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Abstract 
 
    Different applications including search engines, 
plagiarism detection systems and recommender systems 
need to crunch the data frequently after a specific period 
of time. The data indexing and retrieval for such 
applications is becoming popular research area due to 
availability of huge electronic content through Internet, 
which is growing rapidly on daily basis. TF-IDF based 
term weighting scheme is commonly used to extract 
features of a document which are used for relevant 
document searching. In this paper, TF-IDF algorithm is 
analyzed and an efficient implementation of TF-IDF 
algorithm is proposed to handle such dynamic text data. 
Two major improvements of the traditional TF-IDF 
algorithm are proposed; (1) Algorithm-1: Expansion of 
IDF using logarithm properties and (2) Algorithm-2: 
Store lookup of term frequency, document frequency and 
IDF for reuse in next batch and efficiently update IDF of 
terms. The systems are evaluated on dataset of 100,000 
Urdu documents. Traditional TF-IDF algorithm takes 
2676520 ms (10256 ms for IDF calculation) to process 
complete dataset. Algorithm-1 takes 2676272 ms (10008 
ms for IDF calculation), showing time efficiency in IDF 
calculation. Algorithm-2 is specifically designed to 
handle the dynamic growth of the data, which calculates 
the new IDF of a term using the previously computed 
IDF. This algorithm takes 707823 ms to process 100,000 
documents. Another contribution of this study involves 
reduced memory consumption for TF-IDF vectors using 
the sparse representation of vectors. This reduces 
8,945,445 MB to 353 MB to store TF-IDF of 11,724,976 
terms computed from 100,000 Urdu documents. 

  

1. Introduction 
 

Due to rapid advancement in the development of 
Information and Communication Technologies (ICTs), 
electronic content is easily accessible in the form of 
blogs, online articles, books, magazines, newspapers, 
research papers and theses etc. To provide real time 
accessibility of the relevant content, an efficient 
information retrieval system is important. The research 
in the fields of data mining, search engines and similarity 

computation among documents for plagiarism detection 
is becoming popular to handle huge dynamic text data 
which is increasing on a daily basis. Processing of such 
large dataset is a challenging task. To develop such 
applications, text data is processed in such a way so that 
meaningful information can be extracted efficiently.  

Various term weighting schemes such as Mutual 
Information, Okapi, LTU [1-3]and TF-IDF are used to 
process massive datasets. Among all these schemes, TF-
IDF based term weighting scheme is commonly used 
technique [4] to extract features of the document which 
are used for searching the relevant document, text 
mining and text classification etc. 

To process the text for similarity computation, data is 
processed and converted into the structured form which 
can easily be used for similarity computation. For this, 
three structures are used for document representation, 
which include inference network [5], probabilistic [6] 
and Vector Space Model (VSM).  Among all these 
models, VSM is most widely used model [7]. The VSM 
contains a vector representation of weighted terms of a 
document. 

There are two ways to find the similarity between the 
documents; (1) Local similarity and (2) Global 
similarity.  Local similarity refers to the technique which 
tries to find the sequence of words which are same in two 
documents. Usually cosine similarity based on vector 
space model of terms (n-grams, n>1) is used to find the 
similarity between two documents. However, Global 
similarity based techniques rely on the unigram do not 
cover the context. The similarity results of such 
technique are meaningless in cases when two documents 
have exactly similar terms but their sequence is never the 
same.  Therefore, researchers prefer to use local 
similarity for applications which requires sequence of 
the words to be matched [8]. 

For huge datasets, term weighting schemes are 
applied for query retrieval or similarity calculation 
purposes. A lot of research in this area has emphasized 
on importance of using phrases as terms. Due to 
improved accuracy of results, bigram and trigram based 
phrases are preferred over unigrams [9]. In case of 
Global similarity [8], similarity score between two 
documents is highly unreliable. Therefore, we cannot 
predict the documents to be exactly similar irrespective 



 

56 
 

of high similarity score. Due to this reason, trigrams are 
used as terms for enhanced accuracy of the system. 

