Aiza Sarwar, Sana Ahmed and Aymen Aziz Tarar
 Diphthongs in Urdu Language and Analysis of their Acoustic

Abstract: In addition to the vowels and consonants, the Urdu language has also got some diphthongs. This paper demonstrates a survey to identify the Urdu diphthongs and an analysis of their acoustic properties. The variation in acoustics properties of diphthongs across and within various speakers (both males and females) is discussed.

Keywords: Onglide, Offglide, Rising Diphthongs, Falling Diphthongs, Template, Formants, Coarticulation, Stress.

1. INTRODUCTION

A diphthong is a combination of two vowels. Diphthongs are basically vowels but they possess quality of two vowels i.e. they present the sound of two vowels. In a diphthong, the articulatory mechanism moves continuously from an initial vowel position to a final vowel position. In simple vowels, or monophthongs, the tongue body has a relatively stable position throughout. But there are other vowels where the tongue body does not stay in one place, even in the most abstract diagrams with artificial slices. Thus, diphthongs are complex vowels that are characterized by movement.

The acoustic pattern of diphthongs changes gradually due to change in vocal tract configuration of the vowels forming the diphthongs.
Diphthongs often do not begin and end with any of the sounds that occur in simple vowels but start from more or less the low central vowel position midway between any two vowels.

2. LITERATURE REVIEW

The first part of a diphthong is usually more prominent than the last part and such diphthongs are called Falling Diphthongs. In fact, the last part is often so brief and transitory that it is difficult to determine its exact quality. In diphthongs where the last part is longer than the first part are called Rising Diphthongs. [Ladefoged]

Diphthongs and glides are associated with gradually changing formant structure. The acoustic theory developed earlier for vowels applies in general form to any given configuration in the dynamic complex. For instance, the diphthong /ai/ involves a series of vocal tract configurations running from the onglide [a] to the offglide [i]. [Kent]

Articulatory movement, particularly of the tongue, occupies a substantial portion of a diphthong, which can be defined in terms of two vocalic targets that determine the range and direction of the glide between them. Traditionally the diphthongs produced with a tongue movement from a
mid or low to a high position are known as closing diphthongs while those produced from a peripheral to a central position are known as centering diphthongs. [Clark]

Urdu has 7 long vowels, 3 short vowels and 6 nasalized long vowels. Phonemically there are no diphthongs in Urdu ([Bokhari] [Alam]) as are found in
English and other such languages but ε and \supset, vowels can be converted into diphthongs in certain intonation of certain Indian languages. The reason for absence of diphthongs in Urdu maybe that while speaking Urdu, we tend to break the clusters present in words. For instance in "waqt" that means 'time' in Urdu we tend to say 'vəkət' instead of 'vəkt' so in such languages diphthongs are less likely to exist. But there are chances of exploitation of diphthongs in Urdu.

A diphthong must exist in a single template. The templates of Urdu language do not support two vowels coming together as indicated by following templates:

- (V) e.g. /a: /, /o: /, /e: / etc.
- (VC) e.g. /əb/, /un/, /is/, /us/ etc.
- (CV) e.g. /ka/, /ki/, /dza/, /la: / etc.
- (CVC) e.g /dja:n/, / k $\mathrm{h} \mathrm{l} /$ /, /ka:m/ etc.
- (VCC) e.g. /əsl/, /əbd/, /IJk/, /d $\mathrm{d}^{\mathrm{h}} \partial \mathrm{rm} /$ etc.
- (CVCC) e.g. /dost/, /mulk/, /vəkt/, /goft/ etc.
(C is for Consonants and V for Vowels).
CVC has central importance in Urdu templates. [Alam]

In order to produce diphthongs in Urdu timing slots are deleted. For instance "dзa?o" has the following vowel and consonant segments CV.CC. The deletion rule results in the deletion of the consonant " $?$ " and the resulting phonetic transcription is "dzao". It has a pattern CV.V. As a syllable cannot begin with a vowel therefore the vowel " o ", combines with the preceding syllable to form the pattern CVV. Heavy syllables are not allowed in Urdu therefore a timing slot is deleted.

