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Abstract

Human speech comprises of multiple aspects of information including what is being

said i.e. message, who is speaking i.e. speaker (identity, gender, age etc.), language

spoken, environment and emotions. The task of machine to infer language from a

speech utterance independent of speaker and topic is called spoken language iden-

tification (LID). Generally, phonetic, phonological, morphological, syntactic and

semantic information of a language is used to discriminate it from other languages.

With the advancement in technology, communication among people around the

world from different linguistic backgrounds is increasing gradually, resulting in the

requirement of automatic speech recognition (ASR) service. To facilitate speech

recognition it is helpful to identify which language is being spoken.

In a multilingual country like Pakistan, where around 69 languages are currently

being spoken, the automatic language identification systems have special signif-

icance. According to the 1998 census of Pakistan, Balochi, Pashto, Punjabi,

Saraiki, Sindhi and Urdu languages have large population as compared to the

other languages. Different LID systems are available for different languages but

no LID system is available for languages spoken in Pakistan. Hence, there is dire

need to develop a LID system for these languages.

To cope with the issue of unavailability of publicly available speech corpora of

aforementioned Pakistani languages for language identification research, a 10.43

hours speech corpus is designed. This speech corpus is recorded from 316 native

speakers differing in gender, age, demographics and educational background. This

speech data is recorded over telephonic channel with sampling frequency of 8 KHz.

The transcription of speech corpus in X-SAMPA format and in orthographic form

is also prepared. This corpus minimizes the barrier of data availability for the

development of speech processing applications e.g. speaker recognition and speech

recognition for these languages.

A variety of state-of-the-art language identification approaches are compared and

effectiveness of these approaches for identification of Pakistani languages is ana-

lyzed. In addition, a set of different acoustic features are investigated and their



Abbreviations xvi

impact on system accuracy is observed. In order to increase the recognition ac-

curacy, different configuration models are investigated. The performance of the

systems is evaluated on the Dataset-1 (from 0.27 sec to 1.5 sec) and Dataset-2

(maximum duration of 3 sec).

The novel language identification approach based on bidirectional long short-term

memory neural network is proposed. This approach is evaluated on two different

datasets to examine the impact of utterance duration on accuracy. Effect of test

data duration is also analyzed (from 0.27 sec to 1.5 sec) and it is observed that

with very short duration as 0.4 sec an accuracy of over 50% can be achieved.

Moreover, capsule network based language identification system is also proposed

and Equal Error Rate of 14.42% and 10.27% is achieved on Dataset-1 and Dataset-

2, respectively. Experiments demonstrated that proposed approaches perform

better as compared to the existing approaches.



Chapter 1

Introduction

With the development in communication technology, communication among peo-

ple around the all over the world having different linguistic backgrounds is gradu-

ally increasing, resulting into the need of services like automatic speech recognition

(ASR) and speech to speech translation. For speech recognition in a multilin-

gual context it is mandatory to identify which language is being spoken. Spoken

language identification (LID) is the task to identify the language from a speech

utterance [60]. In speaker identification and ASR tasks, only the speaker iden-

tity or information of the content of the utterance is unavailable. However, in

language identification both the content of the utterance and the identification

of speaker is not available, which is an added challenge [4]. The human listening

depends on phonotactic and prosody cues for language identification. Similarly,

automatic identification of spoken language is based on different cues, related to

phonetic, phonological, morphological and syntactic information of a language.

For automatic LID, these cues are extracted from the speech signal.

The number of known spoken languages in Pakistan is more than 69 [29]. There-

fore, an excellent LID system should make use of different aspects of speech in-

formation that can discriminate languages from each other, very accurately and

minutely. Moreover, LID system should be flexible enough to handle the diver-

sity of different speakers. Although, amongst more than 69 spoken languages in

Pakistan, the majority of the Pakistan's population speaks a set of six languages

1
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including Balochi, Pashto, Punjabi, Saraiki, Sindhi and Urdu : among all speak-

ers, about 95% of speakers use of only 8% of languages spoken in Pakistan [1].

This study focuses on language identification from very short utterances of closely

related languages of Pakistan including Balochi, Pashto, Punjabi, Saraiki, Sindhi

and Urdu.

1.1 Motivation

Spoken language identification plays a crucial role as a preliminary step of multilin-

gual speech processing applications. Spoken language identification will enhance

the multilingual speech recognition [68], the speech to speech translation perfor-

mance [110], retrieval of spoken document [10], and user interaction with spoken

dialog system [122]. Moreover, LID can also be utilized in international call cen-

ters as front-end application by routing the call to particular system or operator

depending upon the caller language.

In a multilingual country like Pakistan, where more than 69 languages are currently

being spoken [29], the automatic language identification systems have special sig-

nificance. Different LID systems are available in literature to fulfill this purpose for

different languages but no LID system is available for Pakistani languages. This

study will make available an LID system that can serve this purpose in context of

Pakistani languages. This research will also be useful for retrieval and translation

of multimedia content of Pakistani language as more and more local multimedia

content is becoming available online.

1.2 Research Gaps

Mostly, research in speech processing specifically language identification is primar-

ily addressed for the world's dominant languages, and for these languages abundant

resources are available. However, the relative sparsity of resources of targeted lan-

guages ( Pashto, Punjabi, Balochi, Saraiki, Urdu and Sindhi) is a major challenge

to do research on LID system of these languages.

The LID system performance mainly depends on: (1) reliability of extracted
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cues (2)linguistic differences among target languages and(3)amount of informa-

tion available for feature extraction i.e. utterance duration. The current state-of-

art LID system performance degrades as the utterance duration decrease. This

becomes very challenging issue when LID systems are deployed in real-world ap-

plications such as call center when user response can be merely a word. From the

literature, it is evident that, the languages which have different phoneme set can

be easily identified as compared to the identification of similar languages. Tar-

geted languages are acoustically related and share a common set of phonemes e.g.

Sindhi and Saraiki languages have common set of phonemes.

The work presented in this thesis focuses on these shortcomings and results in

availability of the linguistic resources such as text corpus, phonetic lexicon, and

speech corpus to develop an LID system for targeted languages. Moreover, by

using deep neural network based framework prominent language differences from

very short speech signal apart are extracted for the development of a reliable LID

system.

1.3 Major Contributions

This thesis focuses on acoustic features based automatic language identification of

six major Pakistani languages, especially from short utterances. Major contribu-

tions of this thesis together with the scientific publications are listed as follows:

� Following linguistic resources are developed:

– Developed phonetic lexicon of Sindhi, Pashto, Punjabi and Urdu with

the size of 17239, 22305, 84422 and 91280 words, respectively. These

lexicon provide pronunciation in IPA and X-SAMPA format.

– Collected text corpora of Urdu, Punjabi, Pashto, Sindhi and Saraiki.

– Phonetically rich text corpora are developed for Urdu, Punjabi, Pashto,

Sindhi and Saraiki languages.

� Recorded and annotated multilingual speech corpus of Pakistani languages

for LID task. This speech corpus comprised of 10 hours of speech recorded
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from 316 native speakers. Beside language identification, the dataset can be

utilized for other speech processing applications such as speech recognition

and speaker recognition.

� Examined different acoustic features for the language identification task.

Different combinations of the acoustic features are also investigated in this

thesis.

� Investigated different language identification methods for LID of Pakistani

languages. These methods are evaluated on the longer utterances and very

short utterances i.e. single word.

� Proposed a novel appliance of the bidirectional long short term memory re-

current neural network for LID task. Network architecture search is also

carried out to optimize system accuracy. BLSTM network trained on spec-

trogram and chochleagram features are merged together to take advantage

of combined features.

� Proposed an end to end framework based on capsule network for LID. Pro-

posed framework is evaluated on very short test utterance and promising

results are achieved.

1.4 Thesis Organization

The organization of the thesis is as follows:

Chapter 2 provides the phonetic overview to understand the similarities and dif-

ferences across six Pakistani languages namely Punjabi, Pashto, Saraiki, Urdu,

Balochi and Sindhi. In phonetic overview of language, population size, major di-

alects and phonemic inventory (both consonantal and vocalic) is presented. More-

over, phonological differences among languages are also discussed.

Chapter 3 presents some background work relevant to the research of automatic

spoken language identification (LID). A brief introduction of LID techniques is



Chapter 1. Introduction 5

provided, and various state-of-the-art techniques of LID are discussed. Finally,

available linguistic resources are presented.

Chapter 4 describes speech corpus’s design and collection for spoken language

identification of languages spoken in Pakistan. Speech corpus for each language is

basically gathered from native speakers. Moreover, transcription of each utterance

orthographic form and X-SAMPA format is also prepared. The developed speech

corpus (Dataset-2) is used for evaluation of the LID techniques. In addition,

isolated word utterances speech corpus (Dataset-1) employed for the LID is also

discussed.

Chapter 5 discusses different acoustic features that can be used for LID task.

Gammatone frequency cepstral coefficients (GFCC), Mel-frequency cepstral coef-

ficients (MFCC) and perceptual linear prediction (PLP) are introduced. Acoustic

features based LID techniques i.e. Gaussian mixture model-universal background

model (GMM-UBM) and i-vectors are adopted as baseline system. In order to in-

crease the recognition accuracy, different configuration of models are investigated.

The performance of the system is evaluated on the Dataset-1 and Dataset-2.

Chapter 6 proposes a novel application of bidirectional long short-term memory

(BLSTM) neural network for spoken language identification. Two BLSTM models

trained on spectrogram and cochleagram based features are merged together and

forwarded to the fully connected network. The performance of the merged BLSTM

system is evaluated on Dataset-1.

Chapter 7 proposes a capsule network (CapsNet) based approach for language

identification. The proposed approach of capsule network use convolutional neural

network as feature detector. Several capsule layers are designed to effectively

select representative frequency bands for each individual language. Experiments

showed that the proposed method outperformed the previous state-of-the-art i-

vector, BLSTM and merged BLSTM methods.

Chapter 8 summarizes the language identification systems discussed in this thesis.

Several problems that have not been addressed, as well as possible solutions that

could direct future work, are also discussed.



Chapter 2

Phonetic Overview of Targeted

Languages

In Pakistan more than 60 languages are spoken [13], among them Urdu is declared

as the national language of Pakistan. According to the 1998 census of Pakistan

[1], Punjabi, Balochi, Saraiki, Urdu, Pashto and Sindhi languages have more pop-

ulation as compared to the other languages 1 (see Figure 2.2). The classification of

these languages is shown in the Figure 2.1. As Urdu is the lingua franca and na-

tional language of Pakistan, it is widely utilized in education, media, government

institutions; resulting in Urdu as second language of the community.

There is a paucity of linguistic work on these languages in order to determine

how much these languages are acoustically similar or dissimilar to each other. In

order to understand the similarities and differences across these targeted languages,

comprehensive details of these languages, phonetic inventory and phonological

variations among them are explained.

1http://www.pbs.gov.pk/sites/default/files//tables/POPULATION%20BY%20MOTHER%20TONGUE.pdf

6
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2.1 Balochi

Balochi belongs to Northwestern Iranian language family with three to five mil-

lion speakers [103], mostly residing in Pakistan, Iran and Afghanistan. Balochi

is provincial language of Balochistan, Pakistan; written in Arabic script using

Nastaliq style. Balochi dialects are classified into three categories [114]: (1) East-

ern Balochi dialects, (2) Western Balochi dialects and (3) Southern Balochi di-

alects. Eastern Balochi dialects are influenced by Pashto and Sindhi and primarily

spoken in India and Pakistan. Western Balochi dialects are influenced by Persian

and primarily spoken in Afghanistan, Iran and Pakistan. Southern Balochi di-

alects are influenced by Arabic language and primarily spoken in Iran, Pakistan

and United Arab Emirates. According to Elfenbein [24], there are six major di-

alects of Balochi (1) Rakhshani, (2) Kechi, (3) Coastal/ Mekrani, (4) Sarawani,

(5) Lashari and (6) Eastern Hill. In Pakistan Kechi, Rakhshani, Coastal dialects

and the eastern hill dialects are spoken, whereas, Lashari and Sarawani accents

are prominent in Iran. Details of where Balochi dialects are primarily spoken are

provided in Table 2.1.

Figure 2.2: Pakistan population by mother tongue [1]
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Table 2.1: Balochi dialects

Dialect Where primarily spoken
Raksani Makran, Lasbela, Quetta, Chagai and Nushki
Kechi Kech
Coastal dialects Gwadar and Karachi
Eastern Hill Balochi East Quetta, Bugti tribes, North Jacobabad, Upper

Sindh frontier, areas in between Dera Ghazi khan, Dera
Ismail Khan and Sibi

Balochi consonantal inventory common in all balochi dialects [23] is shown in the

Figure 2.3. Lenition of consonants feature of Eastern Balochi dialects distinguish

them from the Southern and Western Balochi dialects. Consonants shift at word

initial, postconsonantal position and postvocalic position is mentioned in Table

2.2.

Figure 2.3: Consonant set common in all Balochi dialects

Table 2.2: Eastern Balochi Consonant Shift

Southern
and Western
Balochi

Eastern Balochi

word initial and post-
consonantal position

postvocalic position

p, t
“
, k aspiration: ph, t

“
h, kh fricatives: f, x

b, d, g no change B, G
>
Ù ,

>
Ã aspiration: Ùh, no change in

Ã
S, Z

w aspiration: wh no change

Phonologically Balochi has five long and three short vowels [114], high and low

vowels have short and long contrast, while the middle vowels don’t have short
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version. Balochi vowel's inventory [114] is shown in Figure 2.4. The vowels /i/,

/a/, /u/ can be short or long and vowels /e/ and /o/ are always long.

Figure 2.4: Balochi vowels

2.2 Pashto

Pashto is member of the East Indo-Iranian languages mainly spoken in Afghanistan,

Pakistan and Iran. It is written in Perso-Arabic script. Pashto dialects are mainly

divided into three categories: (1) Northern Pashto (spoken in Pakistan), (2) South-

ern Pashto (mainly spoken in Afghanistan) and (3) Central Pashto (spoken in Pak-

istan). Pashto is the provincial language of Khyber Pakhtunkhwa, Pakistan. Ma-

jor dialects of Pashto in Pakistan are Yusufzai, Kandahari and Northern Pashto.

