation contains the dependency arcs for

head and non-head tokens. The non-head words usually have POS tags as arc labels

and heads show phrase labels for dependency relations. During the conversion, we have

used updated version of the POS tag set which divides case markers and punctuations

in different categories. The POS tag set of the CLE-UTB originally has 35 tags (Sec-

tion 3.1.1) which were further extended to 44 tags (Section 4.3.1). The universal depen-

dencies (UD) v-2.0 label sets have been used for dependency labels as well as POS tags.

The universal POS tag set contains 17 tags 2. The mapping from the CLE-UTB POS tag

set to is presented in Table A.2. The mapping has been derived from universal depen-

dencies guidelines3 and the UD-2.0 version of the UDTB4. The POS mapping is quite

straight-forward as more comprehensive tags are being mapped on abstract tags. For

example, VERB tag is used for all verbs and AUX for all types of auxiliaries. Similarly,

tags for ad-positions are mapped on a single ADP tag. Demonstrative, possessive, rel-

ative, reflexive apna, reflexive pronouns, ordinals, fractions and multiplicatives all are

mapped on a single DET (determinant) tag. All punctuations are marked with a PUNCT

tag. The tag set provides an abstraction which is applicable to many languages. At the

second step, the phrase labels are mapped on dependency labels.

The intermediate dependency representation also shows the POS tags as arc

labels as shown in Figure A.2. The noun ticket is a head word and shows a relation with

label NP-SUBJ which is quite intuitive that it should be labeled as subject. The noun rEl

2https://universaldependencies.org/u/pos/
3https://universaldependencies.org/u/dep/
4https://github.com/UniversalDependencies/UD Urdu-UDTB

202

TABLE A.2: The mapping of the CLE-UTB tags on UD-POS tags.

CLE-UTB POS Universal POS CLE-UTB POS Universal POS

NN NOUN NEG ADV

NNP PROPN PRE ADP

VBI VERB PSP ADP

VBF VERB PSP-E ADP

AUXA AUX PSP-A ADP

AUXP AUX PSP-SE ADP

AUXT AUX PSP-I ADP

AUXM AUX PSP-G ADP

PRP PRON CC CCONJ

PDM DET SC SCONJ

PRS DET SCK SCONJ

PRD DET SCP SCONJ

PRR DET INJ INTJ

PRF DET PRT PART

APNA DET VALA PART

JJ ADJ SYM SYM

Q ADJ LRB PUNCT

CD NUM RRB PUNCT

OD DET PU PUNCT

FR DET PU-C PUNCT

QM DET PU-P PUNCT

RB ADV PU-E PUNCT

‘train’ shows a dependency on head with label PP-G. The label PP-G has been used to

annotate post-positional phrases for genitive case markers. The Urdu script treats case

marking clitics as independent tokens hence require a dependency label. The genitive

case marker kI has a dependency on the noun rEl which is a possessor. The quantifier

bohat ‘very’ has a dependency on the adjective sastI ‘cheap’ with a label Q which is

a POS tag. The adjective sastI is the head word with a core dependency label ADJP-

PDL. It makes a predicate link with copula verb hE. Such copula constructions have

203

been updated by employing additional rules after the label mapping.

On the other hand, the subordinate clause contains a subject and a complex

predicate structure. The phrase labels, NP-SUBJ and NP-POF represent the dependency

relations of heads and POS tags have been labeled to show non-core relations. For

example, the noun modifier GarIb ‘poor’ has a dependency on head noun lOg ‘people’

with the label JJ. The modal auxiliary is defined by the tag AUXM. The particle bHI

‘also’ has the label PRT. The subordinate clause is marked with the SBAR label. After

the analysis, it is quite intuitive that phrase label along with functional labels represent

the dependency relations of heads on the predicates and the POS tags mark the relations

of non-head items on the constituent heads. Therefore to achieve dependency labels,

the mapping on dependency labels should be against phrase labels as well as POS tags.