3. METHODOLOGY

3.1 Procedure

A list of 24 Urdu words consisting of various diphthongs according to our perception was selected. Equal number of words that were without diphthongs were added to the list and the resulting list was randomized so that the recognition of one diphthong is not affected by the preceding and the following diphthong. The final list was then circulated among 30 subjects who were trained to identify the syllables in a word. To investigate the diphthong pattern we used Urdu speakers with a Punjabi
background. The speakers were familiar with both Urdu and Punjabi but their native language was Urdu. They were then asked to identify the number of syllables in each word of the list.

After the selection of diphthongs an acoustic analysis was conducted to identify the variation in the behavior of diphthongs in the following categories:

- Variation across male and female speakers
- Variation within a speaker

In order to achieve the goal, 6 subjects were selected among which three were males and the rest were females. It was kept in mind that the subjects were of different ages and heights as the length of vocal tract varies with height and fundamental frequency varies with gender. Each speaker was given 17 flash cards. Each flash card contained a diphthong in a carrier sentence. The reason for recording diphthongs in a carrier sentence is that the context remains same and we get a stressed diphthong. Speakers were asked to record each sentence three times.

A diphthong being a combination of two vowels has three critical points where their formants present some meaningful information. These critical points are:

- Onglide of a diphthong which represents only the first vowel of the diphthong
- Transition phase in which a shift from first vowel to the second one occurs.
- Offglide of a diphthong which represents the last vowel in the diphthong.

3.2 Data Recording and Analysis

Recording of the diphthongs was done on PRAAT 4.1 a speech processing tool designed for windows users. The recorded wave file was used for acoustic analysis in PRAAT 4.1. The equipment consisted of two high quality speakers with 8 ohm impedance, a Teac integrated stereo amplifier and a high fidelity microphone.

From the recorded data the diphthongs were extracted and the acoustic pattern was analyzed at the above mentioned three critical points. At these points values of F1, F2, and F3 were noted.

4. RESULTS

The results were collected in the following table along with different diphthongs in Urdu language, as identified by us.

Table 1: Result of Survey of 30 Native Urdu Speakers

Sr . \#	Diphthong	Occurrence	Result
1	га	Kıa	Considered
2	au	$\mathrm{k}^{\mathrm{h}} \mathrm{au}^{\sim}$	Considered
3	oi	roi	Considered
4	ae	ae	Considered
5	oir	roir	Considered
6	ua~	kuã	Not considered
7	әi	Kəi	Considered
8	io~	rotio ${ }^{\sim}$	Not considered

9	aẽ	D3aẽ	Considered
10	ia	kia	Not considered
11	оә	moətbər	Not considered
12	әа	Gәa	Considered
13	iu	kiu~	Considered
14	ai	ai	Considered
15	ao	Dzao	Considered
16	ia	mia~	Not considered
17	oe	roe	Considered
18	əir	Gәi	Considered
19	әе	Gəe	Considered
20	ua	hua	Considered
21	ue	hue	Considered
22	วə	mJətər	Not considered
23	ui	hui	Considered
24	Ie	Lie	Not considered
25	Iẽ	PIẽ	Not considered

As a result of this analysis the words containing only one syllable were selected as diphthongs. The strategy for the selection was that if a word was considered as diphthong by more than 15 subjects then it was included in the list of actual diphthongs.

Second column in the table shows the possible diphthongs in Urdu. The next column shows the occurrence of the particular diphthong in Urdu words. The remaining two columns indicate the result and vote count respectively. Out of the 17 identified, 4 are nasalized.

5. DISCUSSION

The diphthongs that have been discussed in our paper may not be the only diphthongs present in Urdu. Identification of a diphthong varies with the subject's perception. We have considered the combination of two vowels in a word as a diphthong if more than 15 native speakers accepted. There were cases in which 12,13 or 14 subjects voted for a particular diphthong, but we rejected such close options as we had settled a limit. Diphthongs present in the words like "rotio"", "mia"" and "kıa" were considered by a lot of subjects but since they were below the settled limit so they were not included in the final list. Figures $1-4$ show the diphthong pattern of Urdu as observed from the analyzed data. The graphs were plotted using the average values from the analyzed data given in Appendix A.

