

55

Improving Time Efficiency of TF-IDF Algorithm for Dynamic Data Streams

Sidra Saher, Qurat-ul-Ain Akram*, Kashif Javed and Sarmad Hussain
Al-Khawarizmi Institute of Computer Science

(University of Engineering and Technology, Lahore)
{sidra.sehar, ainie.akram*, kashif.javed, sarmad.hussain}@kics.edu.pk

Abstract

 Different applications including search engines,
plagiarism detection systems and recommender systems
need to crunch the data frequently after a specific period
of time. The data indexing and retrieval for such
applications is becoming popular research area due to
availability of huge electronic content through Internet,
which is growing rapidly on daily basis. TF-IDF based
term weighting scheme is commonly used to extract
features of a document which are used for relevant
document searching. In this paper, TF-IDF algorithm is
analyzed and an efficient implementation of TF-IDF
algorithm is proposed to handle such dynamic text data.
Two major improvements of the traditional TF-IDF
algorithm are proposed; (1) Algorithm-1: Expansion of
IDF using logarithm properties and (2) Algorithm-2:
Store lookup of term frequency, document frequency and
IDF for reuse in next batch and efficiently update IDF of
terms. The systems are evaluated on dataset of 100,000
Urdu documents. Traditional TF-IDF algorithm takes
2676520 ms (10256 ms for IDF calculation) to process
complete dataset. Algorithm-1 takes 2676272 ms (10008
ms for IDF calculation), showing time efficiency in IDF
calculation. Algorithm-2 is specifically designed to
handle the dynamic growth of the data, which calculates
the new IDF of a term using the previously computed
IDF. This algorithm takes 707823 ms to process 100,000
documents. Another contribution of this study involves
reduced memory consumption for TF-IDF vectors using
the sparse representation of vectors. This reduces
8,945,445 MB to 353 MB to store TF-IDF of 11,724,976
terms computed from 100,000 Urdu documents.

1. Introduction

Due to rapid advancement in the development of
Information and Communication Technologies (ICTs),
electronic content is easily accessible in the form of
blogs, online articles, books, magazines, newspapers,
research papers and theses etc. To provide real time
accessibility of the relevant content, an efficient
information retrieval system is important. The research
in the fields of data mining, search engines and similarity

computation among documents for plagiarism detection
is becoming popular to handle huge dynamic text data
which is increasing on a daily basis. Processing of such
large dataset is a challenging task. To develop such
applications, text data is processed in such a way so that
meaningful information can be extracted efficiently.

Various term weighting schemes such as Mutual
Information, Okapi, LTU [1-3]and TF-IDF are used to
process massive datasets. Among all these schemes, TF-
IDF based term weighting scheme is commonly used
technique [4] to extract features of the document which
are used for searching the relevant document, text
mining and text classification etc.

To process the text for similarity computation, data is
processed and converted into the structured form which
can easily be used for similarity computation. For this,
three structures are used for document representation,
which include inference network [5], probabilistic [6]
and Vector Space Model (VSM). Among all these
models, VSM is most widely used model [7]. The VSM
contains a vector representation of weighted terms of a
document.

There are two ways to find the similarity between the
documents; (1) Local similarity and (2) Global
similarity. Local similarity refers to the technique which
tries to find the sequence of words which are same in two
documents. Usually cosine similarity based on vector
space model of terms (n-grams, n>1) is used to find the
similarity between two documents. However, Global
similarity based techniques rely on the unigram do not
cover the context. The similarity results of such
technique are meaningless in cases when two documents
have exactly similar terms but their sequence is never the
same. Therefore, researchers prefer to use local
similarity for applications which requires sequence of
the words to be matched [8].

For huge datasets, term weighting schemes are
applied for query retrieval or similarity calculation
purposes. A lot of research in this area has emphasized
on importance of using phrases as terms. Due to
improved accuracy of results, bigram and trigram based
phrases are preferred over unigrams [9]. In case of
Global similarity [8], similarity score between two
documents is highly unreliable. Therefore, we cannot
predict the documents to be exactly similar irrespective

56

of high similarity score. Due to this reason, trigrams are
used as terms for enhanced accuracy of the system.