Details of where Pashto dialects are primarily spoken are given in following Table

2.3.

Table 2.3: Pashto dialects

Dialect Where primarily spoken
North-Eastern
(Yousafzai) Pashto

Mardan, Peshawar, Sawat, Charsada, Swabi and Dir

South-Eastern Pashto Quetta
Waziri North Waziristan
South-Western (Kan-
dahari) Pashto

Some areas in Balochistan, Khattak and Bannu

Central Pashto Kabul Afghanistan and South Waziristan

Pashto consonantal phonetic inventory [33] [42] is shown in the Figure 2.5

In literature various vowel inventories are proposed for Pashto language, related

to the particular Pashto dialect. According to the acoustic analysis of Yusuafzai
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Figure 2.5: Pashto consonants

accent, Ijaz [42] reported a total of ten vowels i.e. seven short and three long

vowels in Pashto language. Whereas, Tegey and Robson [33] reported nine vowels

(three long and six short) in southern dialect of Pashto (spoken in Afghanistan).

Pashto vowel system based on [42] is shown in the Figure 2.6, given below.

Figure 2.6: Pashto vowels

2.3 Punjabi

Punjabi is the most spoken language of Pakistan covering 44.15% of whole pop-

ulation [1]. In all over the world, Punjabi stood at 10th position on the basis

of largely spoken language with 92 million speakers2. Maximum number of Pun-

jabi speakers are residing in India and Pakistan. In India, Punjabi is written in

Gurmukhi whereas, in Pakistan, Arabic script is being used for Punjabi writing

and termed as Shahmukhi. In Pakistan, several dialects of Punjabi exists with

2https://www.ethnologue.com/statistics/size



Chapter 2. Phonetic Overview of Targeted Languages 12

phonetic similarity within the dialects. Main dialects of Punjabi are (1) Doabi,

(2) Lahndi, (3) Majhi, (4) Malwai, (5) Multani and (6) Pothohari [73]. Detail of

some of Punjabi dialects with reference to location is provided in Table 2.4.

Table 2.4: Punjabi dialects

Dialect Where primarily spoken
Majhi Lahore, Shekhupura, Gujranwala, Gujrat and Kasur
Malwai Bahawalnagar and Vehari
Doabi Toba Tek Singh and Faisalabad
Shahpuri Sargodga, Khushab, Mianwali and Bhakkar
Changvi (Jhangochi) Khanewal and Jhang
Jandali (Rohi) Jand Tehsil and Mianwali
Pothohari North Pakistani Punjab, Azad Kashmir,Rawalpindi,

Muree Hills, Jhelum, Muzfarabad
Dhani Chakwal
Jafri/Khetrani Musakhel, Barkhan

Punjabi phonetic inventory consists of 32 consonant and 10 vowels. Punjabi conso-

nants [47] depending on place and the manner of articulation are shown in Figure

2.8. Punjabi vowels based on [47] is shown in Figure 2.7.

Figure 2.7: Pujabi vowels
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2.4 Saraiki

Saraiki language belongs to the Indo-Aryan family and is written in Perso-Arabic

script. Being North-Western Zone language (see Figure 2.1), Saraiki dialects have

similarity with Punjabi and Sindhi [6]. Saraiki is mainly spoken in India, Pakistan

and United Kingdom [6]. According to 1998 census, there are 21 million Saraiki

speakers residing in Pakistan. Shackle [98] classifies Saraiki into the six dialects:

(1) Multani, (2) Riasti (Bahawalpuri), (3) Derawali, (4) Jhangi, (5) Shahpuri and

(6) Thali. Regions where Siraiki dialects are primarily spoken are listed in Table

2.5 given below.

Table 2.5: Saraiki dialects

Dialect Where primarily spoken
Derawali Dera Ghazi Khan, Dera Ismael Khan
Multani Multan, Muzaffargah, Rahim Yar Khan
Thali Mianwali, Bannu
Riasti Bahawalpur
Jhangi Jhang
Shahpuri Sargodha

Saraiki phonetic inventory [57] has 42 consonants as shown in the Figure 2.10. Just

like Sindhi, Saraiki phonetic inventory contains implosive stops i.e. /á/(voiced

bilabial ), /â/(voiced alveolar), /ê /(voice palatal), /ä/(voiced velar). According

to Latif [57], Saraiki vowel system comprises six nasal vowels, three short vowels

and seven long vowels, whereas, Shackle [98] lists three short and six long vowels

in Saraiki vowel system. Saraiki vowels system based on [98] is shown in Figure

2.9, given below.

Figure 2.9: Saraiki vowels



Chapter 2. Phonetic Overview of Targeted Languages 15

Figure 2.10: Saraiki consonants

2.5 Sindhi

According to 1998 census of Pakistan, 14.5% of Pakistani population use Sindhi

as first language, with maximum number of speakers residing in Sindh province.

Sindhi is written in Arabic script. Major dialects of Sindhi in Pakistan are (1)

Vicholi (spoken in Hyderabad), (2) Thareli (spoken in the Thar Desert region),

(3) Lasi (in Kohistan and Las Bela), (4) Lari (in the lower Sindh delta and coastal
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areas) and (5) Kachchi (in the Rann of Kutch)[48]. Details of where Sindhi dialects

are primarily spoken are given in the following Table 2.6.

The phonetic inventory of Sindhi consists of 47 consonants [84] whereas according

to Keerio [48] it is composed of 46 consonants. Sindhi consonants are shown in

the Figure 2.12, given below. One consonant sound missing in [48] is /vh/ sound

marked with * in Figure 2.12.

The Unique feature of the Sindhi phonetic inventory is the occurrence of the im-

plosive stops i.e. /á/ (voiced bilabial), /â/ (voiced alveolar), /ê / (voice palatal),

/ä/(voiced velar). Sindhi vowel system has ten vowels [84] [48] and their counter-

parts with nasalization. Sindhi vowel system can be constructed in pairs, in terms

of basic length contrast. Oral vowels based on [84] are shown below in Figure 2.11

.

Table 2.6: Sindhi dialects

Dialect Where primarily spoken
Vicholi Central areas of Sindh
Siroli Upper parts of Sindh, Jacobabad
Lari Lower Sindh, areas of Hyderabad, Thatta, Badin, Indus

Delta
Thareli Tharparkar
Kutchi Some areas of lower Sindh and Kuch
Lasi Lasbela (areas of Balochistan)

Figure 2.11: Sindhi vowels
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2.6 Urdu

Urdu langauge is an Indo-Aryan language which is written in Perso-Arabic script

using Nastalique writting style. Urdu is also the national language of Pakistan,

spoken by more than 163 million people globally3. Urdu is one of the top six spoken

languages of Pakistan, declared as national language of Pakistan [1]. According to

1998 census, 7.57% of Pakistani population use Urdu as first language [1]. Urdu

has four core dialects4, i.e. Pakistani, Dakhani, Modern Vernacular Urdu (based

on the Khariboli dialect of the Delhi region) and Rekhta dialect. Dakhani dialect

is being used in Deccan in India and Rekhta is used in Urdu poetry.

Phonetic inventory of Urdu consist of 44 consonants sounds [41], seven long nasal

vowels, three short vowels and eight long oral vowels. Urdu consonant chart is

shown in the Figure 2.14. List of oral (long and short) and nasal vowels is provided

in Figure 2.13

Figure 2.13: Urdu vowels

3https://www.ethnologue.com/language/urd
4https://en.wikipedia.org/wiki/Urdu#Dialects
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2.7 Phonological Differences among Targeted Lan-

guages

Although these languages have similarities and also differ with each other on many

levels such as morphology, orthography, syntax and phonology etc. This section

will focus on the phonological differences of the languages. Some of the phono-

logical differences are shown in the Figure 2.15. It summarizes the consonants

present in a language (shown in rows) but not present in other languages(shown

in column) . For example, phoneme /ï/ is present in Pashto but absent in Balochi

(see cell 3,2).

Following observations are made;

� Complete set of Balochi’s consonants is present in all languages.

� Implosive sounds are present in only Sindhi and Saraiki, while they are absent

in Punjabi, Balochi, Pashto and Urdu.

� Aspiration: Voiced and voiceless aspirates are absent in Pashto, while as-

pirated stops exist in Urdu, Saraiki and Sindhi. As a rule, plosives and

affricates are unaspirated in Western and Southern Balochi dialects, But, in

Eastern Balochi dialects, voiceless stops are aspirated at word initial posi-

tion, due to the consonant shift [114].

Voiced aspirated consonants are absent in Balochi and Punjabi, although this

series exists in Urdu, Saraiki and Sindhi. In Punjabi, tone is used instead of

voiced aspirated consonants. Aspirated sounds are orthographically present

in Punjabi text, but during articulation at word initial they are replaced

with voiceless stop and high tone. While, at word medial and word final

voicing remains along the tone [47].

� Saraiki and Sindhi have similar sounds except /ïh/ is not present in Saraiki,

voiced implosive are common in both languages.

� Punjabi is the only tonal language of targeted language set. There are three

levels of tone: high-falling, low-rising and neutral.
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Figure 2.15: Phonetic inventory comparison
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In case of vowels, an acoustic phonetic study[26] has been carried out and corner

vowels of these languages (Pashto, Saraiki, Punjabi, Urdu, Balochi and Sindhi)

are compared. It is found that /i:/, /æ/, /a:/ and /u:/ vowels exhibit distinctive

characteristics. In addition, it is observed that phonetic characteristics of Urdu

and Punjabi vowels are similar but are different from Balochi, Pashto, Saraiki and

Sindhi.

Gemination is the articulation of a consonant for a comparatively longer period of

time than for a single instance of consonant. Gemination phenomenon of targeted

languages is discuss as follows:

� In Urdu, in case of aspirated sounds, twinning of non-aspirated followed by

aspiration occurs.

� In Punjabi, doubling of consonants occur in medial and final positions [11].

Double consonants are preceded by short vowels. Following Punjabi conso-

nants can occur with length /k/, /g/, /tÊČ/, /dÊŠ/, /ÊĹ/, /ÉŰ/, /p/, /b/,

/n/, /m/, /l/, /v/ and /s/. Whereas, consonants /n/, /l/, /É¿/, /Éź/, /h/

and /j/ do not occur as geminates.

� Gemination in Pashto takes place only when consonant appears in the middle

of two short vowels [51].

� In Balochi, all consonants except /y/, /h/ and peripheral phonemes may be

geminated [114]. Doubling of consonants occur under certain conditions and

gemination phenomenon mostly found in loanwords.

� In Saraiki, long consonants at initial position are impossible [98]. All con-

sonants can be geminated, except /h/, /y/, /ï/ and /ó/. Gemination takes

place only after stressed centralized vowels [98].

2.8 Summary

This chapter provides the phonetic overview of six Pakistani languages i.e. Pashto,

Saraiki, Punjabi, Balochi, Urdu and Sindhi. In phonetic overview of language,
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population size, major dialects and phonemic inventory (both consonantal and

vocalic) is presented. Moreover, phonological differences among languages are

also discussed.



Chapter 3

Automatic Language

Identification

3.1 Introduction

A language can differ from other languages at different levels including acoustic,

phonotactic, prosodic, lexical and syntactic levels. These differences can be used

as features or cues to discriminate a language from other languages. Spoken level

speech information is used to extract acoustic, phonotactic and prosodic features.

Whereas, textual level information is required to extract lexical and syntactic

features. Various levels of these features are depicted in Figure 3.1.

Acoustic: Acoustic level information shows the physical characteristics of human

speech signal [58]. Usually, short term spectral features are extracted to describe

the acoustic characteristics of speech signal. In speech processing studies, percep-

tual linear prediction (PLP), gammatone frequency cepstral coefficients (GFCC)

and Mel-frequency cepstral coefficients (MFCC) are widely used acoustic features.

MFCC features are widely employed for language identification task [101][94].

Phonotactic: Phonotactic information of a language deals with permissible com-

binations of phones and their frequency. Though, many languages can have same

phones but the statistics of their occurrences and their combination may differ.

24
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Figure 3.1: Levels of language identification features

Phonotactic information of a speech utterance can be extracted using a phone rec-

ognizer which changes a speech utterance into a phones sequence. Phonotactic in-

formation is extensively utilized for speaker and language recognition [74][59][118].

Prosodic: Prosody of a language is concerned with the properties of larger

speech units instead of individual phonemes such as intonation, stress and rhythm.

Prosodic features show longer time-span variations across the frames, whereas,

acoustic features represent frame level characteristics of a signal.

Lexical: Vocabulary of a language can play a vital role to discriminate a language

from other, as each language has a set of unique words.

Syntax: Syntax of a language is concerned with the set of rules for connecting

words. Languages may share set of words but context of words can be different.

Lexical and syntactic information from a speech utterance can be extracted using

large vocabulary continuous speech recognition (LVCSR). However, development

of LVCSR for each language is onerous task, especially for resource scarce lan-

guages. This thesis focus on the study of acoustic features and techniques for

language identification.
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3.2 Language Identification in General

A language identification system is comprised of three main components: (1) signal

pre-processing (2) feature extraction, (3) a classifier, as illustrated in Figure 3.2.

Training stage is required to make classifier functional before the identification. In

training stage, speech signal is pre-processed (non-speech segment removal) and

converted into feature vectors sequence X = x1, x2, ......Xn where, n is the number

of frames. Then, speech characteristics of each language are statically captured

and a model λ is created. During the testing/identification, speech utterance is

similarly pre-processed and feature vector is extracted. Extracted feature set is

then compared to a model set, λL(l = 1, 2, , L), where, L denotes the number

of possible languages. Finally, most likely model is selected using the following

Figure 3.2: A general structure of language identification system

equation:

L = argmax
1≤l≤L

P (λl|X) (3.1)

According to this general structure of LID, there are two main steps (1) how

and what speech information is extracted i.e. features and (2) how this speech

information is modeled i.e. classification approach.