To develop real time system for search engine, 
plagiarism detection system etc. huge amount of dataset 
is required. In addition, it is also essential to find the 
document similarity with minimum time. Hence, term 
weighting scheme needs to be implemented efficiently. 
The re-computation of term weights in case of 
dynamically growing data on daily basis is also 
challenging, even if there is small change in the actual 
content. The major contributions of this study are given 
below 
· Algorithm-1 incorporates an efficient implementation 

of TF-IDF calculation for huge data. 
· Algorithm-2 is an efficient implementation of TF-IDF 

calculation for dynamically growing data on daily 
basis.  

· The memory consumption of TF-IDF vectors is also 
reduced by using sparse representation of vectors 
instead of dense vector representation. 
 The rest of the paper is organized as follows: Section 

2 describes related work. Section 3 provides explanation 
of proposed algorithm by using logarithm properties and 
lookup storage to improve computational time of TF-
IDF. Section 4 involves a brief discussion of dataset used 
for experimentation. The experimental evaluation and 
their results are discussed in Section 5 and finally 
Section 6 concludes research study. 
 

2. Related work 
 

The idea of inverse document frequency was first 
proposed by Jones [10]. Jones emphasized the idea of 
specificity by introducing the concept of collection 
frequency i.e.  the words which are less frequent in a 
collection should have more weight [10]. Salton and Yu 
[11] used same technique in information retrieval and 
observed retrieval effectiveness by using  precision and 
recall as evaluation metrics [11]. In addition, Salton and 
Yu [11] also figured out that the TF-IDF algorithm 
performed well in document retrieval. TF-IDF is a term 
weighting scheme which assigns weights to terms 
depending on their significance in the corpus. Its major 
principle is based on the fact that a more frequent term 
in a document with less frequency in overall documents 
(i.e. document frequency) will have high TF-IDF weight 
and vice-versa.  

The calculation of TF-IDF is carried out using (1) 
which is based on the term frequency (TF) and inverse 
document frequency (IDF), and are calculated by using 
following equations 

      �� � ������ �� � ����� �� � ������             (1) 
Term frequency is calculated as follows 
                ����� �� � ����� �� � �� �                  (2)                                 

 
Where t, d stands for term (i.e. trigrams in this study) and 
document respectively. The IDF is calculated using (3) 
 

                         IDF�t� � log �
������������

�����
�                (3) 

 
Where, TotalDocSize is the total number of 

documents in the corpus, which is processed to compute 
the TF-IDF of all terms in corpus. In addition the DF is 
the Document Frequency which is computed using (4). 

 

DF�t� � � td������������
���      �

td � �       if t in d�

td � �    otherwise
       

                                                                                         (4)    
 
     Where td denotes the presence of a term in a 

document.  
The calculation of the IDF is further improved by 

using the concept of smoothing introduced in [12] as can 
be seen in (5).   

          IDF�t� � � � log�
��������������

�������
�               (5) 

TF-IDF is extensively explored to utilize TF-IDF for 
text classification, document retrieval and plagiarism 
detection systems [13-15]. A lot of research is done to 
improve TF-IDF algorithm in terms of accuracy [14, 16, 
17]. In addition, a few efficiency improvements of the 
TF-IDF are also suggested. Bin and Yuan [18] presented 
a technique for the efficient computation of TF-IDF from 
large data using Hadoop as main framework. Hadoop 
supports data distribution on multiple machines. In 
addition Map/Reduce scheme was also used for fast 
calculation of TF-IDF. The main shortcoming of the 
work [18] is that the data is assumed to be static which 
means data will not be updated once it would be indexed.  
Gu  et al. [19] used parallel cloud computing framework 
which is based on GPU and MapReduce to improve the 
efficiency of TF-IDF algorithm. 
 