To develop real time system for search engine,
plagiarism detection system etc. huge amount of dataset
is required. In addition, it is also essential to find the
document similarity with minimum time. Hence, term
weighting scheme needs to be implemented efficiently.
The re-computation of term weights in case of
dynamically growing data on daily basis is also
challenging, even if there is small change in the actual
content. The major contributions of this study are given
below
· Algorithm-1 incorporates an efficient implementation

of TF-IDF calculation for huge data.
· Algorithm-2 is an efficient implementation of TF-IDF

calculation for dynamically growing data on daily
basis.

· The memory consumption of TF-IDF vectors is also
reduced by using sparse representation of vectors
instead of dense vector representation.
 The rest of the paper is organized as follows: Section

2 describes related work. Section 3 provides explanation
of proposed algorithm by using logarithm properties and
lookup storage to improve computational time of TF-
IDF. Section 4 involves a brief discussion of dataset used
for experimentation. The experimental evaluation and
their results are discussed in Section 5 and finally
Section 6 concludes research study.

2. Related work

The idea of inverse document frequency was first
proposed by Jones [10]. Jones emphasized the idea of
specificity by introducing the concept of collection
frequency i.e. the words which are less frequent in a
collection should have more weight [10]. Salton and Yu
[11] used same technique in information retrieval and
observed retrieval effectiveness by using precision and
recall as evaluation metrics [11]. In addition, Salton and
Yu [11] also figured out that the TF-IDF algorithm
performed well in document retrieval. TF-IDF is a term
weighting scheme which assigns weights to terms
depending on their significance in the corpus. Its major
principle is based on the fact that a more frequent term
in a document with less frequency in overall documents
(i.e. document frequency) will have high TF-IDF weight
and vice-versa.

The calculation of TF-IDF is carried out using (1)
which is based on the term frequency (TF) and inverse
document frequency (IDF), and are calculated by using
following equations

 �� � ������ �� � ����� �� � ������ (1)
Term frequency is calculated as follows
 ����� �� � ����� �� � �� � (2)

Where t, d stands for term (i.e. trigrams in this study) and
document respectively. The IDF is calculated using (3)

 IDF�t� � log �
������������

�����
� (3)

Where, TotalDocSize is the total number of

documents in the corpus, which is processed to compute
the TF-IDF of all terms in corpus. In addition the DF is
the Document Frequency which is computed using (4).

DF�t� � � td������������
��� �

td � � if t in d�

td � � otherwise

 (4)

 Where td denotes the presence of a term in a

document.
The calculation of the IDF is further improved by

using the concept of smoothing introduced in [12] as can
be seen in (5).

 IDF�t� � � � log�
��������������

�������
� (5)

TF-IDF is extensively explored to utilize TF-IDF for
text classification, document retrieval and plagiarism
detection systems [13-15]. A lot of research is done to
improve TF-IDF algorithm in terms of accuracy [14, 16,
17]. In addition, a few efficiency improvements of the
TF-IDF are also suggested. Bin and Yuan [18] presented
a technique for the efficient computation of TF-IDF from
large data using Hadoop as main framework. Hadoop
supports data distribution on multiple machines. In
addition Map/Reduce scheme was also used for fast
calculation of TF-IDF. The main shortcoming of the
work [18] is that the data is assumed to be static which
means data will not be updated once it would be indexed.
Gu et al. [19] used parallel cloud computing framework
which is based on GPU and MapReduce to improve the
efficiency of TF-IDF algorithm.

3. Methodology

In context of document relevance, n-grams based

similarity calculation is used to provide very accurate
results with emphasis on use of trigrams as a term [9].
TF-IDF algorithm uses VSM to represent TF-IDF
computed over each document in complete corpus. In
this study, an efficient implementation of TF-IDF is
proposed. As a first step, Traditional Algorithm of TF-
IDF calculation is implemented with efficient lookup of
term frequency and document frequency. Algorithm-1 is
proposed which involves improvement in time by use of
logarithmic expansion for IDF formula. Most of the real
world applications like search engines, plagiarism
detection systems and other information retrieval

57

applications have dynamically growing data. Addition of
a few more documents compels recalculation of weights
of all terms in all the documents. Therefore, Algorithm-
2 is designed in such a way that when a huge corpus is
indexed using TF-IDF term weighting scheme. The term
frequency, document frequency and inverse document
frequency lookups are stored. These lookups are then
used to update TF-IDF on increment of new documents.
In this way, term frequency of only newly updated
documents is calculated. The IDF of new terms is
calculated using document frequency lookup. The terms
which do not occur in newly updated documents undergo
a slight update in their already computed IDF values. It
reduces the overhead of re-computation and improves
efficiency. The overhead of memory is also reduced by
conversion of dense representation of TF-IDF vector to
sparse representation.