To achieve the context of the constituents for accurate label mapping, we up-

dated the CLE-UTB to have parental annotations [80]. A clause ‘S’ has different at-

tachments which can be identified by using parent label annotation along with the ac-

tual label. For example, if the clause ‘S’ appears under a noun phrase, it is annotated as

SˆNP and if it is attached with a post-positional phrase, it would have the annotation as

SˆPP. The subordinate and coordinate clauses are also annotated with an S label which

are resulted to show SˆSBAR for subordinate clause and SˆS for a coordinate clause.

Addition to the parent label annotation, tree levels were also annotated with VCs which

were helpful to identify roots of sentences. A sentence with many clauses usually has

many verbal constructions in the hierarchical parse trees. The level number annotation

attached a number, for example, VCˆ1 represents the verbal construction at first level if

we consider sentence clause at zeroth level.

204

TABLE A.3: The mapping of the CLE-UTB phrase labels on UD labels for core argu-
ments.

CLE-UTB Lables UD-2.0 Label UD Description

NP-SUBJ nsubj Nominal subject

PP-SUBJ nsubj Nominal subject

QP-SUBJ nsubj Nominal subject

NP-OBJ obj Object

PP-OBJ obj Object

QP-OBJ obj Object

S-OBJ obj Object

NP-OBL* iobj Indirect subject

S-SUBJ csubj Clausal subject

SˆS ccomp Clausal complement

SBAR ccomp Clausal complement

SˆSBAR ccomp Clausal complement

S* xcomp Open clausal complement
*The dependency labels were derived by additional rules after conversion.

A.2.2.1 Core Arguments

Table A.3 shows the mapping of the phrase labels of core arguments to the UD

labels. The functional labels represent core arguments for subject and object. The sub-

ordinate and coordinate clauses are labels with ccomp (clausal complement) label. The

parental annotations have been used to identify the clauses. The nominal obliques have

been mapped on indirect objects iobj. Infinitive clausal objects have been marked as

indirect objects with label xcomp. The labels with ‘*’ have been achieved by additional

rules described in Section A.2.3.

205

A.2.2.2 Non-Core Dependents

Table A.4 presents the mapping of non-core dependencies. The non-core com-

pulsory arguments have been annotated by using OBL functional label which is mapped

on oblique dependency with obl label. The functional labels VOC has been mapped on

vocative label. Non-core finite clauses have been marked by using advel (adverbial

clause modifier) label. Similarly, clauses with conjunctive participle are also marked

with advel. These types of clauses are attached under SBAR label which have been

identified by using parental annotation. Adverbial phrases (ADVP) and nominal ad-

juncts have been mapped on adverbial modifier dependency by using label advmod. The

noun phrase, post-positional phrase, prepositional phrase and quantifier phrase without

a functional label have been considered as adjuncts and are marked with adverbial mod-

ifier. The POS tags for adverb RB and negative adverb NEG are mapped on the advmod

label.

The adverbial interjections have been marked with the discourse label. All

types of auxiliary verbs and conjunctive participles are mapped on aux label. The anno-

tation of the CLE-UTB uses a PDL functional label to mark predicate link with copula

verbs. The constructions with PDL labels are mapped on copula dependency with cop

label. The labels for subordinate clitics are mapped on mark dependency label.

A.2.2.3 Nominal Dependents

Table A.5 shows the mapping of nominal dependents. The genitive cases are

marked as noun specifiers and possessors. The genitive case has been annotated with

206

TABLE A.4: The mapping of the CLE-UTB phrase labels on UD labels for non-core
dependents.