Figure 1
Figure 1 shows the representation of the diphthong in "dzao", that is a verb in Urdu and it means "to go". It is represented using the F1-F2 trajectories. This graph shows the variation in this diphthong between two male speakers of different height and age. Analysis of the graph shows that in speaker A's data there is a falling diphthong whereas in speaker B's data it is a rising diphthong. It has also been observed for speaker A that the second vowel " 0 " in the diphthong is stressed and its formants are very close to the formant values of the original cardinal vowel " 0 ". It is similar for speaker B because in his data the first vowel "a" is stressed and its formants are very close to the formant values of the original cardinal vowel " a ". The pitch of a speaker's voice varies with the physiological imposed limits of pitch range which derives from his/her own personal laryngeal anatomy. Pitch pattern for speaker A is rising and for speaker B it is falling.

Figure 2
Figure 2 shows the variation of same diphthong in "dzao" between two females. In speaker A's data there is little stress that corresponds to less coarticulation. For speaker B there is more coarticulation as the data shows more stress. Duration is also greater for speaker B. Speaker A's diphthong is a rising whereas speaker B's diphthong is a falling diphthong. The pitch pattern for Speaker A is falling and that for Speaker B is rising.

Figure 3
In figure 3 there was a great deal of variation between male and female speakers. There was a significant difference in F0 of male and female speaker as their vocal tract configuration differs.

Figure 3
Closer look to the data shown in Figure 4 indicates that not necessarily all the three formants gain identical transition rates for a particular diphthong. Data collected for the three occurrences of the diphthong in word "dzao" for the same speaker gave an almost identical average value for F1 for all the occurrences but at the same time there was great variation in F2 for the same diphthong.

Table 2: Averages of F0 of Speakers

Sr. no	Diphthong	F0
1	ai	219.72
2	ae	226.73
3	ao	218.67
4	lu~	246.15
5	aa	223.77
6	au	221.08
7	oi	215.46
8	oe	211.15
9	oir $^{\sim}$	217.83

10	วi	217.82
11	aẽ	216.30
12	ea	205.17
13	əi~	225.03
14	ua	211.01
15	ui	218.74
16	ue	204.50
17	әe	204.44

5.1 Fundamental Frequency Variation

It was observed that the fundamental frequency is less for diphthongs starting with open vowels and more for the ones starting with lesser open vowels. It follows the same trend throughout the sample. It is highest for diphthongs starting with " i " and lowest for the ones starting with "u".

5.2 Diphthongs in Cardinal Vowels Quadrilateral

The position of the diphthongs in the cardinal vowel quadrilateral was expected to be between the two cardinal vowels whose combination is the corresponding diphthong. But the situation is practically not like that.

One of the example is of diphthong "ai", that means 'to come' in Urdu. It is expected that onglide of the diphthong should be closer to "a" and the offglide should be closer to "i". But according to Figure 5 onglides of all the diphthongs that start with " ∂ " and "a" map on to the vowel "œ". This is proved by the formant values given in the appendix A. If we consider the diphthong "ao" then it is observed that it is closer to " \supset " in the cardinal vowel quadrilateral that is between the vowels "a" and "o". As we
know that the formant values of F1 and F2 in the vowel "a" are 700 Hz and 1100 Hz respectively and that of "o" are 400 Hz and 900 Hz respectively. F1 and F2 of "ao" are 552 Hz and 1104 Hz .

6. CONCLUSION

According to our observations the acoustics of diphthongs are dependent to a great extent on speed of utterance, intonation, tone and rhythm. In English the syllabic stress is of great importance in the utterance of diphthongs but according to our experimentations and observations it does not play much role in the phonemics of Urdu diphthongs.

7. SUMMARY

The selection of diphthongs as discussed in the paper depends upon the perception of subjects, which may vary if same survey is conducted for different subjects. So the number of identified diphthongs is not fixed. The acoustic patterns as observed show that a diphthong has three critical points namely onglide, offglide and transition. At transition point a shift between two vowels was observed.