3.1. Traditional TF-IDF Algorithm

A very simple implementation for TF-IDF calculation
is carried out in [20]. The implementation of this
algorithm is computationally analyzed and an efficient
implementation is proposed to reduce the redundant
calculations. In order to reduce computational time, TF
and DF for all documents is calculated within the same
iteration over all documents. This reduces a lot of
computational time. Separate lookup is maintained for
each document to store the TFs. For document frequency
a global DF lookup is created to maintain the document
frequency of each term.

Once, the complete global DF lookup is maintained
over all the documents, another lookup is also
maintained for IDF (using (5)) by iterating over global
DF lookup. For TF-IDF calculation, it will iterate over
each term of every document just once and use the values
of TF and IDF stored in respective lookups.

3.2. Algorithm-1

The original equation for IDF i.e. (5) is analyzed
further. By applying the logarithm this computation is
further reduced as can be seen in (6).

IDF�t� � � � log�TotalDocSize � �� �
 log �DF�t� � �� (6)

As can be seen in (6), �� � log�TotalDocSize �
��� will be calculated only once for all the terms of all
the documents. In addition log �DF�t� � �� requires to be
computed for each term and another subtraction
operation is required. In addition, running time of
division operation for n-digit number is ����� and
running time of subtraction operation is ����, thus
saving more computational effort [21].

 In traditional TF-IDF algorithm, the expression
����������������� � ��������� � ��� is calculated P
times i.e. time complexity is O(P), where P denotes total
number of terms in global term lookup but due to this
algorithmic modification redundant calculation of
log�TotalDocSize � ��� will be reduced to single time
calculation i.e. time complexity is reduced to O(1).

3.3. Algorithm-2

Various real time information retrieval and online
text similarity based applications such as plagiarism
detection system and search engines are based on
indexing of huge data. Majority of these systems are
developed to handle dynamic data, resulting in
incorporation of the results computed on the newly
indexed and already indexed data. This is usually carried
out by indexing the complete data (new and old
documents). Once, a significant amount of data is
processed (e.g. 5.5 million documents) then number of
new documents is minimum may be 1-3% of the already
indexed content. The document metadata information
(document name, URL, last modified date, etc.) is also
maintained while developing such huge systems.
Therefore, before starting indexing of complete dataset
(existing and new), document filtering can be applied on
recently crawled data to filter all those documents which
are not indexed previously based on metadata
information. These documents are referred to as
NewBatch and remaining documents which are already
indexed documents are referred to as PreviousBatch. The
NewBatch and PreviousBatch terminology is used
throughout this paper.

In order to re-index complete data including data of
PreviousBatch and NewBatch, a lot of computational
effort and time will be utilized. Although, the number of
documents in NewBatch is minimal. Based on analysis,
a term can be categorized into one of the following
categories
· New Terms: Terms which are only present in

NewBatch.
· Common Terms: Terms which are present in both

PreviousBatch and NewBatch.
· Old terms: Terms which are only present in

PreviousBatch.
For new terms, term frequency, document frequency

and inverse document frequency are computed using (2),
(4) & (6) respectively, from documents in NewBatch.
The DFs of terms which are common between
PreviousBatch and NewBatch are computed from
NewBatch and will be added in DFs of respective terms
already stored in the respective DF lookup of
PreviousBatch. Then, the IDF and TF-IDF are computed
using the same traditional way.

58

Inverse document frequency of old terms which are
only present in PreviousBatch is not required to be
recomputed for obvious reasons. As document
frequency lookup, inverse document frequency lookup
and term frequency lookup of each term of the
PreviousBatch are also maintained and stored separately
to minimize the re-computation time. Thus IDFs of old
terms can be calculated from already computed IDFs in
PreviousBatch by addition of an expression dependent
only on document size of PreviousBatch and NewBatch.