3.3 Language Identification Approaches

Language Identification from speech utterances has been conducted over the last

25 years [39]. In the first two decades, language identification (LID) research
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proceeded slowly due to the lack of publicly available speech corpora. But, with

the growing need on multilingual communication and the start of national institute

of standard and technologies (NIST) language recognition (LRE) challenge, much

significant progress has been made in recent years. In literature, state-of-the-art

language identification systems are based on the exploitation of acoustic [70][21][8],

phonotactic [74] and prosodic [72][82] features. Acoustic feature-based approaches

explore how a given language sounds; phonotactic feature-based approaches use

possible phone combinations of each language to infer the language from a speech

utterance; and prosodic feature-based techniques focus on intonation patterns.

In subsequent sections, we present brief overview of phonotactic, prosodic and

acoustic features based language identification methods.

3.3.1 Phonotactic Features based LID

In phonotatic features based LID, phone sequences of each language are used to

discriminate one language from other. Typical phonotactic language identification

system comprised of mainly two building blocks: the phoneme decoder and the n-

gram statistical language modeling, as shown in the Figure 3.3. Phoneme decoder

is required to convert input speech segment into sequence of phones and statistical

language model captures the phones frequencies and also sequences for each par-

ticular language. Usually, phoneme recognizer are established on null grammars

and hidden markov model (HMM). Development of phoneme decoder/recognizer

requires phonetically transcribed speech data, one of the limitation of this ap-

proach.

Figure 3.3: Scheme of Phonotactic features based LID

Zissman and Singer [121] made very first try to utilize phonotactic information for a

LID system. They proposed parallel-phone recognizer followed by language model

(PPRLM), in which language specific phone recognizers along with a language

model is used to decode the test utterance. For language identification, a language
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model is developed using uni-gram and bi-gram counts of phones. PPRLM model

is evaluated on OGI-TS dataset [77] and pair-wise comparison between English,

Japanese and Spanish is carried out. Average accuracy of 85.8% is achieved for

10-seconds test utterances.

Universal phoneme recognizer are also utilized for LID task by Li et al. [59].

Firstly, universal phoneme recognizer was trained to decode 258 phones of six lan-

guages i.e. Hindi, Mandarin, English, Spanish, German and Japanese. Secondly,

both vector space model (VSM) and N-gram model are used for langauge model-

ing, to make pair-wise result. Finally, proposed system was evaluated on 30-sec

test utterances of 2003 NIST LRE and 1996 NIST LRE datasets. Sim and Li

[100] used the acoustic diversification to improve phonotactic features based LID.

Traditional PPRLM systems use language specific phoneme set for phoneme de-

coding, whereas, proposed method uses multiple acoustic models trained on same

phoneme set and same speech corpus, but with different training paradigms and

model structure. This resulted into improved acoustic diversification among the

parallel sub-systems. Proposed method is evaluated on the 2003 and 2005 NIST

LRE data sets and an equal error rate (EER) of 4.71% and 8.61% is achieved.

An alternative to the traditional parallel phoneme recognition (PPR) systema,

Jayram et al. proposed a parallel sub-word recognition (PSWR) LID system

[45]. The sub-word recognizer (SWR) is developed using automatic segmentation

followed by segment clustering. The SWR system does not require sophisticated

phonetic labeling in any of the languages, whereas, precise phonetic labeling is

required in PPR system. Proposed model is evaluated on 45-sec test utterances

of OGI-TS corpus [55]. An overall accuracy of 70% is achieved for identification

of six languages.

Instead of language model, Cordoba et al. [17] did ranking with the most fre-

quent n-grams. Distance between each language ranking and input utterance is

computed depending on relative positions for each n-gram. Such n-gram posi-

tioning resulted in more reliable longer span than traditional PPRLM, 5-gram

instead of trigram. This technique resulted in 6% relative improvement over tri-

gram. Navartil [81] proposed an alternative method for phone sequence modeling
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by using acoustic pronunciation model and binary tree structure, rather than tra-

ditional N-gram models. Wang et al. [112] employed random forest language

modeling (RFLM) as the back-end with parallel phoneme recognizer for LID task.

Shared back-off smoothing algorithm is applied to solve the sparseness problem.

The RFLM obtained 15.7% relative improvement over standard n-gram baseline.

Soufifar et al. [102] proposed the idea of i-vector for representation and process-

ing of n-grams. While, preserving the vector’s discriminative power, proposed

i-vector model represents large vector of the n-gram counts into low-dimensional

vector. Proposed model is applied on NIST LRE 2009 dataset, and better results

are achieved as compared to baseline method. Wang et al. [111] proposed the

idea of phonotactic language branch variability (PLBV) for LID task. The PLBV

method concentrates on the discriminative information among languages and lan-

guage branches. PLBV model is evaluated on 2011 NIST LRE dataset and it is

observed that PLBV method outperforms the i-vector system.

Phone level recognition is carried out with the help of clean and phonetically

annotated speech data, which is onerous task for resource scarce languages.

3.3.2 Prosodic Features based LID

Prosodic information of language also plays an important role to differentiate one

language from other. In prosodic-based LID, properties including pitch contour,

intensity and duration are widely used as features. In literature, researchers mod-

eled prosodic characteristics through unsupervised techniques for LID.

Obuchi and Sato [85] used prosodic hidden markov model (HMM) for LID task.

Prosodic HMM are trained with un-annotated speech corpus. During feature ex-

traction, power and f0 is estimated for each frame and HMMs are trained. System

is evaluated on three languages i.e. English, Japanese and Mandarin and an overall

accuracy of 60% is achieved. Prosodic HMMs are combined with phonetic HMMs

and combined system outperformed with an accuracy of 85%. Lin and Wang

[62] used pitch contour information for language identification. In addition, dura-

tion of pitch contour is also considered for language identification. Pitch contour

information is formed by using the Gaussian mixture model (GMM). Mary and
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Yegnanarayana [72] used intonation, rhythm and stress for language identification.

Intonation is represented by change in F0, distance of F0 peak with respect to vowel

onset point, duration and amplitude tilt. Voiced region duration and syllable is

used to represent the rhythm. Prosodic features are modeled through multi-layer

feed-forward neural network. Proposed system performance is evaluated on NIST

2003 LRE dataset and EER of 32% is obtained. System performed well for lan-

guages that can be discriminated using the rhythm/tonal characteristics such as

English vs Tamil, Hindi vs Japanese.

Martnez [71] used duration, energy contour and pitch information for LID task.

Prosodic features are modeled using a generative classifier based on i-vectors. Sys-

tem is evaluated by using NIST LRE 2009 dataset. It is observed that fusion with

acoustic i-vector based system resulted into significant improvement in perfor-

mance in the LID system. Language identification system established on prosodic

features has been introduced [83]. A total of 87 prosodic features related to F0,

duration and intensity are extracted from syllable-level contour. Extracted fea-

tures are normalized to reduce the undesirable biasness. Features are modeled

by the support vector machine (SVM). Different feature selection algorithms are

employed to get optimal subset of features. Model is evaluated on NIST LRE

2007 dataset and EER of 20.18% is achieved. In addition, fusion of prosodic and

phonotactic model resulted in accuracy improvement.

Research showed that prosodic information is more effective for tonal languages

and fusion of prosodic-phonotatic system improve system performance.

3.3.3 Acoustic Features based LID

Acoustic approaches usually use short term spectral features from un-annotated

speech signal to infer language of speech utterance. In acoustic information based

LID, different speech parameterization techniques are used to extract acoustic

features. Speech parameterization basically collect the most important informa-

tion from the speech signal while suppressing irrelevant information. Extracted

acoustic features vector are modeled using different techniques.
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In early years, LID systems were developed using the vector matching and dis-

tance measuring techniques [105][28]. Usually, vector quantization and K-means

cluster techniques were used to represent feature vector template. Similarity of

input feature vector and language template is measured using distance measuring

algorithm such as Euclidean and Mahalanobis.

With the successful use of hidden markove model (HMM) and Gaussian mixture

model (GMM) in speech processing area, GMM and HMM are also used in the

LID task. Zissman [120] and Nakagawa [80] applied GMM and HMM for language

identification and decision was being made on the basis of maximum likelihood.

Kohler and Kennedy [54] used shifted delta cepstra as feature set along GMM.

Proposed model outperforms PPRLM model and higher performance is achieved.

GMM-universal background model (GMM-UBM) was used for language identifi-

cation by Wong and Sridharan [115]. Perceptual linear prediction (PLP) coeffi-

cients were collected as feature set, and modeled through GMM-UBM. Vocal tract

length normalization (VTLN) is applied to the system to minimize variation ef-

fect of speaker. Proposed system is evaluated on OGI-TS database and error rate

of 27% is achieved for 10-seconds test utterances. GMM-UBM system output is

merged together with PRLM system and system performance is enhanced with

18.4% error rate.

Efforts are being made to minimize the issues of inter-session channel variability

and speaker variability. Hubeika et al. [40] proposed the use of Eigenchannel

adaptation in model and feature domain for channel compensation in GMM-UBM

based LID. Proposed method is used on NIST LRE 2007 database, and average

performance cost (Cavg) of 14.55% is achieved for 3-seconds test utterances. De-

hak et al.[21] used a total variability subspace approach for language identification.

MFCC features along their shifted delta cepstral (SDC) coefficients are extracted

with the configuration of 7-1-3-7, resulting in 56 dimensional feature vector. Pro-

posed approach is further evaluated on NIST LRE 2009 dataset, and competitive

outcomes are achieved with the EER of 2.2%.

Advancements of deep learning-based techniques have revived the application of

neural networks for speech processing. Deep neural networks (DNN) yield state
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of the art performance in classification tasks. DNNs have been used for language

identification [67][65] and evaluated on utterances of duration 3 seconds. DNNs

outperformed i-vector framework and a substantial improvement in accuracy is

observed. Jiang et al. [5] proposed the idea of deep bottleneck feature (DBF) for

language identification. DBF is low-dimensional compact representation of short

utterance input speech. Deep neural networks are trained using the extracted

DBF features. Effectiveness of proposed features is evaluated on NIST 2009 LRE

dataset and EER of 7.01% is achieved for 3-seconds test utterance. Proposed

method showed significant improvement over state of art systems for short test

utterances.

Recurrent neural networks (RNN) comprised of long short-term memory (LSTM)

cells outperformed i-vector in the task of language identification [116] for short

utterances. Comparative analysis between the i-vector framework and LSTM has

been carried out. The study showed that for 3-second long utterances, LSTM

outperformed the i-vector system by up to 26%. In addition, the test utterance

duration effect is also analyzed on the limited duration test data (from 0.1 seconds

to 2.5 seconds). The system's accuracy deteriorates as the data duration decreases

and an overall accuracy of 50% is achieved for 0.5 second long utterances. Usually,

a combination of different features or approaches tends to provide better accuracy

of the system [92]. Irtza et al. [44] proposed the method to organize languages

into cluster on the basis of similarities and disparities among languages. Clus-

ter specific vector representation is obtained using the i-vectors and DNN, while,

Gaussian probabilistic linear discriminant analysis (GPLDA) is performed for clas-

sification at each node. Proposed hierarchical LID method is evaluated on NIST

2015 dataset and average cost Cavg of 13.3% is achieved.

3.4 Speech Corpora for Language Identification

Normally, LID techniques extract distinguishable information as features of a lan-

guage from the speech corpora to differentiate one language from other. A number

of speech corpora are publicly available for speech processing. Efforts are being

made to develop standard benchmark corpora for the evaluation of LID algorithms
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and techniques. Comprehensive details of corpora for LID task are provided in

subsequent sections.

3.4.1 Oregon Graduate Institute Telephone Speech Cor-

pus (OGI-TS)

OGI-TS is a multilingual speech corpus designed to conduct research for multi-

lingual speech recognition and language identification (LID) [77]. Speech corpus

consists of spontaneous responses recorded over telephonic channel. Corpus was

recorded mainly in two stages. In the first stage, utterances are recorded from

the native speakers of French, Persian, English, Spanish, Tamil, Japanese, Viet-

namese, German, Korean and Mandarin Chinese. Data is recorded from 90 native

speakers with 3:1 male to female speaker ratio, whereas, speaker ratio varied for

each language. In second phase, more data of each language is added, in addition,

200 Hindi calls are also included. Data is transcribed at phonetic level for six

languages including German, Mandarin, English, Japanese, Spanish and Hindi.

3.4.2 OGI 22 Speech Corpus

OGI-22 [56] is another multilingual speech corpus designed for language iden-

tification. This speech corpus contains speech data from twenty two languages

namely: Czech, Farsi, Hindi, Arabic (Eastern), French, Hungarian, Cantonese,

English, Swedish, German, Italian, Japanese, Mandarin, Swahili, Korean, Viet-

namese, Russian, Malay, Polish, Tamil, Portuguese and Spanish. The corpus

consists of fixed vocabulary utterances, recorded from at least 200 speakers per

language. Corpus is manually verified by the native speakers. Word level ortho-

graphic and phonetic transcription of the corpus is also provided.

3.4.3 CALLFRIEND Speech Corpus

The CALLFRIEND speech corpus contains speech data of twelve languages named

as: French, Mandarin Chinese, Arabic, Farsi, Vietnamese, Hindi, German, Japanese,

English, Spanish, Korean and Tamil. This speech corpus was released by Linguis-

tic Data Consortium (LDC)1. Different dialects of Arabic, English, French and

1https://catalog.ldc.upenn.edu/
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Chinese are considered during data collection. Each language's data consists of 60

telephonic conversations, equally splited into testing sets, training and validation.

Transcription of this speech corpus is not available.

3.4.4 KALAKA-3

KALAKA-3 [91] is a speech corpus collected from Youtube audios for language

recognition task. The speech corpus is developed to support the Albayzin 2012

language recognition challenge. Database contains TV broadcast speech of ten

languages i.e. Basque, Catalan, English, Galician, German, Portuguese, French,

Spanish, Greek and Italian. To evaluate the out of set language identification, it

contains additional data of 11 more European languages. Audios are automatically

downloaded and converted to 16 KHz 16-bit encoded WAV files.

3.5 NIST Language Recognition Evaluation

National Institute of Standard and Technologies (NIST) organizes spoken lan-

guage recognition/identification evaluation challenge for the development of LID

techniques. This evaluation let participant from around the world to compare and

evaluate the LID techniques on standard benchmark data and share their results

and findings.