Figure 5

8. REFERENCES

-[Alam] Alam, Dr. Mehboob: Urdu ka Sauti Nizam, Published by Iftikhar Arif, Pakistan, 1997.
-[Clark] Clark, John and Yallop, Collin: An Introduction to Phonetics and Phonology ,Second Edition, Published by Blackwell Publishers Ltd, Malden Massachusetts, 1995.
-[Kent] Kent, Ray D. and Read, Charles: The Acoustic Analysis of Speech, Singular publishing Group, INC. $428241^{\text {st }}$ Street San Diego, California 92105-1197,1992.
-[Ladefoged] Ladefoged, Peter: A Course in Phonetics, Third Edition, Published by Harcout Brace Javanovish, Inc. Los Angeles, 1993.
-[Bokhari] Bokhari, Dr. Sohail: Urdu Zuban ka Sauti Nizam, Published by Dr. Jamil Jalibi, Pakistan, 1991.
-[Khan] Khan, Amna and Waqar, Sahar: Identification of Diphthongs in Urdu and their Acoustic Analysis, Akhbar-e-Urdu, Lahore, Pakistan, June 2003.

APPENDIX A

Spe ake r	diph thon g	F1	F2	F3	F1	F2	F3	F1	F2	F3
1	ai	$\begin{aligned} & 874.715619 \\ & 821.046507 \\ & 851.236057 \end{aligned}$	$\begin{aligned} & 1483.058812 \\ & 1530.217905 \\ & 1606.798322 \end{aligned}$	$\begin{aligned} & 3215.581387 \\ & 3106.674304 \\ & 3172.936585 \end{aligned}$	$\begin{aligned} & 416.228293 \\ & 530.422962 \\ & 533.346767 \end{aligned}$	$\begin{aligned} & 2625.254397 \\ & 2184.298872 \\ & 2153.227948 \end{aligned}$	$\begin{aligned} & 3206.804183 \\ & 2993.489952 \\ & 3106.679623 \end{aligned}$	$\begin{aligned} & 326.384134 \\ & 360.856802 \\ & 363.899682 \end{aligned}$	2921.968632 2847.701922 2838.081255	$\begin{aligned} & 3399.947853 \\ & 3305.701938 \\ & 3291.046491 \end{aligned}$
	ae	$\begin{aligned} & \hline 852.560240 \\ & 876.849194 \\ & 871.426372 \end{aligned}$	$\begin{aligned} & 1437.504192 \\ & 1577.632355 \\ & 1674.196793 \end{aligned}$	$\begin{aligned} & 3016.550361 \\ & 3236.538929 \\ & 3078.575832 \end{aligned}$	$\begin{aligned} & 639.636913 \\ & 448.275574 \\ & 664.816803 \end{aligned}$	$\begin{aligned} & 1771.741907 \\ & 2398.385254 \\ & 1996.492757 \end{aligned}$	$\begin{aligned} & \hline 3285.582757 \\ & 3077.243408 \\ & 2958.524733 \end{aligned}$	$\begin{aligned} & 424.552561 \\ & 426.088026 \\ & 401.270652 \end{aligned}$	$\begin{aligned} & 2565.729303 \\ & 2626.176521 \\ & 2577.518650 \end{aligned}$	$\begin{aligned} & 3126.975022 \\ & 3101.596398 \\ & 2977.445518 \end{aligned}$
	ao	$\begin{aligned} & 703.313106 \\ & 690.773557 \\ & 663.502423 \end{aligned}$	$\begin{aligned} & 1278.821465 \\ & 1235.386136 \\ & 1149.754899 \end{aligned}$	2986.214386 2808.771336 2471.837519	$\begin{aligned} & 552.248417 \\ & 529.172584 \\ & 529.657057 \end{aligned}$	$\begin{aligned} & 1104.991982 \\ & 1034.901182 \\ & 986.674492 \end{aligned}$	2968.863748 2940.018320 2751.953998	$\begin{aligned} & \hline 444.270311 \\ & 460.274822 \\ & 405.720517 \end{aligned}$	911.780209 912.023009 880.363518	2966.195095 2971.693542 2793.195312
	iu	$\begin{aligned} & 438.205741 \\ & 414.967593 \\ & 384.464597 \end{aligned}$	$\begin{aligned} & 1861.888938 \\ & 1938.019496 \\ & 2134.848287 \end{aligned}$	$\begin{aligned} & 2836.418461 \\ & 2667.431968 \\ & 2678.778723 \end{aligned}$	$\begin{aligned} & 452.726309 \\ & 435.183717 \\ & 431.418539 \end{aligned}$	$\begin{aligned} & 1257.299091 \\ & 1385.225496 \\ & 1782.780643 \end{aligned}$	$\begin{aligned} & 2857.577813 \\ & 2831.290970 \\ & 2766.021314 \end{aligned}$	$\begin{aligned} & 295.032732 \\ & 385.745477 \\ & 433.888443 \end{aligned}$	$\begin{aligned} & 723.069222 \\ & 874.162494 \\ & 1080.711054 \end{aligned}$	$\begin{aligned} & 2695.221562 \\ & 2659.227132 \\ & 2609.973346 \end{aligned}$