In order to calculate the IDF for old terms during re-
indexing of the dynamically growing data, the respective
IDFs of the PreviousBatch are processed in such a way
that DocSize of the NewBatch denoted with
NewDocSize, is incorporated. More precisely the IDFs
are calculated using (6). Equation 6 for PreviousBatch
can be written as follows

IDF�������� � � � log��PreviousDocSize � ��� �

log �DF�t� � �� (7)
We can modify (7) for incorporating TotalDocSize

when NewBatch is indexed with PreviousBatch.

IDF��� � � � log��PreviousDocSize � �� � x� �

 log �DF�t� � �� (8)
Where PreviousDocSize denotes the number of

documents in PreviousBatch and x denotes the number
of documents in NewBatch.

The term log��PreviousDocSize � �� � x� can be
further solved by simplifying the expression in
logarithm. Let k denotes the term �PreviousDocSize �
��, then the term ����� � �� can be written as [22]

��� �k � x� � ��� �k �� �
x

k
��

Substituting value of k in (8), following expression
is obtained

IDF��� � � � ��� � �PreviousDocSize � �� �

�� �
�

�������������������
�� � log �DF�t� � �� (9)

Using Multiplicative property of Logarithm in (9)

IDF��� � � � log �� �
x

�PreviousDocSize � ��
�

� log�PreviousDocSize � ��
� log �DF�t� � ��

� � � log�PreviousDocSize � �� � lo g�DF�t� � ��

 �log �� �
x

�PreviousDocSize � ��
�

Clearly, the bold part is the same as (7). It can be
replaced with Previous IDF value.

IDF��� � IDF��������

� log �� �
x

�PreviousDocSize � ��
�

 (10)
Equation 10 shows that we can update IDF of old

terms by addition of an expression dependent on
NewDocSize and PreviousDocSize. This expression
needs to be calculated only once before update of IDF of
all the old terms.

The main advantage of using this approach is that
instead of calculating IDF of old terms incorporating the
total document size, we just need to calculate the

expression log �� �
�

�������������������
� only once

which is based on PreviousDocSize and x i.e.
NewDocSize. This approach works well for vast
dynamic data streams when data is being updated
frequently. In such cases IDFs can be efficiently updated
without any redundant re-computations.

3.4. Avoiding Extra Memory Consumption

Next step involves intelligent representation of TF-

IDF vector so that it occupies less space in memory. The
TF-IDF vector size for each document is the total terms
computed from the complete dataset. Since each
document does not contain all the terms therefore
majority of the terms contain zero in a document. To
solve this issue, dense representation of TF-IDF vector
of a document is converted to sparse by excluding terms
having TF-IDF value of zero. An example of dense to
sparse vector representation is given in Fig.1.

������ ���� ��� ��� ��� ��� ����

������ � �
�������� �����

������� ��� ��� ���

Fig.1 Dense and sparse representation

4. Dataset

Traditional Algorithm, Algorithm-1 and Algorithm-2

are tested on dataset of Urdu web pages and results are
evaluated.

5.7 Million Urdu web pages are crawled [23]. Their
dataset is not publically available as it is crawled from
various authenticated Urdu websites. A subset of this
dataset is selected for the performance evaluation of the
proposed algorithms. Therefore, 0.1 Million Urdu
documents are used for testing. The detailed statistics of
selected data is given in Table 1.

59

Table 1.Data statistics

Total Documents 100000
Average Words per Document 438
Average Lines per Document 10
Average words per line 34

5. Experiments and Results

Urdu has space insertion and deletion issues. Hence,
unlike English, the words cannot be extracted by
processing the space. To handle this issue, a pre-
processing is applied on the complete dataset to resolve
such issues. Urdu word segmentation is applied to the
dataset used for evaluation purpose, which converts the
sequence of Urdu ligature to the best sequence of Urdu
words of a sentence.

In addition, pre-processing is applied which involves
normalization, diacritics and punctuation marks
removal. Then content of a document is processed and
trigrams as terms are extracted and stored so that TF-IDF
weighting can be applied.

As a first experiment, 100,000 documents are
processed to compare the performance of Traditional
Algorithm and Algorithm-1. The results are given in
Fig.2. As can be seen in Fig.2, the Algorithm-1
outperforms Traditional Algorithm with efficient
computation results using the properties of logarithm.
Traditional Algorithm takes 2676520 ms to process
complete dataset for the computation of IDF, whereas
Algorithm-1 takes 2676272 ms to process same dataset
for IDF calculations.