First challenge named as 1993 NIST Language Identification Evaluation challenge

was focused on the evaluation of LID algorithms using the OGI-TS (10 languages

version) database. For LID evaluation 45-seconds and 10-seconds long utterances

were used. NIST LRE 1996 challenge was focused on the identification of target

language from the input speech utterances within a set of 12 languages. Par-

ticipants were allowed to use LDC CALLFRIEND and other publicly available

datasets for system training. Systems were evaluated using test utterance of 30s,

10s and 3s duration. Test dataset was comprised of 80 speech segments of each

category.

In 2003 another challenge was organized named as NIST LRE 2003, focusing on

language identification from the set of 12 languages. In addition, Russian language

data is utilized for the assessment of the system performance on out of set language.
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CALLFRIEND speech corpus was used for evaluation of systems. NIST LRE 2007

challenge was focused on LID of 14 languages. LDC CALLFRIEND speech corpus

was used for evaluation.

In NIST LRE 2011 challenge, 24 languages are used as target languages and sys-

tems performance was evaluated on different duration of speech i.e. 3-seconds,

10-seconds and 30-seconds. Training and evaluation corpora consist of telephonic

and broadcast speech data of 24 languages including seven South Asian languages

namely Bengali, Dari, Hindi, Pashto, Punjabi, Tamil and Urdu.

3.6 Summary

In this chapter, general structure of the current language identification (LID)system

is discussed in detail. Related LID research with respect to different spoken level

features: acoustic, phonotactic and prosodic has been addressed. Moreover, a

brief overview of fused LID systems based on several different features is also pro-

vided. Furthermore, some of the available multilingual speech corpora have been

reviewed.

In the next chapter, we will concentrate on design and development of multilingual

speech corpora of Pakistani languages.
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Speech Corpus Design and

Collection for Language

Identification

In Chapter 3, it is observed that LID techniques extract distinguishable informa-

tion as features of a language from the speech corpora to differentiate one language

from other. A number of speech corpora are publically available for LID technolo-

gies [55][104]. Efforts are being made to develop standard benchmark corpora for

the evaluation of LID algorithms and techniques. National Institute of Standard

and Technologies (NIST) organizes spoken language recognition evaluation chal-

lenge for the development of LID techniques and distributes training and testing

corpora through Linguistic Data Consortium (LDC) [69]. These corpora consist of

telephonic and broadcast speech data of about 24 languages [104], including only

seven South Asian languages namely Bengali, Dari, Hindi, Pashto, Punjabi, Tamil,

and Urdu. In order to study language identification for Pakistani languages, it is

crucial to have publicly available speech corpora of these languages.

For LID from very short utterances, single word utterances speech corpus [89] is

used. This speech corpus consists of Pakistan's district names (139 district names)

recorded from more than 300 speakers. It is comprised of about 15 hours of speech,

sampled at 8 KHz, collected in different background noises, with varying mobile

36



Chapter 4. Speech Corpus Design and Collection for Language Identification 37

Table 4.1: Dataset-1: Table showing the number of utterance per language
used for training, validation and testing. Each utterance being 1-10 seconds

long

Language Training utterances Validation utterances Testing utterances
Balochi(bal) 1507 274 274
Pashto(pus) 1507 274 275
Punjabi(pan) 1499 274 275
Saraiki(skr) 1504 274 277
Sindhi(snd) 1505 274 273
Urdu(urd) 1481 274 270

phones and network operators. Selected corpus is comprised of 12,286 speech

utterances (from 0.27 sec to 2 sec) recorded from speakers having L1 as Balochi

(bal), Pashto (pus), Punjabi (pan), Saraiki (skr), Sindhi (snd) and Urdu (urd), on

average each utterance is 0.8 second long. Selected data is divided into three sets

i.e. training (train), validation (val) and testing (test). Training set contains 8998

utterances and validation set comprises 1644 speech samples, whereas test data

consists of 1644 utterances. Language wise data distribution is described in Table

4.1.

Dataset-1 is very challenging dataset as it consists of very short utterances i.e.

proper names recorded by multiple speakers which may or may not belong to

their native language. So, there is need of corpus with longer speech utterances

and vocabulary. To overcome this corpus barrier, speech corpus for five languages

namely Pashto, Punjabi, Saraiki, Sindhi, and Urdu is developed. The dataset is a

read speech data collected using a telephone network (mobile and land-line) from

different regions of Pakistan. Details of corpus design, speaker selection, corpus

recording and annotation and statistics of the dataset are provided in subsequent

sections.

4.1 Corpus Design

A complete analysis has been carried out to develop a speech corpus addressing

the need to develop a LID system. After analysis, following parameters are defined

to collect the corpus.

� Speaking style: continuous read speech
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� Text source: books and online newspaper

� Sentence selection: automatic sentence selection from text corpus using

greedy algorithm (explained in Section 4.2.2 )

� Recording channel: narrow band speech recorded through telephonic channel

� Recording setup: interactive voice response (IVR) dialog system

� Corpus annotation scheme: sentence-level manual annotation using X-SAMPA

In addition, accents of target languages are also considered. Speakers are selected

based on the criteria including speaker's language, birthplace, accent, gender, and

education level, as per the details given below.

4.1.1 Language Selection

More than 60 languages are spoken in Pakistan [13], according to the 1998 census

of Pakistan [1], Balochi, Pashto, Punjabi, Saraiki, Sindhi, and Urdu languages have

more population, i.e., 90%, as compared to the other languages. In this study, tele-

phonic speech corpus for five languages, namely Pashto, Punjabi, Saraiki, Sindhi,

and Urdu is collected, and LID is carried out between these languages. Acoustic

diversity and variation exist in languages across all regions, and usually one accent

is considered as standard. In this study, each language datum is recorded from a

particular region to cover a standard accent of that language.

Yousafzai accent is used for Pashto data recording, and speakers from Peshawar,

Dir and Swat are selected. Punjabi language has six major accents, i.e. Doabi,

Lahndi, Majhi, Malwai, Multani, Pothohari, and Powadhi. Majhi is prestige di-

alect of the Punjabi [31] and spoken in many major cities of Pakistan's Punjab

and Indian's Punjab as well. So, Punjabi data are collected from the speakers

mostly of Majhi accent. Speakers from Lahore, Sheikhupura, Sailkot, Faislabad,

Gujrat, and Okara districts are selected for Punjabi data recording. From nine

Sindhi dialects [25], Vicholi is the selected accent. The majority of Sindhi data is

collected from the Hyderabad, Sukkhur, Ghotki, and Badin areas. Urdu speech

corpus is collected from the Lahore and Sheikhupura speakers. Saraiki speech

corpus is recorded from the Multani accent speakers, from Multan district.
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4.1.2 Speaker Selection

Speech corpus is recorded from native speakers of each language. It is tried to

have equal number of male and female speakers. Literate speakers with a mini-

mum of 12th grade certificate are selected, to ensure a reasonable reading ability.

Selected speaker's age ranged from 18 to 50 years. Each speaker is requested to

record 20 sentences using telephonic channel. In addition, information related to

the speaker's name, mother tongue, and birthplace district is also recorded and

documented. Details of speech material and recording sessions are explained in

the next sections.

4.2 Corpus Collection

The intent of this work was to develop a multilingual read speech corpus that can

be used for language identification task. Addressing the need, the development

of the speech corpus has four steps: (1) selection of text corpus, (2) extraction of

sentences, (3) recording procedure to develop speech corpus, and (4) verification

and annotation of speech corpus. The description of each step is provided in the

subsequent sections.

4.2.1 Text Corpus Collection

Text corpus of each language is used for extraction of the phonetically rich sen-

tences. Limited content of Pashto, Punjabi, Sindhi, and Urdu is available online.

The majority of the content is available in the form of online news. Therefore, as

a first step text corpus of each language is collected from different sources. CLE

Urdu digest corpus [109] of one million words is used for Urdu. Sindhi text cor-

pus is collected from online Sindhi books, which is publicly available by Sindhi

Adabi Board1. Pashto text corpus is collected from online newspapers including

BBC Pashto2, Rohi3 and Khybernews4. Following steps are applied for automatic

cleaning of the content collected through crawling:

1http://www.sindhiadabiboard.org/
2http://www.bbc.com/pashto
3http://www.rohi.af/
4http://www.khybernews.tv/pashto/index.php
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1. HTML tags are removed from the content using regular expressions.

2. Space is inserted between Pashto digits and text e.g. ÈA¿7102 X

3. Space is inserted at start and end of Latin character sequence to avoid the

issue of space omission e.g. 	P @Britannia 	á�
�
KB

The majority of the Punjabi content is also available in the form of online news

written in Gurmukhi (used in India) script, whereas limited content in the form

of books and online news is available in Shahmukhi script. Punjabi content in

Shahmukhi script is extracted from Punjabi portal Wichaar5 and Punjabi books

and magazines such as Punjabi Adab, Sanjh, Swer and Trinjan. Wichaar content

is crawled and cleaned by using the steps mentioned above. Saraiki content is not

widely available in digital form, as there is only one Saraiki newspaper in Pakistan.

Text corpus of Saraiki is collected from different Saraiki books specified below.
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The collected text corpora are used for the extraction of phonetically balanced

sentences of each language.

5http://www.wichaar.com/
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4.2.2 Sentence Selection

After cleaning of text corpus of each language, phonetically rich sentences are ex-

tracted. Greedy algorithm [32] is used to ensure maximal coverage of triphones in

the selected sentences. This algorithm processes text corpus, lists of high-frequent

unigram, bigram, trigram, and phonetic lexicon of a language and generates cor-

pus having minimum sentences but giving maximum coverage of triphones. Text

corpus of each language has been collected as mentioned in the previous section.

N-grams for Urdu are publically available for research [2], whereas N-grams for

Pashto, Punjabi, Saraiki and Sindhi are extracted from the collected text corpora.

The phonetic lexicon of Urdu [3] transcribed in X-SAMPA is used for the selection

of Urdu sentences. This lexicon is comprised of 91,281 high-frequent Urdu words.

Pashto phonetic lexicon [76] available in IPA format is converted to X-SAMPA

format. Available phonetic lexicon of Pashto is further extended, resulting in a

total 22,305 lexicon entries. Development of Sindhi phonetic lexicon is carried out

using online Sindhi dictionary [75]. Sindhi word list along with IPA transcription

is extracted, and IPA to X-SAMPA conversion is also carried out. Sindhi phonetic

lexicon comprises 17,239 words.

The phonetic lexicon of Punjabi in Shahmukhi script is not available. Hence,

an automatic system has been developed to build this resource. Punjabi content

written in Gurmukhi is selected for this purpose because it has inherent feature

of explicit vowels writing that is usually skipped in Shahmukhi script. By using

Gurmukhi text, the following procedure is applied and a lexicon of 86,398 words

is developed.

1. Gurmukhi text corpus was collected from different websites

2. Unique words list was extracted from the collected corpus and automatic

conversion of Gurmukhi to IPA carried

3. IPA transcription is converted to X-SAMPA

4. Finally, Punjabi word list extracted in Step 2 is transliterated to desired

Shahmukhi script using automatic conversion
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Extraction of phonetic rich sentences become a challenge for resource-scarce lan-

guages such as Saraiki, (particularly unavailability of phonetic lexicon). To tackle

this problem, an intelligent approach is devised and Saraiki words are automati-

cally transcribed. High frequent uni-grams are extracted from the collected text

corpus and automatic transcription of these words is generated by using the let-

ter to X-SAMPA mapping. This word list along transcription is used as Saraiki

phonetic lexicon in greedy algorithm.

The greedy algorithm ranks sentences having maximum tri-phone coverage by pro-

cessing above mentioned resources including text corpus, N-grams and phonetic

lexicon of each language. Sentences are selected with a minimum of 10 and max-

imum of 21 words to handle the effect of too short and too long sentences. A

total of 381, 894, 1079, 354 and 845 sentences are selected for recording of Pashto,

Punjabi, Saraiki, Sindhi and Urdu, respectively.

4.2.3 Recording Process

The recording process focuses on read speech recording from the native speakers.

An interactive voice response (IVR) system is designed for recording of speech

data from the speakers over a telephone line. The telephone line is connected to

a computer system (CentOS 6.0) using Cisco SPA 3102 VOIP gateway device.

A dial-plan is designed and deployed for recording of speech data from speakers,

which ensures automatic separate wave file recording for each sentence, unique

speaker id and sentence id for file naming.

Printed sentences are given to the speaker and each speaker is requested to rehearse

4-5 times before the recording session. Each speaker is requested to utter 20

sentences in a single phone call. Recorded speech is sampled at 8,000 samples

and stored as UNIX WAV file with a bit rate of 16-bit. Recording process flow

is shown in Figure 4.1 . Recording is carried out in different environments varied

from office, class room and drawing room, etc. Each recording session (from call

start till call termination) took about 5 minutes.
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Figure 4.1: Call recording flow

4.2.4 Data Annotation and Verification

The recorded speech corpus is manually verified and annotated using PRAAT [12],

a speech processing software. Audio files verification process ensured that audio

file complied with the following criteria. The audio file is discarded if it does not

fulfill the following criteria

� Audio file is not empty

� Signal to noise ratio (SNR) is not less than the defined threshold i.e. 10dB.

In case of SNR less than 10dB file will not be processed further

� Any other sound is not mixed in the audio file e.g. voices of the other people,

door creak, etc.

� Desired sentence is completely uttered in the audio file

� Desired speech is enclosed by a certain amount of silence, to avoid cutting

words

After the verification process, data is phonetically transcribed at sentence level.

Each utterance is manually transcribed in X-SAMPA format by carefully listening

the sentence and aligned with the spectrogram of the audio file.

After the annotation of data, speaker and language information is added in the file

name; to improve the data organization. So, post-processing is performed on the

verified and annotated data which involves audio data renaming. An intelligent

naming scheme is devised to organize the data. The sample naming scheme is

illustrated in Figure 4.2. This naming convention gives the information related
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Table 4.2: File name scheme description

Description In file name
Speaker ID Unique speaker id assigned to

each user on the basis of call order
sp001, sp002, ...