	a	658.133595 571.195347 622.179989	$\begin{aligned} & 1922.794051 \\ & 1855.751954 \\ & 1813.559600 \end{aligned}$	$\begin{aligned} & 2789.960459 \\ & 2840.333767 \\ & 2734.763241 \end{aligned}$	$\begin{aligned} & \hline 746.347245 \\ & 664.090725 \\ & 660.582558 \end{aligned}$	$\begin{aligned} & 1599.561366 \\ & 1653.868004 \\ & 1649.460614 \end{aligned}$	$\begin{aligned} & 2866.186005 \\ & 2807.087153 \\ & 2741.436691 \end{aligned}$	$\begin{aligned} & \hline 779.020939 \\ & 806.761571 \\ & 745.740565 \end{aligned}$	$\begin{aligned} & 1359.046297 \\ & 1313.337128 \\ & 1298.052210 \end{aligned}$	$\begin{aligned} & 2977.428727 \\ & 2874.869827 \\ & 2969.704726 \end{aligned}$
	aun	$\begin{aligned} & 793.766792 \\ & 712.287150 \\ & 794.932908 \end{aligned}$	1279.325658 1267.999838 1258.168863	$\begin{aligned} & 3274.147994 \\ & 2976.007816 \\ & 2842.164305 \end{aligned}$	$\begin{aligned} & 635.105373 \\ & 635.812484 \\ & 519.001595 \end{aligned}$	1044.542738 1125.188259 853.614248	$\begin{aligned} & 2983.465503 \\ & 2602.873883 \\ & 2563.588000 \end{aligned}$	$\begin{aligned} & 557.947402 \\ & 491.913254 \\ & 405.979873 \end{aligned}$	$\begin{aligned} & 2931.920580 \\ & 864.268780 \\ & 1050.966518 \end{aligned}$	$\begin{aligned} & 3784.662900 \\ & 2664.093551 \\ & 2664.069879 \end{aligned}$
	oi	$\begin{aligned} & 409.525161 \\ & 413.110043 \\ & 419.921938 \end{aligned}$	$\begin{aligned} & 1343.677988 \\ & 1106.270561 \\ & 1165.905039 \end{aligned}$	$\begin{aligned} & \hline 2747.453195 \\ & 2831.127099 \\ & 2800.967837 \end{aligned}$	$\begin{aligned} & 394.590732 \\ & 409.035667 \\ & 396.184642 \end{aligned}$	$\begin{aligned} & \hline 1757.642874 \\ & 1164.003822 \\ & 1561.555971 \end{aligned}$	2683.167292 2749.334181 2668.961736	$\begin{aligned} & \hline 328.334800 \\ & 387.257540 \\ & 368.361467 \end{aligned}$	$\begin{aligned} & 2853.061755 \\ & 2556.140617 \\ & 2689.575227 \end{aligned}$	3106.814043 2841.141791 2971.308262
	oe	$\begin{aligned} & 507.787902 \\ & 497.205581 \\ & 519.313342 \end{aligned}$	$\begin{aligned} & 1400.802142 \\ & 1514.285558 \\ & 1425.048334 \end{aligned}$	$\begin{aligned} & 2714.674521 \\ & 2660.726566 \\ & 2641.185598 \end{aligned}$	$\begin{aligned} & 502.291734 \\ & 485.244795 \\ & 485.124419 \end{aligned}$	$\begin{aligned} & 1892.371803 \\ & 1892.095496 \\ & 1867.028521 \end{aligned}$	$\begin{aligned} & \hline 2682.634430 \\ & 2637.372673 \\ & 2547.165979 \end{aligned}$	$\begin{aligned} & 416.764883 \\ & 395.428037 \\ & 393.132936 \end{aligned}$	2442.786391 2469.314152 2378.205565	$\begin{aligned} & 2720.283057 \\ & 2667.264297 \\ & 2843.815213 \end{aligned}$
	oir	$\begin{aligned} & 440.785231 \\ & 455.827009 \\ & 436.877673 \end{aligned}$	$\begin{aligned} & 1578.747945 \\ & 1555.831076 \\ & 1387.398953 \end{aligned}$	$\begin{aligned} & 2673.665122 \\ & 2750.987812 \\ & 2517.803745 \end{aligned}$	$\begin{aligned} & \hline 397.203278 \\ & 414.270661 \\ & 411.324126 \end{aligned}$	$\begin{aligned} & 2134.814022 \\ & 2046.438485 \\ & 1908.058461 \end{aligned}$	$\begin{aligned} & 2719.178622 \\ & 2759.786558 \\ & 2557.521177 \end{aligned}$	$\begin{aligned} & \hline 396.736710 \\ & 373.428286 \\ & 389.946769 \end{aligned}$	$\begin{aligned} & 2963.233834 \\ & 530.926548 \\ & 3038.012541 \end{aligned}$	$\begin{aligned} & 3411.069468 \\ & 3149.630316 \\ & 3542.072985 \end{aligned}$