As Algorithm-1 reduces redundant computations of
expression ����������������� � ��������� � �� by
employing logarithm properties, Moreover, it converts
division operation for IDF computation of each term to
subtraction operation. So, the difference between the
time taken for IDF calculation between Traditional
Algorithm and Algorithm-1 is somehow evident.

Fig.3. Time comparison for IDF calculation

The second experiment is carried out to find the

difference between execution time of Algorithm-1 and
Algorithm-2. While comparing IDF calculation time of
Algorithm-1 with Algorithm-2, we will also include the
execution time for document frequency calculation
along with IDF calculation time because we store the
lookups of document frequency along with IDF after the
execution of each batch. Due to this reason, redundant
document frequency and IDF calculation for common
and old terms in PreviousBatch and NewBatch are
minimized. This technique also reduces a lot of
computational effort and time.

By visualizing the trend in the graph as can be seen in
Fig. 3, it can be observed that increment of 20,000
documents within each new batch results in increased
execution time for both algorithms. However, this
increment in execution time is very mild in case of
Algorithm-2 and very rapid in case of Algorithm -1.

 Another point worth noticing is the trend of trigrams
within each batch. The total number of unique trigrams
in 100,000 documents is given by about 11 Million. If
each batch introduces 20,000 new documents.

Fig. 2. Time comparison for IDF calculation

9800

9900

10000

10100

10200

10300

T
im

e(
m

s)

Traditional Algorithm Algorithm-1

4000

9000

14000

19000

24000

29000

20000 40000 60000 80000 100000

T
im

e(
m

s)

Number of Documents

Algorithm-1 Algorithm-2

60

Table 2. Number of trigrams in each batch

There must be some terms which are not present in

PreviousBatch and hence their IDF is calculated using
(6). In our experiment 26% new terms are introduced in
each batch on average. Some terms are present in
previous and new batch as well hence their document
frequency is updated and then their IDF is calculated. In
our experiment, on average 7% common terms are
generated with each NewBatch. However, the old terms
are actually not being used in NewBatch and hence their
document frequency does not change compelling us to

update their IDF using the expression log �� �
�

�������������������
�. For each new batch, the IDF of 66%

of total trigrams need to be updated using (10) on
average. Their detailed statistics are shown in Table 2.

When evaluating Algorithm-2 in terms of accuracy,
we find out that Algorithm-2 exhibits 100% accuracy.
Although, it shows drastic reduction in computational
time but its accuracy is evaluated to be same as that of
Algorithm-1.

Third experiment as shown in Fig.4 is the pictorial
view of time efficiency of two proposed algorithms
executed over 5 batches for end to end TF-IDF
calculation.

While dividing batches, it is ensured that Algorithm-
1 is executed by increment of 20,000 documents in each
batch because Algorithm-1 does not store any lookup
for each batch. However, execution of Algorithm-2 is
carried out by dividing 100,000 documents into 5
batches. Each NewBatch contains 20,000 new
documents only and does not contain any document
from previous batch.

By viewing the bar values for Algorithm-1 in Fig.4,
it is evident that the time for TF-IDF calculation
increases with the increase in number of documents in
each batch. Algorithm-1 involves variation in (5) and

the effect of this variation is evident while IDF
calculation. Algorithm-2 involves storage of term
frequency, document frequency and IDF lookups after
execution of each batch. These lookups are then used in
NewBatch for IDF calculation, update and TF-IDF
calculation. Similarly, we can observe in Fig.4 that
Algorithm-1 takes 44 minutes for executing 100,000
documents whereas Algorithm-2 takes 11.7 minutes for
execution of 100,000 documents.