CLE-UTB Lables UD-2.0 Label UD Description

NP-OBL obl Oblique nominal

PP-OBL obl Oblique nominal

S-OBL obl Oblique nominal

ADVP-VOC vocative Vocative

NP-VOC vocative Vocative

S advcl Adverbial clause modifier

SˆSBARSCK advcl Adverbial clause modifier

SBARSCK advcl Adverbial clause modifier

ADVP advmod Adverbial modifier

NP advmod Adverbial modifier

NP-ADJ advmod Adverbial modifier

PP advmod Adverbial modifier

PREP advmod Adverbial modifier

QP advmod Adverbial modifier

NEG advmod Adverbial modifier

RB advmod Adverbial modifier

ADVP-INJ discourse Discourse element

INJ discourse Discourse element

AUXA aux Auxiliary

AUXM aux Auxiliary

AUXP aux Auxiliary

AUXT aux Auxiliary

SCK aux Auxiliary

ADJP-PDL cop Copula

ADVP-PDL cop Copula

NP-PDL cop Copula

PP-PDL cop Copula

QP-PDL cop Copula

SC mark Marker

SCP mark Marker

207

PP-G phrase label in the phrase structure. For conversion from the phrase to depen-

dency structure, it is marked as nominal modifier using the label nmod. Cardinals are

marked as numeric modifier by using the label nummod. The adjectival phrases and ad-

jectival tags are mapped as adjectival modifiers. The adjectival clauses which have been

identified by using parental annotation for clause label ‘S’, are mapped on acl label.

The determiner label det has been used to represent demonstrative phrase, APNA par-

ticle, fractions, ordinals, quantifiers and multiplicatives. Different types of pronouns

including demonstrative, relative demonstrative, reflexive, relative and possessive pro-

nouns are marked as determiners. The dependency label case has been used to map the

annotation of all types of case markers.

A.2.2.4 Other Dependency Relations

Table A.6 presents the dependency labeling for coordinations, multi-word ex-

pressions, punctuations, roots and other unspecified dependencies. The conjunctions

within noun, adjective and quantifier phrases annotated with commas, are identified on

the bases of POS tags and are marked with conj label. Coordinate conjunction tag CC

has been marked with dependency label cc. The noun, adjective and quantifier phrases

which have been associated by using an internal case marker PSP-I, are marked by using

fixed label. The foreign fragment phrases usually have flat structure in them. There-

fore they are marked as flat in the dependency structure. The compound nouns with

more than one lexical items have right word as head and the non-head items have been

marked with flat label. The example of such noun phrase is mOm battI ‘candle’. In

Urdu, both mOm ‘wax’ and battI ‘light’ are nouns. In the head model, the noun battI is

208

TABLE A.5: The mapping of the CLE-UTB phrase labels on UD labels for nominal
dependents.

CLE-UTB Lables UD-2.0 Label UD Description

PP-G nmod Nominal modifier

CD nummod Numeric modifier

ADJP amod Adjectival modifier

JJ amod Adjectival modifier

SˆADJP acl Adjectival clause

SˆNP acl Adjectival clause

SˆPP acl Adjectival clause

DMP det Determiner

APNA det Determiner

FR det Determiner

OD det Determiner

PDM det Determiner

PRD det Determiner

PRF det Determiner

PRP det Determiner

PRR det Determiner

PRS det Determiner

Q det Determiner

QM det Determiner

PRE case Case marking

PSP case Case marking

PSP-G case Case marking

PSP-I case Case marking

PSP-A case Case marking

PSP-E case Case marking

PSP-SE case Case marking

the head and mOm has a flat dependency relation on the head.

The annotation of complex predicate structures is represented by using the POF

functional label. The functional label is usually attached with noun, adjective and quan-

tifier phrases. In the label mapping, the phrases with POF label have been mapped on

209

TABLE A.6: The mapping of the CLE-UTB phrase labels on UD labels for dependency
relations.

CLE-UTB Lables UD-2.0 Label UD Description

NP* conj Conjunct

NN* conj Conjunct

ADJP* conj Conjunct

JJ* conj Conjunct

QP* conj Conjunct

Q* conj Conjunct

CC cc Coordinating conjunction

NP* fixed Fixed multiword expression

ADJP* fixed Fixed multiword expression

QP* fixed Fixed multiword expression

FF flat Flat multiword expression

NN flat Flat multiword expression

NP-POF compound Compound

ADJP-POF compound Compound

QP-POF compound Compound

VC-VALA compound Compound

LRB punct Punctuation

PU punct Punctuation

PU-C punct Punctuation

PU-E punct Punctuation

PU-P punct Punctuation

RRB punct Punctuation

VC root Root

FFP dep Unspecified dependency

PRT dep Unspecified dependency
*The dependency labels were derived by additional rules after conversion.