Speaker’s District Speaker district name
from which he/she belongs

dt087

Language Language spoken in utterance i.e.
Pashto, Punjabi, Saraiki, Sindhi, Urdu

pus, pnb, skr, snd, urd

Gender Male or Female M or F
Sentence ID Unique sentence Id 0001, 0002, 0003

to language of spoken sentence which is denoted using International code6 of the

language. In addition, sentence id, speaker id, speaker district, and speaker gender

are also part of the file name. Detailed description of each part and its usage in

file name is provided in Table 4.2.

Figure 4.2: File naming scheme

4.2.5 Corpus Statistics

Collected corpus consists of read speech of Pashto, Punjabi, Saraiki, Sindhi and

Urdu languages. The corpus contains audio data of about 10.43 hours recorded

from 316 speakers. Each language contains speech data of 89 minutes on average.

Table 4.3 shows the amount of collected speech data and number of speakers

against each language.

Dataset-2 statistics related to number of sentences, words, phones coverage is

summarized in Table 4.4. It is important to mention that the number of unique

6http://www.loc.gov/standards/iso639-2/php/english list.php
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Table 4.3: Number of speakers and duration of speech data of the target
languages

Language Speakers Data duration (Minutes)
Pashto 55 89
Punjabi 57 126
Saraiki 69 233
Sindhi 71 89
Urdu 64 89

sentences are less than the number of total sentences because some sentences are

recorded from more than one speaker. Due to unavailability of Saraiki phonetic

lexicon and transcription, phonemic coverage of Saraiki data is not computed.

Punjabi speech data has more unique sentences as compared to the other lan-

guages. On average each language data is comprised of 3,473 unique words.
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After the verification and annotation of speech corpus, annotated speech data is

then divided into the training (80%) and test data (20 %). The distribution of

training and testing data of each language is shown in Table 4.5. The training

dataset consisting of, total of 3,971 utterances, 638 utterances spoken in Pashto,

501 in Punjabi, 779 in Saraiki, 1085 in Sindhi and 968 in Urdu.

Test dataset is automatically divided into two parts; (1) 3-seconds and (2) 10-

seconds, on the basis of utterance duration. Three seconds test data contains only

those utterances which has duration between 1 to 3 seconds whereas utterances of

3 to 10 seconds are selected for 10-seconds data set.

4.3 Summary

This chapter discuss the design and collection of speech corpus of Pakistani lan-

guages i.e. Balochi, Pashto, Punjabi, Saraiki, Sindhi and Urdu. Speech corpus is

collected from native speakers of each language and transcription of each utterance

in X-SAMPA format and in orthographic form is also prepared. The developed

speech corpus is about 10.43 hours telephonic channel read speech, collected from

316 native speakers differing in gender, age and educational background. The

collected database is divided into training and evaluation sets. This corpus min-

imizes the barrier of data availability for the development of speech processing

applications e.g. speaker recognition and speech recognition for these language.

In Chapter 5, collected data is used to investigate the generalizability of existing

LID systems on very short and long utterances. Thereafter, in Chapter 6, a hybrid

features based LID system is developed that is robust to the length variation of

collected data.



Chapter 5

Language Identification using

Acoustic Features

The major motivation behind this study is to thoroughly investigate different

acoustic features and identification approaches, which has not been well investi-

gated for Pakistani languages. Additionally, performance of selected approaches

is validated with number of acoustic features. Optimization for the use of both

features and approaches is further leveraged.

5.1 Features

The raw speech signal is complex and may not be suitable as input to the LID

system. Acoustic characteristics of speech segments are used as input to the LID

systems. In this study, spectrogram-based features i.e. Mel-Frequency cepstral co-

efficients (MFCC), cochleagram-based features i.e. Gammatone frequency cepstral

coefficients (GFCC) and perceptual linear prediction (PLP) are used to represent

the acoustic characteristics of speech. The key difference between MFCC and

GFCC features is scale; MFCC features are based on Mel-scale, whereas, equiva-

lent rectangular bandwidth (ERB) scale is used during GFCC features extraction.

ERB scale has better resolution at low frequencies.

48
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5.1.1 Mel-Frequency Cepstral Coefficients (MFCC)

Mel-frequency cepstral coefficients (MFCC) are among widely used filterbank

based features in the area of speech proceesing. The major advantage of mel-

scale filtering is that it approximates the human hearing by emphasizing more on

the lower frequencies than the higher frequencies. Frequency scale is converted

into mel-scale fm, using following equation [99]:

fm = 2595 ln(1 + f/700) (5.1)

where f is the frequency on linear scale. Triangular filterbanks are applied to com-

pute the energy from periodgram power spectrum of the speech window. Discrete

cosine transformation (DCT) is used to calculate the MFCC from the outputs of

the filterbanks by using the following equation [18]:

MFCCj =

√
2

N

L∑
k=1

mk cos(
πj

N
(j − 0.5)) (5.2)

Where L is the number of filter banks and mk is the log of the kth filter bank’s

output amplitude.

5.1.2 Gammatone Frequency Cepstral Coefficients (GFCC)

The Gammatone frequency cepstral coefficients (GFCC) features are auditory fea-

tures based on a set of Gammatone filters which imitate the frequency response of

human ears. Gammatone filter bank outputs frequency-time representation of a

signal which is called a cochleagram. This cochleagram representation is required

for computation of GFCC features. Gammatone filter g(t) [88] can be computed

using the Equation 5.3.

g(t) = atn−1e−2btcos(2πfc + ϕ) (5.3)

Where ϕ is the phase that is mostly set to zero, n represents the order of filter,

a denotes value of amplitude, fc is the central frequency (in KHz) and b is the
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bandwidth or rate of decay. Patterson and Moore [86] showed that gammatone

function of order four n is excellent fit to the human auditory filter shape, so

usually n is set to be equal or less than 4. The factor b is defined as [27]:

b = 1.019 ∗ 24.7 ∗ (
(4.37fc)

1000
+ 1) (5.4)

In experiments, we used filter of order (n) 4 and calculated the Gammatone filter

with 64 channels. For the GFCC feature vector, the first 10 channels of Gamma-

tone filters which correspond to frequency range less than 200 Hz are excluded.

5.1.3 Perceptual Linear Prediction (PLP) Coefficients

Perceptual linear prediction (PLP) features [35] are inspired from the findings of

psychophysics of hearing. PLP features are extracted using the following steps:

1. Speech signal is segmented using the Hamming window and fast Fourier

transformation (FFT) is applied on speech signal to convert it into frequency

domain. Power spectrum of windowed speech signal is calculated using the

following equation

P (ω) = Re[S(ω)]2 + Im[S(ω)]2 (5.5)

Where Re and Im are the real and imaginary components of short-term

speech signal, respectively.

2. Frequency of power spectrum P (ω) is converted into Bark-scale Ω using:

Ω(ω) = 6 ln{ω/1200π + [(ω/1200π)2 + 1]0.5} (5.6)

Where ω is the angular frequency in radian(s).
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3. Wrapped power spectrum Ω(ω) is convolved with power spectrum of critical-

band masking curve Ψ(Ω) , where Ψ(Ω) is defined as:

Ψ(Ω) =



0 for Ω <-1.3,

102.5(Ω+0.5) for − 1.3 ≤ Ω ≤ −0.5,

1 for -0.5 <Ω <0.5 ,

101.0(Ω−0.5) for0.5 ≤ Ω ≤ 2.5

0 for Ω >2.5

(5.7)

Convolution of Ψ(Ω) with P (ω) produce critical-band power spectrum using

following equation:

θ(Ωi) =
2.5∑

Ω=−1.3

P (Ω− Ωi)Ψ(Ω) (5.8)

This θ(Ωi) is further down sampled at approximately 1-Bark interval.

4. Sensitivity of hearing i.e. Equal-loudness is simulated using the pre-emphasis

of sampled Θ[Ω(ω)] using

Ξ[Ω(ω)] = E(ω)Θ[Ω(ω)] (5.9)

Where function E(ω) approximates the sensitivity of hearing at different

frequencies.

5. Spectral amplitude variation of the critical-band power spectrum is reduced

by approximating the power law of hearing using Equation 5.10.

Φ(Ω) = Ξ(Ω)0.33 (5.10)

This law of hearing simulates the relationship between sound’s intensity and

perceived loudness.

6. Linear prediction (LP) is applied to the power spectrum signal
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7. Inverse Fourier transformation is applied to obtain PLP coefficients from the

predictor coefficients

Visual comparison of speech waveform, MFCC, GFCC and PLP features is shown

in Figure 5.1. Computation steps of these features are shown in Figure 5.2, to

show a comparative scheme of MFCC, GFCC and PLP computation.

Figure 5.1: Visual comparison of MFCC, GFCC and PLP features

5.2 Frameworks

For LID, two well-known and widely used approaches are considered: (1) Gaussian

mixtures model with universal background model i.e. GMM-UBM; and (2) i-vector

approach. Details of these approaches are discussed in subsequent sections.
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Figure 5.2: The computation steps of MFCC (left), GFCC(center) and PLP
(right)

5.2.1 GMM-UBM

Gaussian mixture model (GMM)-universal background model (UBM) is an en-

hanced version of traditional Gaussian mixture modeling technique. Training of

GMM-UBM is carried out in two steps: First, frame-level acoustic features from

combined data of all languages are extracted. These features are utilized in train-

ing of universal background model (UBM). Moreover, expectation maximization

(EM) algorithm is used for training of the model. Second, separate data of each

language is used and language specific GMM is adapted from UBM. More details
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of GMM-UBM are available in [90].

During testing phase, acoustic feature of test utterance are used to compute the log

likelihood score on the basis of mean difference of the GMM and UBM likelihood

ratio.

In this study, initially a baseline GMM-UBM with 1024 mixtures is developed

using training data of all languages. Later on set of experiments are performed to

optimize the number of mixtures in GMM-UBM.

5.2.2 i-vector

Motivated by the use of joint analysis factor (JFA) [19] as feature extractor for var-

ious acoustic applications such as speaker recognition, Dehak et al. [20] devised a

new approach for front-end factor analysis, named i-vectors. JFA is based on sep-

arate channel and speaker dependent subspace, whereas i-vector is single spaced,

referred as the ”total variability space”. This new space includes both speaker

and channel variabilities simultaneously, without making any distinction between

channel and speaker effects. i-vector system development is categorized into three

phases; (1) i-vector extraction (2) variability compensation and (3) scoring. Each

i-vector based system differs in terms of variability compensation used to perform

identification.

In i-vector approach, session and speaker dependent GMM super-vector µ is ex-

tracted. This super-vector µ [20] is calculated using equation given below.

µ = m+ Tw (5.11)

Here m is a speaker and session independent UBM super-vector, T is a rectangular

low rank total variability matrix which represents the variation across a large

collection of training data and w is an independent vector based on normally

distributed random vector N(0, I). The w vector is represented by the BaumWelch

(BW) statistics N and F for a given utterance u , which are calculated using the

UBM. Given K frames and an UBM m with C mixture components defined in

any feature space of dimension D; the BW statistics for a given acoustic utterance



Chapter 5. Language Identification using Acoustic Features 55

u [20] can be obtained by following equations.

Nc(u) =
K∑

n=1

P (c|yn,m) (5.12)

Fc(u) =
K∑

n=1

P (c|yn,m)(yn) (5.13)

Here c = 1, .., C is the Gaussian mixture index, mc is the mean mixture of com-

ponent c and P (cyn,m) is the posterior probability of mixture component c given

the observation yn at time n. The i-vector w[20] is obtained by using the following

equation

w = (I + T t
∑−1

N(u)T )
−1

.T t
∑−1

F̃ (u) (5.14)

N(u) is a CF×CF dimension diagonal matrix with diagonal blocks NcI(c = 1, C).∑
is a CF × CF dimensional diagonal covariance matrix obtained during factor

analysis training (see [49]). Whereas, F̃ (u) is a CF × 1 dimension vector acquired

by concatenating all F̃c statistics for a given utterance u. Derivation details of

these parameters can be found in [50]

During the enrollment phase, background model (UBM) is trained using the avail-

able training data; total variability (TV) matrix i.e. T-matrix is also trained using

the same data. BW statistics are computed and i-vector of 400 dimension is ex-

tracted. The numbers of Gaussian mixtures are optimized and 1024 Gaussian

components are used for final evaluation.

In i-vector based LID system, channel compensation is done through total variabil-

ity space instead of GMM super vector and low dimensional vectors are extracted.

Number of channel compensation techniques exist e.g. within-class covariance

normalization (WCCN) [34], probabilistic linear discriminant analysis (PLDA),

nuisance attribute projection (NAP) [14] etc. In this study, PLDA technique is

used for channel compensation. The motivation for using this technique is that,
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Table 5.1: Dataset-2 training corpus

Language Number of training utterances Number of speakers
Pashto 638 54
Punjabi 501 53
Saraiki 779 52
Sindhi 1085 69
Urdu 968 58

PLDA reduce the dimensionality of i-vector and attempts to find out new orthog-

onal axes to maximize variance between different classes. Consine distance scoring

specified in [20] is used for the scoring of test utterances.

5.3 Data set and Performance Measure

During the experiments, i-vector and GMM-UBM are trained using the train set

of Dataset-1 and Dataset-2. For Dataset-2 Eighty-nine minutes data of each in-

dividual language is being used, whereas effectiveness of LID system is measured

individually for 3-seconds test utterances for both identification approaches. The

distribution of training data of each language in Dataset-2 is shown in the Table

5.1.

The performance metric of percentage of correctly classified speech utterances

Ecc[8] is used for the evaluation of LID achieved through i-vector and GMM-UBM,

which is measured as follows:

Ecc =
Ucc

UT

(5.15)

Where Ucc and UT represent the number of correctly recognized utterances and

the total number of utterances of test data, respectively.

In addition to Ecc, Un-weighted average recall (UAR) and equal error rate (EER)

are also calculated for the system having maximum Ecc.

Un-weighted Average Recall (UAR) = mean(R1, R2, RN) where R1 is recall of

class 1 , R2 is recall of class 2 etc.