Forth experiment involves observing the extent of
memory reduction by incorporating sparse
representation of TF-IDF vectors created after TF-IDF
calculation. As total number of unique trigrams in 0.1
million documents is 11,724,976. So, creating TF-IDF
matrix will occupy � � ��� rows and about ���� �
���columns. This will make the total entries of matrix
as

No. of rows × No. of columns = ���� � ����entries
As each TF-IDF entry is stored as a double in

memory, so total memory consumed for TF-IDF matrix
of 0.1 million documents is given by 8735.787 GB. This
is practically almost impossible to store in main memory

By observing the vector of TF-IDF for each
document, it was found that they contain a lot of null
values and they are redundantly occupying memory. By
converting the dense representation to sparse
representation for each document. It was concluded that
the total number of non-zero terms in TF-IDF vectors of
100,000 documents are 30,841,481. So, for sparse
representation of 100,000 documents we need
30,841,481 double entries and same amount of integer
entries as shown in Fig. 1. So, total memory occupied
by TF-IDF vectors of 0.1 million documents will be 353
MB which is far less than space occupied by dense
representation. Thus, we save 8735.558 GB. This is
almost 99.996% reduction in memory being used in case
of dense representation.

Document
Batches

Total
Trigrams

New Trigrams in
current batch

Trigrams common
with previous batch

Trigrams only in
previous batch
(%of total trigrams)

Batch1(20,000) 3,239,453 None None None
Batch2(40,000) 6,238,318 2,998,865 732,171 2,507,282 (41%)
Batch3(60,000) 7,558,982 1,320,664 319,048 5,919,270 (78%)
Batch4(80,000) 9,743,136 2,184,154 833,066 6,725,916 (69%)
Batch5(100,000) 11,724,976 1,981,840 715,117 9,028,019 (77%)

61

Fig. 4 TF-IDF calculation using Algorithm-1 and Algorithm-2 over 5 batches

6. Conclusions and Future Work

In this research study, the efficiency of TF-IDF
algorithm is improved. The existing approaches for
efficiency improvements of TF-IDF algorithm for huge
amount of data involve hardware level enhancements
for parallel computing. Most of the work is based on
static data. In this paper, two algorithms are presented.
Algorithm-1 is slight modification of efficient
implementation of Traditional Algorithm. For 100,000
documents Traditional Algorithm takes 2676520 ms,
whereas Algorithm-1 shows an improvement of 248 ms
compared to Traditional Algorithm. On the other hand,
Algorithm-2 contains stored lookups of term frequency,
document frequency and IDF after execution of each
batch and these lookups are used for TF-IDF calculation
when each NewBatch is uploaded. It performs very well
when data for TF-IDF calculation is being updated
dynamically. In our experiment, for Algorithm-2,
100,000 documents are processed divided into 5
batches. Each batch exhibits an increment of 20,000
documents. Final batch has 100% accuracy and shows
drastic time efficiency compared to Algorithm-1 for
processing 100,000 documents. Algorithm-1 takes
2676272 ms whereas algorithm-2 takes 707823 ms for
execution of 100,000 documents.

Another major contribution involves employing
sparse representation of TF-IDF vectors. It saves a lot of
memory and reduces 8,945,445 MB to 353 MB to store

TF-IDF of 11,724,976 terms computed from 100,000
Urdu documents.

Future enhancements in this work include modifying
TF-IDF algorithm in such a way that we can execute it
on a number of machines concurrently and thus it will
divides the execution time of TF-IDF calculation
equivalent to the number of machines used for this
process.

7. References

[1] M.-G. Jang, S. H. Myaeng, and S. Y. Park, "Using

mutual information to resolve query translation
ambiguities and query term weighting," presented
at the Proceedings of the 37th annual meeting of the
Association for Computational Linguistics on
Computational Linguistics, College Park,
Maryland, 1999.

[2] S. E. Robertson and S. Walker, "Okapi/Keenbow at
TREC-8," in TREC, 1999.

[3] C. Buckley, A. Singhal, and M. Mitra, "New
Retrieval Approaches Using SMART: TREC 4," in
TREC, 1995.

[4] W. Na, W. Pengyuan, and Z. Baowei, "An
improved TF-IDF weights function based on
information theory," in 2010 International
Conference on Computer and Communication
Technologies in Agriculture Engineering, 2010,
vol. 3, pp. 439-441.

20000 40000 60000 80000 100000

Algorithm-1 71.0471 172.567 356.594 1983.7024 2676.272

Algorithm-2 70.338 132.275 196.96 1549.054 707.8235

0

500

1000

1500

2000

2500

3000
T

im
e(

S
ec

)

62

[5] H. Turtle and W. B. Croft, "Evaluation of an
inference network-based retrieval model," ACM
Trans. Inf. Syst., vol. 9, no. 3, pp. 187-222, 1991.