compound label. The verbal construction with vAlA particles are also marked as com-

pounds. All types of punctuations have been mapped on a single punct label. The

head of the verbal construction has been annotated as root of the sentence. The ver-

bal structure of the independent clause at the highest level in tree hierarchy has been

210

marked as root. The label dep is used to mark unspecified dependencies. The items on

the foreign fragment phrases have flat dependencies on head but its head also has an arc

to the root of the sentence. We have marked such relations as unspecified dependen-

cies. Similarly, the particles are used as intensifiers hence marked with dep label in the

conversion process.

A.2.3 Post Conversion Rules

For many phrase labels, the dependency mapping is quite straight forward as

the phrase annotation scheme has functional labels to mark grammatical relations. Due

to flat annotation of the CLE-UTB, complex structures were marked by using post-

conversion rules to achieve an accurate dependency treebank. The first main issue was

with indirect objects. The annotation of the CLE-UTB does not annotate secondary

objects but rather it marks them as obliques by attaching OBL labels. However, Urdu

uses accusative case marker kO for secondary objects and recipients. Similarly, the non-

finite clauses were annotated just like other finite clauses. These clauses were identified

from their verbal heads. Further rules were derived for fixed and conj label. The

details of conversion rules are as follows.

• One way to denote secondary objects and recipients is the use of accusative/dative

case marker kO in Urdu. The annotation of the CLE-UTB labels all case marking

constructions with post-positional phrase (PP). The annotation marks secondary

objects as obliques hence with the label PP-OBL. If the label is PP-OBL and the

next lexical item is the clitic kO then mark it with iobj dependency label.

211

• There are also nominal secondary objects which are also annotated as nominal

obliques. These constructions normally have special types of pronouns which

provide the meaning of recipients or beneficiaries. A list of such pronouns with

their meanings is shown in Table A.7. If the label is NP-OBL and the head of the

phrase is any of these pronouns then mark the dependency arc with label iobj.

TABLE A.7: List of pronouns marked as indirect objects.

Pronouns Meaning

mujHE To me

hamEN To us

tujHE To you

tumEN To you

isE To him/her

usE To him/her

inhEN To them

unhEN To them

jisE To whom (Sg)

jinhEN To whom (Pl)

kisE To whom

• The CLE-UTB annotates the non-finite clauses and clausal objects similar to other

clauses by using labels ‘S’ and S-OBJ. We have mapped such constructions on the

xcomp dependency label. If a construction has any of these labels and their phrasal

head is an infinitive verb having the VBI POS tag then mark the construction as

xcomp in the dependency structure.

• In the phrase structure annotation of the CLE-UTB, some constructions contain

an internal clitic as a connection between two nouns, adjectives and quantifiers.

For instance the constituent kam-az-kam ‘at least’ has a clitic az ‘from’. The clitic

212

has been tagged with the POS tag PSP-I. Such constructions with tag PSP-I have

been marked with a fixed dependency label.

• The conjunctions between nouns, adjectives and quantifiers are represented by

using conjunction clitics and comma. The comma is used when there are more

than two items. The label conj has been marked for such constructions if they

use conjunctions with the CC POS tag or comma with PU-C tag.

Figure A.3 shows the final dependency tree from the intermediate structure after

applying the label mappings and conversion rules.

rEl kI ticket bohat sastI hE tAkE GarIb lOg bHI safar kar sakEN .
NOUN ADP NOUN DET ADJ VERB SCONJ ADJ NOUN PART NOUN VERB AUX PUNCT

nmod
case

nsubj
det

root

cop

mark

amod

nsubj

dep compound

ccomp

aux

punct

FIGURE A.3: Final dependency tree from the intermediate tree of Figure A.2 after
label mapping and conversion rules.