3. Methodology 
 
In context of document relevance, n-grams based 

similarity calculation is used to provide very accurate 
results with emphasis on use of trigrams as a term  [9]. 
TF-IDF algorithm uses VSM to represent TF-IDF 
computed over each document in complete corpus.  In 
this study, an efficient implementation of TF-IDF is 
proposed. As a first step, Traditional Algorithm of TF-
IDF calculation is implemented with efficient lookup of 
term frequency and document frequency. Algorithm-1 is 
proposed which involves improvement in time by use of 
logarithmic expansion for IDF formula. Most of the real 
world applications like search engines, plagiarism 
detection systems and other information retrieval 
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applications have dynamically growing data. Addition of 
a few more documents compels recalculation of weights 
of all terms in all the documents. Therefore,  Algorithm-
2 is designed in such a way that when a huge corpus is 
indexed using TF-IDF term weighting scheme. The term 
frequency, document frequency and inverse document 
frequency lookups are stored. These lookups are then 
used to update TF-IDF on increment of new documents. 
In this way, term frequency of only newly updated 
documents is calculated. The IDF of new terms is 
calculated using document frequency lookup. The terms 
which do not occur in newly updated documents undergo 
a slight update in their already computed IDF values. It 
reduces the overhead of re-computation and improves 
efficiency. The overhead of memory is also reduced by 
conversion of dense representation of TF-IDF vector to 
sparse representation. 

 

3.1. Traditional TF-IDF Algorithm 
 

A very simple implementation for TF-IDF calculation 
is carried out in [20]. The implementation of this 
algorithm is computationally analyzed and an efficient 
implementation is proposed to reduce the redundant 
calculations. In order to reduce computational time, TF 
and DF for all documents is calculated within the same 
iteration over all documents. This reduces a lot of 
computational time. Separate lookup is maintained for 
each document to store the TFs. For document frequency 
a global DF lookup is created to maintain the document 
frequency of each term. 

Once, the complete global DF lookup is maintained 
over all the documents, another lookup is also 
maintained for IDF (using (5)) by iterating over global 
DF lookup. For TF-IDF calculation, it will iterate over 
each term of every document just once and use the values 
of TF and IDF stored in respective lookups. 

 

3.2. Algorithm-1 
 

The original equation for IDF i.e. (5) is analyzed 
further. By applying the logarithm this computation is 
further reduced as can be seen in (6). 

IDF�t� � � � log�TotalDocSize � �� �
                                 log �DF�t� � ��                            (6) 

As can be seen in (6), �� � log�TotalDocSize �
��� will be calculated only once for all the terms of all 
the documents. In addition log �DF�t� � �� requires to be 
computed for each term and another subtraction 
operation is required. In addition, running time of 
division operation for n-digit number is ����� and 
running time of subtraction operation is ����, thus 
saving more computational effort [21]. 

 In traditional TF-IDF algorithm, the expression 
����������������� � ��������� � ��� is calculated P 
times i.e. time complexity is O(P), where P denotes total 
number of terms in global term lookup but due to this 
algorithmic modification redundant calculation of 
log�TotalDocSize � ���  will be reduced to single time 
calculation i.e. time complexity is reduced to O(1).   

 

3.3. Algorithm-2 
 

Various real time information retrieval and online 
text similarity based applications such as plagiarism 
detection system and search engines are based on 
indexing of huge data. Majority of these systems are 
developed to handle dynamic data, resulting in 
incorporation of the results computed on the newly 
indexed and already indexed data. This is usually carried 
out by indexing the complete data (new and old 
documents). Once, a significant amount of data is 
processed (e.g. 5.5 million documents) then number of 
new documents is minimum may be 1-3% of the already 
indexed content. The document metadata information 
(document name, URL, last modified date, etc.) is also 
maintained while developing such huge systems. 
Therefore, before starting indexing of complete dataset 
(existing and new), document filtering can be applied on 
recently crawled data to filter all those documents which 
are not indexed previously based on metadata 
information. These documents are referred to as 
NewBatch and remaining documents which are already 
indexed documents are referred to as PreviousBatch. The 
NewBatch and PreviousBatch terminology is used 
throughout this paper. 

In order to re-index complete data including data of 
PreviousBatch and NewBatch, a lot of computational 
effort and time will be utilized. Although, the number of 
documents in NewBatch is minimal. Based on analysis, 
a term can be categorized into one of the following 
categories 
· New Terms: Terms which are only present in 

NewBatch. 
· Common Terms: Terms which are present in both 

PreviousBatch and NewBatch. 
· Old terms: Terms which are only present in 

PreviousBatch. 
For new terms, term frequency, document frequency 

and inverse document frequency are computed using (2), 
(4) & (6) respectively, from documents in NewBatch. 
The DFs of terms which are common between 
PreviousBatch and NewBatch are computed from 
NewBatch and will be added in DFs of respective terms 
already stored in the respective DF lookup of 
PreviousBatch. Then, the IDF and TF-IDF are computed 
using the same traditional way. 
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Inverse document frequency of old terms which are 
only present in PreviousBatch is not required to be 
recomputed for obvious reasons. As document 
frequency lookup, inverse document frequency lookup 
and term frequency lookup of each term of the 
PreviousBatch are also maintained and stored separately 
to minimize the re-computation time. Thus IDFs of old 
terms can be calculated from already computed IDFs in 
PreviousBatch by addition of an expression dependent 
only on document size of PreviousBatch and NewBatch. 