[6] K. Sparck Jones, S. Walker, and S. E. Robertson,
"A probabilistic model of information retrieval:
development and comparative experiments: Part 2,"
Information Processing & Management, vol. 36,
no. 6, pp. 809-840, 2000/11/01/ 2000.

[7] L. Guoping, K. Y. Lee, and H. F. Jordan, "TDM and
TWDM de Bruijn networks and ShuffleNets for
optical communications," IEEE Transactions on
Computers, vol. 46, no. 6, pp. 695-701, 1997.

[8] B. Stein and S. M. zu Eissen, "Near Similarity
Search and Plagiarism Analysis," in From Data and
Information Analysis to Knowledge Engineering,
Berlin, Heidelberg, 2006, pp. 430-437: Springer
Berlin Heidelberg.

[9] H. Chim and X. Deng, "Efficient Phrase-Based
Document Similarity for Clustering," IEEE
Transactions on Knowledge and Data Engineering,
vol. 20, no. 9, pp. 1217-1229, 2008.

[10] K. Sparck Jones, "A STATISTICAL
INTERPRETATION OF TERM SPECIFICITY
AND ITS APPLICATION IN RETRIEVAL,"
Journal of Documentation, vol. 28, no. 1, pp. 11-21,
1972.

[11] G. Salton and C. T. Yu, "On the construction of
effective vocabularies for information retrieval,"
SIGIR Forum, vol. 9, no. 3, pp. 48-60, 1973.

[12] S. F. Chen and J. Goodman, "An empirical study of
smoothing techniques for language modeling,"
Computer Speech & Language, vol. 13, no. 4, pp.
359-394, 1999/10/01/ 1999.

[13] S. Basnayake, H. Wijekoon, and T.
Wijayasiriwardhane, "Plagiarism detection in
Sinhala language: A software approach," Gloria
Scientiam - Golden Jubilee Commemorative
Volume, Faculty of Science, University of
Kelaniya (2017), 10/01 2017.

[14] H. Wu and N. Yuan, "An Improved TF-IDF
algorithm based on word frequency distribution
information and category distribution information,"
presented at the Proceedings of the 3rd
International Conference on Intelligent Information
Processing, Guilin, China, 2018.

[15] K. Sugathadasa et al., "Legal Document Retrieval
Using Document Vector Embeddings and Deep
Learning: Proceedings of the 2018 Computing
Conference, Volume 2," 2019, pp. 160-175.

[16] L. Cheng, Y. Yang, K. Zhao, and Z. Gao, "Research
and Improvement of TF-IDF Algorithm Based on
Information Theory," in The 8th International
Conference on Computer Engineering and
Networks (CENet2018), Cham, 2020, pp. 608-616:
Springer International Publishing.

[17] I. Yahav, O. Shehory, and D. Schwartz, "Comments
Mining With TF-IDF: The Inherent Bias and Its
Removal," IEEE Transactions on Knowledge and
Data Engineering, vol. 31, no. 3, pp. 437-450, 2019.

[18] L. Bin and G. Yuan, Improvement of TF-IDF
Algorithm Based on Hadoop Framework. 2012.

[19] Y. Gu, Y. Wang, J. Huan, Y. Sun, and W. Jia, An
Improved TFIDF Algorithm Based on Dual Parallel
Adaptive Computing Model. 2018, pp. 657-663.

[20] AdnanOquaish. (2019, 17- 09- 2019).
AdnanOquaish/Cosine-similarity-Tf-Idf-.
Available:
https://github.com/AdnanOquaish/Cosine-
similarity-Tf-Idf-

[21] En.m.wikipedia.org. (2019, 18-09-2019).
Computational complexity of mathematical
operations. Available:
https://en.m.wikipedia.org/wiki/Computational_co
mplexity_of_mathematical_operations

[22] E. Series and S. Art. (2019, 28-11-2019).
Mathematics Stack Exchange. Available:
https://math.stackexchange.com/questions/203332
4/express-lnx-with-a-3-as-taylor-series

[23] H. M. Shafiq, B. Tahir, and M. A. Mehmood,
"Towards building a Urdu Language Corpus using
Common Crawl," presented at the LKE 2019 : 7th
International Symposium on Language &
Knowledge Engineering, Dublin, Ireland, Oct 29,
2019 - Oct 31, 2019, 2019.