EER is point where false acceptance rate(FAR) becomes equal to false rejection

rate (FRR).
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FalseAcceptanceRate(FAR) =
TotalFalseAcceptance

TotalFalseAttempts
(5.16)

FalseRejectionRate(FRR) =
TotalFalseRejection

TotalTrueAttempts
(5.17)

5.4 Experiment Setup

Before the extraction of features, voice activity detection on the audio signal is

performed and non-speech segment(s) from the utterance are removed. Voice ac-

tivity detection on all of the audio files is performed using low complexity variable

frame rate analysis [106], resulting into the filtration of non-speech frames. MFCC

and PLP features are computed by block processing the utterance in a sliding win-

dow of 20ms with an overlap of 10ms. These features are extracted by using Kaldi

toolkit [87], during the computation of these features 20 filter bank channels are

used.GFCC features are extracted using 64 channels Gammaton filters.

5.5 Results

All the experiments described in this chapter are conducted on the Dataset-1 and

Dataset-2. The experiments results are summarized in next section, along the

details of each system performance.

5.5.1 GMM-UBM

Experiments are carried out by varying the number of mixtures of the GMM-

UBM and Ecc% is calculated on Dataset-1 and Dataset-2. The performance of the

GMM-UBM based LID system with various acoustic features and with 64 mix-

tures, 128 mixtures, 256 mixture, 512 mixtures ,1024 mixtures, 2048 mixtures and

4096 mixtures has been studied. Experiment results on Dataset-1 are summarized

in Table 5.2, for different number of mixtures. Whereas,experiment results on

Dataset-2 are summarized in Table 5.4. UAR and EER are also calculated for

system having maximum Ecc for MFCC, GFCC and PLP feature set. UAR and

EER on test data of Dataset-1 and Dataset-2 are shown in Table ?? and Table

5.5, respectively.
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It is noted that Ecc% increase with the increase in number of mixtures from 64 to

2048, with 4096 mixtures Ecc drops, same trend reported in [9]. It is clear that

1024 and 2048 mixtures of GMM-UBM perform better for Dataset-1 and Dataset-

2, respectively. Feature comparison shows that PLP features better discriminate

the data as compared to the others. Experiments results show that number of

mixture can impact the performance and should be optimized.

Table 5.2: GMM-UBM system Ecc(%) on Dataset-1

Mixtures MFCC GFCC PLP
64 53.64 53.64 55.17
128 56.50 55.29 57.90
256 58.15 58.15 59.30
512 59.67 59.67 60.15
1024 59.30 59.30 61.55
2048 59.36 59.06 60.82
4096 56.93 57.84 59.12

Table 5.3: GMM-UBM system UAR and EER (%) on test data of Dataset-1

Features UAR EER
MFCC 59.83 25.18
GFCC 59.33 25.06
PLP 61.00 23.11

Table 5.4: GMM-UBM system Ecc(%) on 3s test data of Dataset-2

Mixtures MFCC GFCC PLP
64 63.78 53.69 64.86
128 66.48 55.13 67.02
256 67.56 58.73 68.46
512 69.00 64.14 69.90
1024 70.99 67.56 71.17
2048 72.25 72.07 72.61
4096 71.53 71.89 72.43

Table 5.5: GMM-UBM system UAR and EER (%) on test data of Dataset-2

Features UAR EER
MFCC 72.20 17.29
GFCC 71.80 16.75
PLP 72.61 16.93
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5.5.2 i-vector Results

In this study, different configurations of i-vector are explored in terms of num-

ber of Gaussian components and i-vector length and performance of LID system

is evaluated in terms of accuracy. Table 5.6 summarizes i-vector based LID sys-

tem performance in terms of accuracy with different configurations of Gaussian

components and i-vector dimensions on Dataset-1.

Table 5.6: i-vector system Ecc(%) on Dataset-1

I-vector length # of Gaussian Mixtures MFCC GFCC PLP
400 64 56.75 57.96 60.34
400 128 56.81 60.09 60.64
400 256 57.05 59.00 60.82
400 1024 56.44 55.59 60.21
600 128 56.14 60.46 61.61
800 128 56.44 60.88 61.25

Table 5.7: GMM-UBM system UAR and EER (%) on test data of Dataset-1

Features UAR EER
MFCC 58.33 24.14
GFCC 61.00 22.14
PLP 61.61 22.01

Table 5.8: i-vector system Ecc(%) on 3-s test data of Dataset-2

I-vector length # of Gaussian Mixtures MFCC GFCC PLP
400 64 77.65 69.54 75.49
400 128 74.41 71.17 79.09
400 256 76.57 69.90 78.37
400 512 74.23 67.38 79.27
400 1024 75.31 67.20 75.85
600 128 74.95 71.53 77.11
800 128 76.21 71.35 78.19

It is clear from the Table 5.8 that 400 dimensional i-vector extracted from the

posterior super-vector of UBM with 512 Gaussian components outperforms. UAR

and EER on test data of Dataset-1 and Dataset-2 are shown in Table 5.7 and

Table 5.9, respectively.



Chapter 5. Language Identification using Acoustic Features 60

Table 5.9: GMM-UBM system UAR and EER (%) on test data of Dataset-2

Features UAR EER
MFCC 76.60 14.4
GFCC 71.60 17.65
PLP 79.27 13.58

Several observations can be made from the results presented in the Table 5.2,

Table 5.4, Table 5.6 and Table 5.8. First, PLP feature outperforms the other fea-

tures and achieve the best results, irrespective of LID approach. Unfortunately,

using GFCC features with both GMM-UBM and i-vector approach degrades per-

formance. Second, it can be observed from results that the i-vector approach yields

better results than GMM-UBM approach for both Dataset-1 and Dataset-2.

Table 5.10: Confusion matrix of LID system using i-vector for Dataset-1

bal pan pus skr sin urd
bal 172 16 9 20 22 35
pan 35 105 26 20 19 70
pus 15 9 215 2 1 33
skr 29 8 1 210 11 18
sin 19 30 6 30 177 11
urd 42 21 30 32 11 134

Table 5.11: Confusion matrix of LID system using i-vector for Dataset-2

pan pus skr sin urd
pan 77 3 18 3 10
pus 1 104 1 1 4
skr 6 4 94 3 4
sin 6 3 6 91 5
urd 12 8 5 13 73

Confusion matrix of best i-vector configuration against Dataset-1 and Dataset-2

are tabulated in Table 5.10 and Table 5.11, respectively. Where rows and columns

correspond to the actual class and assigned class of the test data, respectively.

It can be observed from the confusion matrices (See Table 5.10,5.11) that Urdu(

urd) language confused with other languages irrespective of the datasets. Dataset-

1 accuracy is low as compared to the Dataset-2, it can be due to following reasons:

� Dataset-1 average utterance duration(0.8 sec) is very short as compared to

the average duration of Dataset-2
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� Dataset-1 is more challenging as compared to the Dataset-2 because it is

sharing same vocabulary among all speakers

Based on these factors, it is being observed that confusion between Urdu and

Punjabi is more in Dataset-1 as compared to the Dataset-2. This may be due

to the common words between Urdu and other languages. In addition, Pashto

language identification has higher accuracy as compared to the other languages,

irrespective of utterance duration.

Following observations can be made from the confusion matrix of GMM-UBM

approach:

� Urdu has lower recognition as compared to the Pashto, Punjabi and Sindhi.

More than 24% of the Urdu testing utterances have been misrecognized and

confused to the Punjabi compared to only 13% and 6% confusion with Sindhi

and Pashto, respectively. This may be due to the Urdu as lingua franca of

Pakistan and its words are common among other languages.

� 91% testing data of Pashto language has been correctly classified, while

majority of the remaining utterances are being misrecognized as Urdu.

� Punjabi has about 73% recognition rate while majority misclassified utter-

ances are recognized as Urdu. These languages are closely related /acousti-

cally similar to each other [26]. Therefore, there is more confusion between

Urdu and Punjabi.

5.6 Summary

This chapter discusses the use of GMM-UBM and i-vector to model the acous-

tic characteristic of Pakistani languages. A set of different acoustic features i.e.

MFCC, GFCC and PLP are employed for language identification. GMM-UBM

and i-vector system are trained using the Dataset-1 and Dataset-2. Experiments

were performed to check the impact of number of mixtures and i-vector length on

LID accuracy. Results showed that PLP features performs better irrespective of
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dataset and LID technique. Moreover, it is also observed that i-vector technique

has better ability to discriminate between different languages.



Chapter 6

Merge Bidirectional Long Short

Term Memory Network (BLSTM)

for Language Identification

A resurgence of deep learning-based techniques has revived the use of neural

networks for speech processing. Deep neural networks (DNN) yield state-of-

the-art performance in classification tasks. DNNs have been used for language

identification[66][64] and evaluated on utterances of duration 3 sec. DNNs out-

performed i-vector framework and a substantial improvement in accuracy was ob-

served. Recurrent neural networks (RNN) with long short-term memory (LSTM)

memory cells outperformed i-vector in the task of language identification[116] for

short utterances. Comparative analysis between the i-vector framework and LSTM

has been carried out. The study showed that for 3-sec long utterances, LSTM out-

performed the i-vector system by up to 26%. In addition, the effect of the test

utterance duration is also analyzed on the limited duration test data (from 0.1

seconds to 2.5 seconds). The system's accuracy deteriorates as the data duration

decreases and an overall accuracy of 50% is achieved for 0.5 second long utter-

ances. Usually, a combination of different features or approaches tends to provide

better accuracy of the system [92]. In a study by [46], in addition to DNNs, RNNs

63
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are also explored for accent identification and a fusion of DNNs and RNNs is ex-

perimented with. Fusion of networks is evaluated using the NLSC corpus on test

data with 45-second utterances. It is observed that a combination of networks

performed better as compared to individual networks.

Motivated by the outstanding performance of LSTM-RNN in related fields, in

this study we use the Bidirectional LSTM (BLSTM) model for LID task of very

short utterances (0.27s to 2s). Performance of LID using two different types of

acoustic features i.e. spectrogram and cochleagram is investigated. The training

procedure of LSTM networks, particularly BLSTM, takes more time and tuning

than feed-forward networks. In this study, many aspects of BLSTM training are

explored, such as number of hidden layers, size of hidden layers and regularization

methods. Moreover, spectrogram feature-based BLSTM-RNN and cochleagram

feature-based models are merged together to utilize the strengths of both features.

6.1 Features

Acoustic characteristics of speech segments are used as input to the LID systems.

In this study, spectrogram-based features i.e. Mel frequency cepstral coefficients

(MFCC) and cochleagram-based features i.e. Gammatone frequency cepstral co-

efficients (GFCC) are used to represent the acoustic characteristics of speech.

These features are computed along with the shifted delta cepstral (SDC) coeffi-

cients. They are an extension of delta-cepstral coefficients i.e. stacked version of

delta coefficients over several frames. SDCs are used to enhance the accuracy of

speaker recognition, language recognition and native language detection systems

[97][108][96].

SDC features are typically written as N − d− P − k where:

� N: number of cepstral coefficients in each frame

� d: time advance and delay for delta computation

� P: time shift between consecutive frames

� K: number of frames to be concatenated to form the final vector
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For a given N-dimensional cepstral feature vector i.e. c0, c1, c2, ...CN−1 at a given

time t, we obtain [15] c(t, i) by using Equation 6.1

c(t, i) = c(t+ iP + d)− c(t+ iP − d) (6.1)

SDC are stacked version of delta coefficients over several frames i.e. K, as shown

in Equation 6.1

SDC(t) = [c(t, 0)tc(t, 1)t....c(t,K − 1)t]t (6.2)

The detailed shifted delta computation is reported by Campbell et al.[15]. MFCC

features are extracted with a hamming window of 20ms with 10ms frame shift,

filtered through a Mel-scale filter bank. Seven MFCC features are used and SDC

parameters are computed with the configuration of 7-1-3-7 and concatenated with

static coefficients, resulting in a 56-dimensional input vector.

For the GFCC feature vector, the first 10 channels of Gammatone filters which

correspond to frequency range less than 200 Hz are excluded. Seven GFCC features

are used and SDC parameters with configuration of 7-1-3-7 are computed which

results in a 56-dimensional vector of GFCC-SDC.

6.2 Bidirectional LSTM RNN Model

Long short term memory (LSTM) network [38] is a special type of recurrent neu-

ral network (RNN) with the capability of learning long-term dependencies. Each

LSTM cell has inputs, outputs and a system of gating units to control the in-

formation flow. Internal state unit ct is the key component of the cell which is

regulated by the multiplicative units called gates i.e. input gate it, output gate ot

and forget gate f t. A block diagram of an LSTM cell is shown in Figure 6.1.

Equations of LSTM inputs, outputs, state unit and gates are provided in Equation

6.4, Equation 6.7, Equation 6.6 and Equation 6.5, respectively, more details of

which can be found in [30].
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Figure 6.1: Schematic diagram of a long short-term memory cell (LSTM)

Zt = tanh(Wzx
t +Rzy

t−1 + bz) (6.3)

it = σ(Wix
t +Riy

t−1 + Pi � ct−1 + bi) (6.4)

f t = σ(Wfx
t +Rfy

t−1 + Pf � ct−1 + bf ) (6.5)

ct = it � zt + f t � ct−1 (6.6)

ot = σ(Wox
t +Roy

t−1 + Po � ct + bo) (6.7)

yt = ot � tanh(ct) (6.8)

Where σ is the logistic sigmoid function,it, ot, f t and ct are the input, output,

forget gate and cell internal state vectors, respectively. Here all b are bias vectors,

the P are peephole weight vectors and R are recurrent weight matrices. xt is

the input vector of size 56 (MFCC-SDC or GFCC-SDC) at time t, W denotes

input weight matrices, tanh denotes the activation function and � represents

element-wise product of the vectors. In this study, a multi-layer bidirectional

LSTM recurrent neural network is being used in order to utilize previous and
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future context of a speech frame. Each layer of the bidirectional LSTM network

consists of two separate hidden layers i.e. forward layer and backward layer. The

first one takes input sequences as-is and the second one the reversed copy of the

sequence. Output values from these separate layers are concatenated to generate

the output yt as illustrated in Figure 6.2.

Figure 6.2: General architecture of bidirectional LSTM RNN

Multiple layers of LSTM RNN are stacked on top of each other resulting in a deep

network architecture. Output sequence of one layer is used as the input sequence

of the next layer, ensuring that the next layer receives input from both backward

and forward layers of the level below, as illustrated in Figure 6.3.