In order to calculate the IDF for old terms during re-
indexing of the dynamically growing data, the respective 
IDFs of the PreviousBatch are processed in such a way 
that DocSize of the NewBatch denoted with 
NewDocSize, is incorporated. More precisely the IDFs 
are calculated using (6). Equation 6 for PreviousBatch 
can be written as follows  

IDF�������� � � � log��PreviousDocSize � ��� �

log �DF�t� � ��                                              (7) 
We can modify (7) for incorporating TotalDocSize 

when NewBatch is indexed with PreviousBatch. 

IDF��� � � � log��PreviousDocSize � �� � x� �

 log �DF�t� � ��                                              (8) 
Where PreviousDocSize denotes the number of 

documents in PreviousBatch and x denotes the number 
of documents in NewBatch.  

The term log��PreviousDocSize � �� � x� can be 
further solved by simplifying the expression in 
logarithm. Let k denotes the term �PreviousDocSize �
��, then the term ����� � �� can be written as [22]   

��� �k � x� � ��� �k �� �
x

k
�� 

Substituting value of k in (8), following expression 
is obtained 

IDF��� � � � ��� � �PreviousDocSize � �� �
  

�� �
�

�������������������
�� � log �DF�t� � ��          (9) 

 
Using Multiplicative property of Logarithm in (9) 
 

IDF��� � � � log �� �
x

�PreviousDocSize � ��
�

� log�PreviousDocSize � ��
� log �DF�t� � �� 

 
� � � log�PreviousDocSize � �� � lo g�DF�t� � �� 

  �log �� �
x

�PreviousDocSize � ��
� 

Clearly, the bold part is the same as (7). It can be 
replaced with Previous IDF value. 

IDF��� � IDF��������

� log �� �
x

�PreviousDocSize � ��
� 

                                                                            (10) 
Equation 10 shows that we can update IDF of old 

terms by addition of an expression dependent on 
NewDocSize and PreviousDocSize. This expression 
needs to be calculated only once before update of IDF of 
all the old terms. 

The main advantage of using this approach is that 
instead of calculating IDF of old terms incorporating the 
total document size, we just need to calculate the 

expression log �� �
�

�������������������
�  only once 

which is based on PreviousDocSize and x i.e. 
NewDocSize.  This approach works well for vast 
dynamic data streams when data is being updated 
frequently. In such cases IDFs can be efficiently updated 
without any redundant re-computations.  

 

3.4. Avoiding Extra Memory Consumption  
 
Next step involves intelligent representation of TF-

IDF vector so that it occupies less space in memory. The 
TF-IDF vector size for each document is the total terms 
computed from the complete dataset.  Since each 
document does not contain all the terms therefore 
majority of the terms contain zero in a document. To 
solve this issue, dense representation of TF-IDF vector 
of a document  is converted to sparse by excluding terms 
having TF-IDF value of zero. An example of dense to 
sparse vector representation is given in Fig.1. 

������ ����  ���  ���  ���  ��� ���� 

������ � �
�������� �����

������� ��� ��� ���
 

 
Fig.1 Dense and sparse representation 

 

4. Dataset 
 
Traditional Algorithm, Algorithm-1 and Algorithm-2 

are tested on dataset of Urdu web pages and results are 
evaluated.  