The dependency arcs in Figure A.3 are quite similar to the arcs of Figure A.2

except copula construction. All phrase labels have been replaced by the dependency

labels. The copula construction has been updated with respect to dependency labels.

The predicate link has been marked as root of the sentence and copula verb hE shows

a cop dependency on the root. The conversion rules were helpful to achieve accurate

mapping for iobj, xcomp, fixed and conj labels. The converted treebank has 28

unique dependency labels which are shown in Table A.8.

213

TABLE A.8: UD labels which have been used by converted dependency treebank.

Universal dependency labels

acl advcl advmod amod

aux case cc ccomp

compound conj cop csubj

dep det discourse fixed

flat iobj mark nmod

nsubj nummod obj obl

punct root vocative xcomp

A.3 DEPENDENCY PARSING

For the evaluation of the converted dependency treebank, we have trained the

well-known MaltParser [120]. It is a data-driven parsing system which is based on arc-

eager transition algorithm. The arc-eager algorithm produces better parsing results with

better efficiency as compared to arc-standard algorithm [32]. Default parameters have

been used to train the MaltParser including the POS tags along with lexical items.

A transition-based BiLSTM (Bi-directional long-short term memory) depen-

dency parser5 [89] was further trained to achieve state of the art dependency parsing

results for newly converted treebank. The parser computed the embeddings for tokens

and POS tags which were further combined to achieve a single vector for each token. A

multi-layer perceptron (MLP) was used to score feature vectors with one hidden layer.

The BiLSTM is best known for its learning of sequential labels like dependency la-

bels. The parser further used an arc-hybrid system [96] for the prediction of dependen-

cies. The arc-hybrid system uses an efficient dynamic oracle as described in [64]. The

model performs three transition tasks which are SHIFT , LEFTlabel and RIGHTlabel .

5https://github.com/elikip/bist-parser

214

The SHIFT operations transfer the first entry from the input buffer onto the stack, the

LEFTlabel operation gets the top element of the stack and makes it a modifier to the first

element of the input buffer and the RIGHTlabel operation gets the top element of the

stack, makes it a modifier and attaches it to the current top element of the stack.

The training configurations and parameters of the BiLSTM parser are; two

LSTM hidden layers, 125 hidden LSTM dimensions, MLP hidden dimensions of 100,

tanh activation, dropout rate of 0.25, and adam optimizer. These configurations have

been used for all experiments of the BiLSTM parser. The parser was trained for 20

epochs and produced a trained model after every epoch. However, the best model was

selected on the basis of labeled attachment score (LAS) on the development set. The

train set contained 6,135 sentences with a development set of 746 sentences. The trans-

fer leaning was further used to improve the results by computing word embeddings for

a large unannotated Urdu corpus. The BiLSTM parser performed with a best labeled

attachment score of 84.2, an unlabeled attachment score (UAS) of 89.6 and a label ac-

curacy (LA) of 90.3. Table A.9 presents the parsing results for the MaltParser and the

BiLSTM parser.

The BiLSTM dependency parser outperforms the MaltParser on the converted

dependency Urdu treebank (CLE-UDTB). Both parsers have been trained by using POS

tags as syntactic feature along with lexical elements. The transfer learning has been per-

formed by training Word2vec [111] and ELMo [123] word embeddings. A plain Urdu

corpus has been used for training the embeddings which contains 35 million words.

The embedding vocabulary contained 72 thousand words. The embedding dimensions

were 100 and 128 for Word2Vec and ELMo respectively. These word embeddings were

215

TABLE A.9: Dependency parsing results for the newly converted Urdu DS treebank.

Results by using gold POS tags

Parser Emb. UAS LAS LA

MaltParser - 88.3 81.6 88.5

BiLSTM Parser - 89.1 83.3 89.8

W2V 89.3 83.7 90.1

ELMo 89.6 84.2 90.3

Results by using predicted POS tags with an accuracy of 96.3%

Parser Emb. UAS LAS LA

MaltParser - 85.3 78.2 86.3

BiLSTM Parser - 86.3 80.1 87.6

W2V 86.3 80.3 87.9

ELMo 87.1 81.2 88.4

helpful to improve the parsing results of the BiLSTM dependency parser.