Output layer of the network is configured as Softmax, to map input xj to a class

probability Pj defined as

Pj = exp(xj)/
∑
i

exp(xi) (6.9)
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Figure 6.3: General architecture of deep bidirectional LSTM RNN

where i is an index over all the classes. Output layer of size six is used (one

for each language). cross entropy (CE) function is used as a cost function for

back-propagating gradients in the training stage, defined as

C = −
∑
j

tj logPj (6.10)

Where tj denotes the target probability of the class j against the current utterance.

Several experiments are conducted to optimize different aspects of BLSTM model

in terms of number of layers, hidden units and regularization methods. Details of

these experiments are provided in subsequent sections.

6.2.1 Number of Hidden Layers

Theoretically, an adequately wide neural network with only one hidden layer can

approximate any function when trained on a sufficient amount of data [22]. But, an

extensively wide network may end up memorizing the corresponding output value

which is not useful for practical applications because every input value may not

be part of the training data. Multiple hidden layers are better because they can
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learn hierarchical, more complex internal representations. Therefore, a number of

experiments are conducted to find out the optimal depth i.e. number of hidden

layers. During these experiments, hidden units are fixed to 256 for each forward

and backward direction LSTM. Dropout of 0.2 and L2 input weight regularization

of 0.01 is applied at each layer.

6.2.2 Size of Hidden Layers

The number of hidden units in neural network can influence its performance sig-

nificantly. Fewer hidden units can cause under-fitting result in high errors on

training and validation data. On the other hand, a large number of units may

cause over-fitting and can result in higher testing error. Optimal numbers of units

are required to minimize the effect of under-fitting and over-fitting. Different

studies have been carried out to find the various rules for the determination of

optimal number of units of the different layers of a neural network [53]. In most

of the cases, researchers optimized the neural network with different configuration

in terms of number of hidden units and layers. Nagendra and Kher [78] suggest

to obtain the best number by iteratively adjusting the number of neurons while

considering the error during neural network testing. We used iterative adjustment

of number of hidden units, started from the lowest number i.e. 128 and gradually

increased upwards in power of two up to 600 due to memory limitations.

6.2.3 Regularization Methods

In deep learning, regularization methods are helpful to decrease model complexity

by minimizing weights values, since small values result in smoother hypothesis

functions. In this study, two regularization methods are used: dropout [37] and

weight regularization i.e. standard L2 regularization. L2 regularization is applied

to input connection of each LSTM unit at each layer of the network. Different

dropout and L2 regularization combinations are further investigated using grid

search to find the optimal configuration. Dropout values are considered in the

range of 0.0-0.5 with increment of 0.1, whereas, L2 regularization values in the

range of 0.00-0.02 with increment of 0.01 are used in experiments. Different com-

binations are tried and model performance is evaluated on validation data.
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6.3 Merged BLSTM RNN Model

Wide variety of acoustic features is available with different strengths and weak-

nesses. A combination of several different features as an input to the single system

may result in more accurate results. Feature combination can be done in several

ways at several levels. A study by[61] combined MFCC and perceptual linear

prediction (PLP) features with HMM-GMM ASR system, resulting in significant

reduction of word error rate (WER). Similarly, a study by [107] showed that com-

bination of MFCC and GFCC features using convolution neural networks (CNN)

provides significant advantages over a CNN with one feature set. Zhang et al. [117]

used a combination of different features including MFCC, PLP, linear frequency

cepstral coefficients (LFCC), GFCC for language recognition and observed that

feature combination results in lower equal error rate (EER).

In this study, instead of low level feature combination, two BLSTM models trained

on MFCC-SDC and GFCC-SDC are combined. The two best model architectures

from the Section 3 experiments are used and merged together. These two indepen-

dent BLSTMs models return their final output sequence, thus dropping the tem-

poral dimension (i.e. converting the input sequence into a single vector). These

two vectors are concatenated and forwarded to fully connected layers, to learn

mappings from both high level feature vectors to the output classes, as shown

in Figure 6.4. The last layer of this network is a softmax layer which outputs

probabilities for each class.

Similar to BLSTM models, a numbers of experiments are carried out to find the

optimal number of fully connected layers and size of layers for merged BLSTM

RNN model.

6.4 Experimental Setup

Each BLSTM-RNN network is optimized using Adam optimizer [52], a widely used

optimization method with an initial learning rate of 103. Several experiments are

carried out to find a best architecture in terms of number of layers, size of hidden

layers and regularization methods. For all GFCC feature-based experiments, 60
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Figure 6.4: Architecture of merged BLSTM RNN models

epochs are used for training of the network, whereas, for MFCC feature-based

experiments 30 epochs are used. Each network configuration is evaluated using

the validation set and the model with the best validation accuracy is used for later

experiments. In merged BLSTM models approach, rectified linear unit (ReLU)

[79] is used for activation of fully connected layers and dropout of 0.4 is applied

at each layer.

BLSTM-RNN models are implemented in Python, using the Keras [16] neural

network library, running on top of Tensorflow. Experiments are conducted on a

machine with NVIDIA GeForce GTX 1080 GPU with 8GB of memory and 32GB

RAM.

BLSTM networks are trained using the train set of dataset-1. The languages

include Balochi, Pashto, Punjabi, Saraiki, Sindhi and Urdu. val set of the dataset-

1 is used for the parameter optimization. Optimized network is evaluated using
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the test set.

6.5 Results and Discussions

A number of experiments are carried out for BLSTM-RNN model using MFCC

and GFCC as input features and model accuracy on validation data is calculated.

In addition, network architecture search is also performed for merged BLSTM

models. Details of experiments are given in subsequent sections.

6.5.1 BLSTM RNN Network Architecture Search

6.5.1.1 Number of Hidden Layers

Results of experiments for number of hidden layers are shown in Table 6.1. During

experiments, the effect of number of hidden layers in terms of training accuracy

(train Acc), validation accuracy (val Acc), training loss (train loss) and validation

loss (val loss) is also examined. Validation loss shows the value obtained from

same epoch as the validation accuracy, whereas training loss is obtained from the

last epoch.

It is observed that training and validation accuracy of MFCC feature-based BLSTM

network increases with the use of more than one hidden layers and highest accu-

racy is achieved with two hidden layers. Highest validation accuracy of GFCC

feature-based BLSTM network is achieved with four hidden layers. Therefore, for

later experiments two hidden layers will be used for MFCC feature-based BLSTM

and four hidden layers will be used for GFCC feature-based BLSTM network.
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Table 6.2: Validation data accuracy with different number of hidden units, 2
layers are used in MFCC feature-based BLSTM network and 4 layers are used in
GFCC feature-based BLSTM network; dropout of 0.2 and L2 of 0.01 is applied

at each layer of both models.

# Hidden Units # Params [M] val Acc(%)
MFCC GFCC MFCC GFCC

128 0.5 1.3 54.20 59.12
256 2.2 5.3 53.89 60.40
512 8.6 21.22 54.01 60.03
600 11.80 29.09 53.35 50.61

6.5.1.2 Size of Hidden Layers

After finding out the number of hidden layers, experiments are carried out to

find out the optimal number of neurons in each layer. During experiments equal

numbers of neurons are used at each layer. Two layers are used in MFCC feature-

based BLSTM and four layers are used in GFCC feature-based BLSTM. Dropout

of 0.2 and L2 input weight regularization of 0.01 is applied at each layer. Table

6.2 shows the results of comparison of hidden layer size. It is observed that with

larger number of neurons, the number of trainable parameters rises and the vali-

dation accuracy start deteriorating. It is observed that two layers BLSTM model

with 128 neurons performs better for MFCC features set and BLSTM model of

four layers with 256 neurons yields higher validation accuracy for GFCC feature

set. This network configuration is further improved by using the dropout and L2

regularization.

6.5.1.3 Regularization Methods

Table 6.3 shows validation accuracy against different configurations of dropout

and L2. It is observed that dropout of 0.3 with L2 of 0.01 yields the best result

with MFCC as feature vector, whereas for GFCC feature set, dropout of 0.2 with

L2 of 0.01 yields best validation accuracy.

The LID accuracy attained by optimized MFCC feature-based BLSTM model on

the training and validation data at different training epochs is shown in Figure

6.5. Similarly, optimized GFCC feature-based BLSTM model accuracy on the

training and validation data at different training epochs is illustrated in Figure
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Table 6.3: Validation accuracy (%) with different combinations of dropout and
L2, MFCC feature-based BLSTM network with 2 layers and 128 neurons/layer,

GFCC feature-based BLSTM network with 4 layers and 256 neurons/layer

Dropout L2
0.00 0.01 0.02

MFCC GFCC MFCC GFCC MFCC GFCC
0 52.06 61.31 54.07 59.85 53.83 59.48
0.1 53.89 62.04 55.71 60.88 55.53 59.30
0.2 56.44 62.28 57.36 61.00 57.66 60.00
0.3 57.96 62.53 58.45 61.00 57.54 60.15
0.4 56.93 62.34 57.96 59.12 57.96 60.09
0.5 53.95 59.79 55.23 58.94 55.53 57.42

6.6. A comparison between the accuracy curves suggests that MFCC feature-

based network is faster to train and yields highest validation accuracy than GFCC

feature-based network. Loss curves of MFCC and GFCC feature-based models are

shown in Figure 6.7 and Figure 6.8, respectively. It suggests that there is slightly

more over-fitting in MFCC feature-based model than the GFCC feature-based

network even with higher dropout and L2 regularization values.

Figure 6.5: MFCC feature-based BLSTM-RNN model accuracy on the train-
ing and validation data over 30 Epochs, 3 layers BLSTM model with 256 neu-

rons/layer, dropout of 0.4 and L2 of 0.00
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Figure 6.6: GFCC feature-based BLSTM-RNN model accuracy on the train-
ing and validation data over 60 Epochs, 2 layers BLSTM model with 512 neu-

rons/layer, dropout of 0.2 and L2 of 0.01

Figure 6.7: MFCC feature-based BLSTM model loss over 30 epochs
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Figure 6.8: GFCC feature-based BLSTM model loss over 60 epochs

6.5.2 Merged BLSTM RNN Models Architecture Search

After the network optimization of MFCC feature-based BLSTM model and GFCC

feature-based BLSTM model, their outputs are combined. Outputs of BLSTM

models trained on MFCC and GFCC features are merged and forwarded to the

fully connected (FC) layers as shown in Figure 6.4. Experiments are conducted to

find out the optimal number of fully connected layers and size of layers. To find

out the optimal number of FC layers, experiments are performed with 256 neurons

in each layer and dropout of 0.3 is applied at each layer. It is observed that two

FC layers are optimal number of layers.

After finalization of number of fully connected layers, experiments with two FC

layers and varying layers size are conducted and validation accuracy is computed.

During experiments, equal numbers of neurons are used at each layer. It is ob-

served that merged BLSTM models network with two fully connected layers of

size 512 yields the highest validation accuracy.

This model is later evaluated on the test set and an accuracy of 62.59 % is achieved.

Moreover, UAR of 62.50% and EER of 18.36% is achieved on the test set. Con-

fusions among languages are shown as a confusion matrix in Table 6.4 and recalls
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in Table 6.5. It's evident from Table 6.4 that Pashto (pus) language is identified

more correctly than the rest of the languages and confusions are most frequent

among Sindhi and Balochi.

Table 6.4: Confusion matrix for the test set using the merged BLSTM models,
rows are reference and columns are hypothesis

bal pan pus skr snd urd
bal 231 7 2 12 15 7
pan 43 164 7 10 21 29
pus 29 35 135 3 8 64
skr 10 1 0 258 4 1
snd 68 20 2 10 158 16
urd 30 134 8 8 11 83

Table 6.5: Recall for each language and the un-weighted average recall (UAR)
on the test set (%)

bal pan pus skr snd urd UAR
84 60 49 94 58 30 62.5

Figure 6.9: Merged BLSTM model performance on very short utterances

Figure 6.9 shows the relationship between system accuracy and duration of test

utterances. Test data set is divided into six groups on the basis of utterance

duration and accuracy of each group is computed. It is evident from Figure 6.9

that system accuracy increases with the duration of test utterances so a reliable

system can be developed when longer test utterances are available.
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6.6 Summary

This chapter discusses the use of spectrogram and cochleagram features for lan-

guage identification from very short speech utterances (0.8s on average). Bidirec-

tional long short-term memory (BLSTM) models are adopted to solve this complex

problem of LID for limited duration speech data. Several configurations of BLSTM

models are explored and compared. This study indicates that MFCC features are

more robust than GFCC features for speech data recorded in various acoustical

environments, with various quality mobile phones and network operators.

In addition, BLSTM models trained using MFCC and GFCC features are also

merged together to take advantage of both feature sets. It is observed that the

merged models approach outperforms the individual models. However, by looking

at the confusion matrix given in Table 6.4, it is observed that the system confuses

among languages which are acoustically and geographically close, such as Punjabi

and Pashto and Sindhi and Balochi.



Chapter 7

A Capsule Network Based

Approach for Language

Identification

A resurgence of deep learning-based techniques has revived the use of neural net-

works for acoustic modeling. In particular, convolutional neural networks (CNN)

and RNN are widely used for audio signals detection and classification [95]. Recur-

rent neural networks can capture long time dependency and CNN show strength

in detecting local features. A variant of RNN i.e. BLSTM is used for language

identification in Chapter 6 and it is observed that BLSTM system outperforms

the i-vector system. However, training of RNNs based network is computationally

more expensive than CNN based network and takes a longer time than CNNs.

Therefore, for tasks that have short time dependency such as keyword spotting or

phoneme-level recognition, CNN based systems are still taking an active part of

research and show competitive performance.

However, convolution neural network are not good in capturing spatial relation-

ships of low level features. To solve this issue usually deep network or method

of max-pooling is used. Whereas, max-pooling leads to the loss of valuable in-

formation by ignoring the neurons having minimum activation value. In speech

processing, spatial relationship between speech features play an important role.

80
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In traditional speech processing, different information e.g. pitch and formant fre-

quencies are extracted from the spectrogram. The spatial information of these

features in frequency and time domain decide what spectrogram represents. Ex-

isting CNNs based speech processing system were missing the spatial information

of these features, which can be overcome by applying the capsule network.