әi	$\begin{aligned} & 504.761179 \\ & 521.816407 \\ & 440.107516 \end{aligned}$	$\begin{aligned} & \hline 2159.926112 \\ & 1970.178793 \\ & 2315.454852 \end{aligned}$	$\begin{aligned} & \hline 2829.554957 \\ & 2730.449008 \\ & 2895.093978 \end{aligned}$	$\begin{aligned} & 451.937809 \\ & 436.290510 \\ & 414.094705 \end{aligned}$	$\begin{aligned} & 2472.667815 \\ & 2506.224254 \\ & 2574.001807 \end{aligned}$	$\begin{aligned} & 2968.575178 \\ & 2984.550810 \\ & 3091.765446 \end{aligned}$	$\begin{aligned} & 306.130600 \\ & 355.040337 \\ & 341.336463 \end{aligned}$	$\begin{aligned} & 2835.757008 \\ & 2756.523966 \\ & 2776.818824 \end{aligned}$	$\begin{aligned} & 3022.466414 \\ & 3202.859729 \\ & 3228.776473 \end{aligned}$
aẽ	$\begin{aligned} & 587.320526 \\ & 674.247477 \\ & 600.350080 \end{aligned}$	$\begin{aligned} & \hline 2134.517988 \\ & 1773.387370 \\ & 1802.275349 \end{aligned}$	$\begin{aligned} & 3065.397384 \\ & 3053.402570 \\ & 2958.205851 \end{aligned}$	$\begin{aligned} & \hline 516.038550 \\ & 611.605118 \\ & 556.894512 \end{aligned}$	$\begin{aligned} & 2340.996046 \\ & 2100.129094 \\ & 2203.924231 \end{aligned}$	$\begin{aligned} & \hline 3096.858252 \\ & 3049.149393 \\ & 3031.510612 \end{aligned}$	$\begin{aligned} & \hline 427.224652 \\ & 469.129741 \\ & 500.443772 \end{aligned}$	$\begin{aligned} & 2623.703236 \\ & 2464.570688 \\ & 2475.557477 \end{aligned}$	$\begin{aligned} & 3282.852322 \\ & 3126.572766 \\ & 3099.618623 \end{aligned}$
әа	556.458713 529.731760 571.583352	$\begin{aligned} & \hline 2080.505821 \\ & 2191.644946 \\ & 2046.280979 \end{aligned}$	$\begin{aligned} & 2815.070332 \\ & 2831.797352 \\ & 2776.734241 \end{aligned}$	$\begin{aligned} & 669.464371 \\ & 707.770511 \\ & 752.724008 \end{aligned}$	$\begin{aligned} & \hline 1717.862271 \\ & 1781.777489 \\ & 1683.031769 \end{aligned}$	2880.181246 2850.556122 2828.474723	$\begin{aligned} & \hline 765.289638 \\ & 808.611461 \\ & 735.692352 \end{aligned}$	$\begin{aligned} & 1388.970740 \\ & 1404.309886 \\ & 1308.266450 \end{aligned}$	2855.062292 2948.753902 2752.116597