5.7 Million Urdu web pages are crawled [23]. Their 
dataset is not publically available as it is crawled from 
various authenticated Urdu websites. A subset of this 
dataset is selected for the performance evaluation of the 
proposed algorithms. Therefore, 0.1 Million Urdu 
documents are used for testing. The detailed statistics of 
selected data is given in Table 1. 
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Table 1.Data statistics 

Total Documents 100000 
Average Words per Document 438 
Average Lines per Document 10 
Average words per line 34 

 

5. Experiments and Results 
 

Urdu has space insertion and deletion issues. Hence, 
unlike English, the words cannot be extracted by 
processing the space. To handle this issue, a pre-
processing is applied on the complete dataset to resolve 
such issues. Urdu word segmentation is applied to the 
dataset used for evaluation purpose, which converts the 
sequence of Urdu ligature to the best sequence of Urdu 
words of a sentence. 

In addition, pre-processing is applied which involves 
normalization, diacritics and punctuation marks 
removal. Then content of a document is processed and 
trigrams as terms are extracted and stored so that TF-IDF 
weighting can be applied. 

As a first experiment, 100,000 documents are 
processed to compare the performance of Traditional 
Algorithm and Algorithm-1. The results are given in 
Fig.2.  As can be seen in Fig.2, the Algorithm-1 
outperforms Traditional Algorithm with efficient 
computation results using the properties of logarithm. 
Traditional Algorithm takes 2676520 ms to process 
complete dataset for the computation of IDF, whereas 
Algorithm-1 takes 2676272 ms to process same dataset 
for IDF calculations. 

 
 

As Algorithm-1 reduces redundant computations of 
expression ����������������� � ��������� � �� by 
employing logarithm properties, Moreover, it converts 
division operation for IDF computation of each term to 
subtraction operation. So, the difference between the 
time taken for  IDF calculation between Traditional 
Algorithm and Algorithm-1 is somehow evident.

 
Fig.3. Time comparison for IDF calculation 

 
The second experiment is carried out to find the 

difference between execution time of Algorithm-1 and 
Algorithm-2. While comparing IDF calculation time of 
Algorithm-1 with Algorithm-2, we will also include the 
execution time for document frequency calculation 
along with IDF calculation time because we store the 
lookups of document frequency along with IDF after the 
execution of each batch. Due to this reason, redundant 
document frequency and IDF calculation for common 
and old terms in PreviousBatch and NewBatch are 
minimized. This technique also reduces a lot of 
computational effort and time. 

By visualizing the trend in the graph as can be seen in 
Fig. 3, it can be observed that increment of 20,000 
documents within each new batch results in increased 
execution time for both algorithms. However, this 
increment in execution time is very mild in case of 
Algorithm-2 and very rapid in case of Algorithm -1. 

 Another point worth noticing is the trend of trigrams 
within each batch. The total number of unique trigrams 
in 100,000 documents is given by about 11 Million. If 
each batch introduces 20,000 new documents.

Fig. 2. Time comparison for IDF calculation 
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Table 2. Number of trigrams in each batch 

 
There must be some terms which are not present in 

PreviousBatch and hence their IDF is calculated using 
(6). In our experiment 26% new terms are introduced in 
each batch on average. Some terms are present in 
previous and new batch as well hence their document 
frequency is updated and then their IDF is calculated. In 
our experiment, on average 7% common terms are 
generated with each NewBatch. However, the old terms 
are actually not being used in NewBatch and hence their 
document frequency does not change compelling us to 

update their IDF using the expression log �� �
�

�������������������
�. For each new batch, the IDF of 66% 

of total trigrams need to be updated using (10) on 
average. Their detailed statistics are shown in Table 2. 

When evaluating Algorithm-2 in terms of accuracy, 
we find out that Algorithm-2 exhibits 100% accuracy. 
Although, it shows drastic reduction in computational 
time but its accuracy is evaluated to be same as that of 
Algorithm-1. 

Third experiment as shown in Fig.4 is the pictorial 
view of time efficiency of two proposed algorithms 
executed over 5 batches for end to end TF-IDF 
calculation. 

While dividing batches, it is ensured that Algorithm-
1 is executed by increment of 20,000 documents in each 
batch because Algorithm-1 does not store any lookup 
for each batch. However, execution of Algorithm-2 is 
carried out by dividing 100,000 documents into 5 
batches. Each NewBatch contains 20,000 new 
documents only and does not contain any document 
from previous batch. 