Ispired by this, in this chapter we propose a capsule network based framework

for language identification, as shown in Figure 7.1. This is motivated by capsule

networks (CapsNet) [36], which have shown promising results in the area of im-

age classification, text classification [119], sound event detection [63] and speech

recognition [7]. A set of experiments are conducted while varying factors such as

number of convolution layers for feature detection, the kernel size, channel size to

find the best capsule network model. Details of architecture and experiments are

provided in subsequent sections.

7.1 Capsule Network

Proposed network is a variant of network proposed by Sabour et al. [93]. It consists

of two parts: (1) encoder and (2) decoder. Details of these parts are provided in

subsequent sections.

7.1.1 Encoder

Encoder part of network takes X ∈ RF×T as input and learns to decode it into a

16 dimensional vector of instantiation parameters. Encoder is comprised of three

parts, (1) feature detection: group of convolutional layers, (2) primary capsule:

replace the scalar output of feature detector to vector output and (3) language

capsule layers: build parent-child relationship.
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Figure 7.1: Proposed approach architecture which comprised of two parts:
(1) encoder (2) decoder

7.1.1.1 Feature Detection Layers

Multiple convolutional layers are used to detect local features from the input fea-

tures. Feature vector X ∈ RF×T with zero padding is fed to the feature selection

layers, where F represents number of frequency bins and T is number of frames in

an utterance. Output of feature detection stage is vector H ∈ RM×F 1×T , where M
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is number of feature map of last convolution layer, F 1 is the number of frequency

bands after pooling. Number of convolution layers, kernel size and number of

filters are optimized for each data-set.

7.1.1.2 Primary Capsule (PrimaryCaps) Layer

Primary capsule layer is used to convert scalar output of feature detector's con-

volution layer to vector-output. Primary capsule layer consists of P convolutional

capsule layers with C channels. Each channel is comprised of 8-dimensional cap-

sules. These capsules work as low level capsules, which are forwarded to the

LangCaps layer. During experimentation, values of P and C are optimized for

each dataset.

7.1.1.3 Language Capsule (LangCaps) Layers

In LangCaps layers, outputs of low level capsules ui are used to calculate prediction

vectors of high level capsules ûj|i, by multiplying with a weight matrix Wij, as

shown in Equation 7.1

ûj|i = Wijui (7.1)

Wij = [M ×N ] (7.2)

Dynamic routing process proposed by Sabour et al. [93] is applied for selection

of the these prediction vectors on the basis of similarity between each high level

capsule's output and its prediction vectors. Connection weight between prediction

vector and high level capsule's depends on the similarity between them, more

similarity results in larger connection weight. Contribution of prediction vector to

its corresponding high level capsule can be further increased by weight gain.

Let vj denotes the output of high level capsule and ui represents the output of low

level capsule, then vj can be computed using Equation 7.3.

vj =
‖sj‖2

1 + ‖sj‖2

sj
‖sj‖2

(7.3)

Where sj represents its total input, which is a weighted sum over all prediction

vectors uj|i and can be calculated using Equation 7.4
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sj =
∑
i

cijûj|i (7.4)

Where cij denotes the coupling coefficients, which are determined by the dynamic

routing process [93], which fulfills the idea of assigning parts to wholes. These

coefficients represent amount of agreement between low level capsule i and high

level capsule j. cij calculates how likely low level capsule i can activate high level

capsule j, strong agreement between the properties of i and j results in higher cij.

Sum of the coupling coefficients between low level capsule i and all the capsules in

the layer above i is equal to 1. Coupling coefficients are determined using Equation

7.5.

cij =
exp(bij)∑
k exp(bik)

(7.5)

Where bij denotes the initial logits i.e. log prior probabilities that low level capsule

i should couple with high level capsule j. Initially, bij are set to be 0 and re-

computed in each iteration, by the similarity between prediction vector and high

level capsule joutput vj.

bij ← bij + ûj|i.vj (7.6)

Margin loss of each language capsule k is calculated using Equation 7.7

Lk = Tkmax(0,m+ − ‖vk‖)2 + λ(1− Tk)max(0, ‖vk‖ −m−)2 (7.7)

Where Tk is 1 iff class k exists, m−, m+ and λ are hyper-parameters and set to

0.9, 0.1 and 0.5, respectively.

7.1.2 Decoder

Decoder part of network takes a sixteen dimensional vector from the correct Lang-

Caps and learns to decode it into spectrogram of a language. During network

training, decoder only utilize the correct LangCaps vector whereas, incorrect vec-

tors are ignored. In network, decoder serve as a regularizer, it takes output vector
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of the correct LangCaps as input and learns to recreate an F × T spectrogram.

Euclidean distance between the re-generated spectrogram and input spectrogram

is used as loss function. Decoder part force capsules to learn features that are

useful for re-generating the original spectrogram.

Two feed-forward fully connected (FC) layers are used in decoder part. Each

output of the LangCaps gets weighted and directed into each neuron of the first

FC layer as input. First FC layer takes D × L inputs that are all directed to 512

neurons. Therefor, there are D × L × 512 trainable parameters, where D is the

dimension of LangCaps's vector and L is the number of languages. Output of the

first FC layer is fed to the second FC layer having 256 neurons.

7.2 Feature Extraction

Spectrogram extracted from raw signals sampled at 8 kHz are used as input to

this network. Spectrogram of speech recordings consisting of 128 frequency bins

for each 20ms frame, with a 10ms overlapping Hamming window are extracted,

resulting feature matrix X ∈ RS×F×T . Where S is number of samples, F is number

of frequency bins and T is number of frames. Extracted feature matrix is fed to

the network as input.

7.3 Experiment Setup

The network hyper-parameters optimization was obtained by means of a random

search strategy for each dataset. The number and the shape of convolutional layers

in feature detector, size of primary capsule, LangCaps dimensions and the maxi-

mum number of routing iterations have been varied. Hyperparameters used in the

proposed approach for dataset-1 and dataset-2 are provided in Table 7.1 and Table

7.1, respectively. Each capsule network is optimized using Adam optimizer [52],

a widely used optimization method with an initial learning rate of 103. Rectified

linear unit (ReLU) [79] is used for activation of convolution and fully connected

(FC) layers. The dropout rate of 0.25 is set to the each FC layer. To minimize the

overfitting, batch normalization [43] is also applied. For dynamic capsule routing,

three iterations are used.
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Capsule network model is implement in Python, using the Keras [16] neural net-

work library, running on top of Tensorflow. Experiments are conducted on a

machine with NVIDIA GeForce GTX 1080 GPU with 8GB of memory and 32GB

RAM. Capsule networks are trained and evaluated using the dataset-1 and dataset-

2, separately.

7.4 Results and Discussion

Two sets of experiments are conducted: (1) language identification for very short

utterances i.e. dataset-1 and (2) language identification for relatively long utter-

ances i.e. 3-seconds using dataset-2.

7.4.1 Dataset-1 Results

The LID accuracy attained by optimized model on the training and validation

data at different training epochs is shown in Figure 7.2.

Figure 7.2: Capsule network based model accuracy on the training and vali-
dation data over 80 Epochs

Results reported in Table 7.3 show both the best performance achieved using

capsule network and baseline system results (merged BLSTM model reported in

Chapter 6). Results show recall for each language , un-weighted average recall

(UAR) and EER using the baseline system and capsule network. It is evident
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from Table 7.3 that capsule network based LID system outperforms, with overall

gain of 7.42% .

Table 7.3: Recall for each language and the un-weighted average recall (UAR)
on the test set of dataset-1 using capsule network

Balochi Pashto Pujabi Saraiki Sindhi Urdu UAR EER

Baseline system 84 60 49 94 58 30 62.50 18.36

Capsule network 70 83 44 77 88 59 69.92 14.42

Table 7.4 shows both the confusion and discrimination performance of capsule

network based LID system considering all language pairs in the form of a confusion

matrix.

Table 7.4: Confusion matrix dataset-1, ground truth is represented in the
Y-axis while the predicted language is represented in the X-axis

Balochi Pashto Punjabi Saraiki Sindhi Urdu

Balochi 191 15 25 8 3 32

Pashto 9 227 11 3 2 23

Punjabi 19 36 120 15 13 72

Saraiki 19 1 4 214 9 30

Sindhi 6 3 8 7 240 9

Urdu 33 29 20 19 11 158

7.4.2 Dataset-2 Results

The LID accuracy attained by optimized model on the training and validation

data of dataset-2 at different training epochs is shown in Figure 7.3.
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Figure 7.3: Capsule network based model accuracy on the training and vali-
dation data over 40 Epochs

Results reported in Table 7.5 show both the best performance achieved using

capsule network and baseline system. Results show recall for each language and

un-weighted average recall (UAR) using the baseline system and capsule network.

It is evident from results that capsule network based LID system outperforms.

Table 7.5: Recall for each language and the un-weighted average recall (UAR)
on the test set of dataset-2 using capsule network (%)

Pashto Pujabi Saraiki Sindhi Urdu UAR EER

Baseline system 94 69 85 82 66 79.27 13.58

Capsule network 89 63 90 80 84 81.20 10.27

In order to analyze both the confusion and the discrimination performance of

the systems considering all the languages pairs, Table 7.6 shows the confusion

matrix of the capsule network based LID system. This confusion matrix shows

that majority of the test utterances are predicted correctly using the LID system

based on capsule network, however, Urdu -Punjabi confusion is still noticeable.
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Table 7.6: Confusion matrix dataset-2, target language is shown in the Y-axis
while the predicted language is shown in the X-axis

Pashto Punjabi Saraiki Sindhi Urdu

Pashto 99 1 1 3 7

Punjabi 1 70 5 14 21

Saraiki 3 2 100 5 1

Sindhi 3 2 8 89 9

Urdu 1 10 2 5 93

7.5 Summary

This chapter focuses on the automatic spoken language identification using capsule

network. The proposed approach of capsule network use convolutional neural

network as feature detector. Several capsule layers are designed to effectively

select representative frequency bands for each individual language. Experiment

results shows that the proposed approach outperforms the previous state-of-the-art

i-vector, BLSTM and merged BLSTM methods.

Language identification based on capsule network based performed better than the

baseline models, irrespective of utterance duration. From this, we can conclude

that capsule networks could capture the speech features very efficiently. Moreover,

this approach is flexible to develop LID system for a language with minimum

amount of training data.



Chapter 8

Conclusions and Future Work

This research focuses on the automatic spoken language identification of six major

Pakistani languages namely Balochi, Pashto, Punjabi, Saraiki, Sindhi and Urdu.

The motivation of the work presented in this thesis was to explore different speech

features and existing language identification frameworks for Pakistani languages.

This thesis mainly focuses on the utilization of acoustic features for automatic

spoken language identification (LID) of very short utterance. This thesis has

proposed the bidirectional long short term memory neural network framework for

spoken language identification. This research will also be useful for retrieval and

translation of multimedia content of Pakistani language as more and more local

multimedia content is becoming available online. This research yields a number

of original contributions in the area of LID, especially for Pakistani languages.

In this thesis, design and collection of telephonic speech corpus of Pakistani lan-

guages is discussed. Speech corpus is collected from native speakers of each lan-

guage and transcription of each utterance in X-SAMPA format and in orthographic

form is also prepared. The developed speech corpus is about 10.43 hours telephonic

channel read speech, collected from 316 native speakers differing in gender, age

and educational background. The collected database is divided into training and

evaluation sets. This corpus is later on used for the development of language

identification system.

Different acoustic features including Mel-frequency cepstral coefficients (MFCC),

91
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gammatone frequency cepstral coefficients and perceptual linear prediction are em-

ployed for LID. Starting from GMM-UBM as baseline LID system, I-Vector based

LID system is also developed. In order to increase the identification accuracy,

different configuration of number of Gaussian and i-vector dimensions are inves-

tigated. The performance of the systems is evaluated on very short utterances

and on test data of 3-seconds. Experimental results showed that I-vector based

LID system outperformed GMM-UBM system. It is also evident from results that

system accuracy improves with the duration of test utterance.

An end-to-end language identification system for very short utterances using bidi-

rectional long short term memory neural networks is proposed. In this chapter,

two BLSTM networks and trained using the spectrogram and cochleagram based

feature vectors. Networks are optimized individually in context of number of layers

and layers size. This work also proposed an approach to merge optimized BLSTM

networks, to get the joint benefits of features. Merged output is forwarded to

fully connected dense layers. Experimental results showed the superior ability of

language identification using the cochleagram features based BLSTM. It is shown

in results that merging of these BLSTM networks achieved good performance.

In addition to RNN based language identification, an end-to-end language identifi-

cation system based on capsule network is also proposed. Optimal architecture of

capsule network is found through random search strategy. Compared to i-vector

and merged BLSTM models, the capsule network based LID system achieved much

better results for very short utterances(Dataset-1) and 3-second test utterances

(Dataset-2).

8.1 Future Work

During this research we have notably pushed forward the state of the art in LID

but various parts of this work still have potential for more research. To cite just

the ones that could be investigated in short to medium time are discussed below.

This thesis investigates various acoustic features such as MFCC, GFCC and PLP

for language identification, Moreover, combined effect of these features is also
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investigated. Feature extraction process can be expanded by extracting comple-

mentary information related to the phonotactic and prosodic properties of data.

It may be beneficial to use complementary prosodic and phonotactic information

along the acoustic features for the development of the LID system. Moreover, for

phonotactic feature extraction there is a need to develop a phone decoder covering

phonemes set of Pakistani languages. The available phone decoders can not be

effectively used for South Asian languages that have different phonetic character-

istics compared to the European languages.

The biggest challenge in the development of LID system for languages spoken

in Pakistan is the availability of training speech data. Resources such as OGI

or CallFriend do not exist for these under-resource languages. Initially, we have

recorded the telephone speech data of six mostly spoken languages and there is

need to continue work in this direction.

In this study, a linear classification technique was investigated for LID system. As

an extension to this work, hierarchical classification can be adopted to initially

classify languages into family groups and then make fine-grained between them.

Instead of utilizing single feature set, different feature vectors can be employed at

each level for better discrimination among languages.
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