The improvements of the dependency parsing for Hindi and Urdu treebanks of

HUTB have been presented in [13]. They have used syntactically rich features in their

experiments. Their baseline model used POS tags, chunk tags, root forms of the words

and cluster IDs of words as basic features. The baseline model achieved LAS of 81.19,

UAS of 88.77 and LA of 84.84 for the Urdu dependency treebank. To improve the

dependency results, additional features were incorporated which included agreements,

cases, complex predicates and ezafe constructions [21]. By using these features, the

best scores achieved were LAS of 83.21, UAS of 90.39 and LA of 86.92. Our tree-

bank, on the other hand, contains POS information only as the morpho-syntactic fea-

ture. However the MaltParser, based on the arc-eager algorithm, produces comparative

dependency results for both treebanks. The BiLSTM parser produces the improved re-

sults by learning hidden dependencies by transfer learning. We developed a POS tagger

which is also based on BiLSTM networks. The POS tagger performed the tagging with

216

an accuracy of 96.3%. Both the MaltParser and the BiLSTM parser produced high label

accuracies for all our experiments. On the basis of the conversion process and depen-

dency results, it is concluded that the phrase structure of the CLE-UTB is compatible

with the dependency structure. We will further evaluate the treebank conversion by

preparing a manually annotated reference corpus.

217

APPENDIX B. LABEL SETS

B.1 HUTB LABEL MAPPING ON CLE-UTB LABELS

TABLE B.1: Comparison of the CLE-UTB functional labels with the HUTB depen-
dency labels.

Sr# Dependency Description Category Func. label
label (HUTB) (CLE-UTB)

1 k1 Karta Doer/Subject/Agent SUBJ
2 pk1 Prayojaka Karta Causer SUBJ
3 k4a Anubhava Karta Experiencer SUBJ
4 k2 Karma Object/Patient OBJ
5 k4 Sampradana Recipient OBL
6 k2p Destination/Goal OBL
7 jk1 Prayojya Karta Causee OBL
8 mk1 Madhyastha Karta Mediator causee OBL
9 k2g Secondary Karma Secondary object OBL
10 k2s Karma Samanadhikarana Object complement OBL
11 k3 Karana Instrument OBL
12 k5prk Prakruti apadana Source material OBL
13 k5 Apadana Source OBL
14 Rd Relation Prati Direction ADJ
15 k7t KAlAdhikarana Location in time ADJ
16 k7p Deshadhikarana Location in space ADJ
17 k7 Vishayadhikarana Location elsewhere ADJ
18 ras k∗ Upapada sahakArakatwa Associative ADJ
19 ras NEG Negation in associative ADJ
20 rt Tadarthya Purpose ADJ
21 rh Hetu Reason ADJ
22 k∗u Sadrishya Similarity ADJ
23 r6 k1 Karta of a conjunct verb Complex predicate POF
24 r6 k2 Karma of a conjunct verb Complex predicate POF
25 pof Part of function Complex predicate POF
26 r6v Relation between noun & verb PDL
27 k1s Karta samanadhikarana Noun complement of karta PDL
28 rad Address terms VOC
29 r6 Shashthi Genitive/Possessive G

218

VITA

Mr. Toqeer Ehsan is currently pursuing his Ph.D in Computer Science in the

domain of Natural Language Processing (NLP). He has been serving University of Gu-

jrat as a Lecturer since 2010. Before joining UOG, he worked in the software industry

for three years. His research interests are Machine Learning, Deep Learning, Computa-

tional Linguistics and Natural Language Processing. His research focus is on creating

computational resources for Pakistani Languages like Urdu and Punjabi (Shahmukhi).

He has published several research papers in the aforementioned domains. He also su-

pervises research students in the domain of Computational Linguistics (CL), NLP and

Text processing.

219