By viewing the bar values for Algorithm-1 in Fig.4, 
it is evident that the time for TF-IDF calculation 
increases with the increase in number of documents in 
each batch. Algorithm-1 involves variation in (5) and 

the effect of this variation is evident while IDF 
calculation. Algorithm-2 involves storage of term 
frequency, document frequency and IDF lookups after 
execution of each batch. These lookups are then used in 
NewBatch for IDF calculation, update and TF-IDF 
calculation. Similarly, we can observe in Fig.4 that 
Algorithm-1 takes 44 minutes for executing 100,000 
documents whereas Algorithm-2 takes 11.7 minutes for 
execution of 100,000 documents.  

Forth experiment involves observing the extent of 
memory reduction by incorporating sparse 
representation of TF-IDF vectors created after TF-IDF 
calculation. As total number of unique trigrams in 0.1 
million documents is 11,724,976. So, creating TF-IDF 
matrix will occupy � � ��� rows and about ���� �
���columns. This will make the total entries of matrix 
as 

No. of rows × No. of columns = ���� � ����entries     
As each TF-IDF entry is stored as a double in 

memory, so total memory consumed for TF-IDF matrix 
of 0.1 million documents is given by 8735.787 GB. This 
is practically almost impossible to store in main memory 

By observing the vector of TF-IDF for each 
document, it was found that they contain a lot of null 
values and they are redundantly occupying memory. By 
converting the dense representation to sparse 
representation for each document. It was concluded that 
the total number of non-zero terms in TF-IDF vectors of 
100,000 documents are 30,841,481. So, for sparse 
representation of 100,000 documents we need 
30,841,481 double entries and same amount of integer 
entries as shown in Fig. 1. So, total memory occupied 
by TF-IDF vectors of 0.1 million documents will be 353 
MB which is far less than space occupied by dense 
representation. Thus, we save 8735.558 GB. This is 
almost 99.996% reduction in memory being used in case 
of dense representation. 

Document 
Batches 

Total 
Trigrams 

New Trigrams in 
current batch 

Trigrams common 
with previous batch 

Trigrams only in 
previous batch            
(%of total trigrams) 

Batch1(20,000) 3,239,453 None None None 
Batch2(40,000) 6,238,318 2,998,865 732,171 2,507,282 (41%) 
Batch3(60,000) 7,558,982 1,320,664 319,048 5,919,270 (78%) 
Batch4(80,000) 9,743,136 2,184,154 833,066 6,725,916 (69%) 
Batch5(100,000) 11,724,976 1,981,840 715,117 9,028,019 (77%) 



 

61 
 

Fig. 4 TF-IDF calculation using Algorithm-1 and Algorithm-2 over 5 batches 
 

6. Conclusions and Future Work 
 

In this research study, the efficiency of TF-IDF 
algorithm is improved. The existing approaches for 
efficiency improvements of TF-IDF algorithm for huge 
amount of data involve hardware level enhancements 
for parallel computing. Most of the work is based on 
static data. In this paper, two algorithms are presented. 
Algorithm-1 is slight modification of efficient 
implementation of Traditional Algorithm. For 100,000 
documents Traditional Algorithm takes 2676520 ms, 
whereas Algorithm-1 shows an improvement of 248 ms 
compared to Traditional Algorithm. On the other hand, 
Algorithm-2 contains stored lookups of term frequency, 
document frequency and IDF after execution of each 
batch and these lookups are used for TF-IDF calculation 
when each NewBatch is uploaded. It performs very well 
when data for TF-IDF calculation is being updated 
dynamically. In our experiment, for Algorithm-2, 
100,000 documents are processed divided into 5 
batches. Each batch exhibits an increment of 20,000 
documents. Final batch has 100% accuracy and shows 
drastic time efficiency compared to Algorithm-1 for 
processing 100,000 documents. Algorithm-1 takes 
2676272 ms whereas algorithm-2 takes 707823 ms for 
execution of 100,000 documents.  

Another major contribution involves employing 
sparse representation of TF-IDF vectors. It saves a lot of 
memory and reduces 8,945,445 MB to 353 MB to store 

TF-IDF of 11,724,976 terms computed from 100,000 
Urdu documents. 

Future enhancements in this work include modifying 
TF-IDF algorithm in such a way that we can execute it 
on a number of machines concurrently and thus it will 
divides the execution time of TF-IDF calculation 
equivalent to the number of machines used for this 
process. 
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