әi	$\begin{aligned} & 478.031987 \\ & 454.995415 \\ & 451.862184 \end{aligned}$	$\begin{aligned} & \hline 2050.135074 \\ & 2405.575139 \\ & 2324.919164 \end{aligned}$	$\begin{aligned} & 2996.288800 \\ & 3048.136621 \\ & 2998.652642 \end{aligned}$	$\begin{aligned} & \hline 420.791812 \\ & 413.434659 \\ & 415.017941 \end{aligned}$	2550.135671 2851.685945 2723.410557	$\begin{aligned} & \hline 3054.469722 \\ & 3391.815868 \\ & 3192.959278 \end{aligned}$	$\begin{aligned} & 400.751352 \\ & 411.524217 \\ & 387.274214 \end{aligned}$	$\begin{aligned} & \hline 3044.565931 \\ & 3051.059604 \\ & 2349.679483 \end{aligned}$	$\begin{aligned} & 3528.496807 \\ & 3545.656365 \\ & 3183.367006 \end{aligned}$
ua	$\begin{aligned} & 386.717446 \\ & 428.535346 \\ & 325.898317 \end{aligned}$	$\begin{aligned} & \hline 838.882314 \\ & 988.468483 \\ & 758.487539 \end{aligned}$	$\begin{aligned} & \hline 2936.727224 \\ & 2969.248194 \\ & 2676.991162 \end{aligned}$	$\begin{aligned} & 467.580556 \\ & 519.008088 \\ & 351.519847 \end{aligned}$	$\begin{aligned} & 1121.084887 \\ & 1195.389173 \\ & 887.988209 \end{aligned}$	2909.655850 2790.414614 3061.774582	$\begin{aligned} & \hline 706.089718 \\ & 736.391837 \\ & 633.790456 \end{aligned}$	$\begin{aligned} & 1318.848151 \\ & 1257.754712 \\ & 1209.426814 \end{aligned}$	$\begin{aligned} & \hline 3026.630478 \\ & 2922.102591 \\ & 2854.758248 \end{aligned}$
ui	$\begin{aligned} & \hline 293.418889 \\ & 382.991750 \\ & 385.745162 \end{aligned}$	$\begin{aligned} & 1311.831247 \\ & 1078.450522 \\ & 1078.101824 \end{aligned}$	$\begin{aligned} & \hline 2694.513499 \\ & 2707.230399 \\ & 2686.806427 \end{aligned}$	$\begin{aligned} & 277.609704 \\ & 393.463630 \\ & 383.164003 \end{aligned}$	$\begin{aligned} & \hline 2173.379650 \\ & 1498.644700 \\ & 1807.890319 \end{aligned}$	$\begin{aligned} & 2717.551835 \\ & 2626.781657 \\ & 2589.944253 \end{aligned}$	$\begin{aligned} & 292.833157 \\ & 333.145690 \\ & 333.175891 \end{aligned}$	$\begin{aligned} & \hline 2612.043993 \\ & 2632.246013 \\ & 2660.453160 \end{aligned}$	$\begin{aligned} & 2955.746572 \\ & 2718.506965 \\ & 2632.646112 \end{aligned}$
ue	$\begin{aligned} & \hline 337.379913 \\ & 332.134702 \\ & 299.999908 \end{aligned}$	$\begin{aligned} & 866.866000 \\ & 969.979578 \\ & 917.035736 \end{aligned}$	$\begin{aligned} & 2733.534165 \\ & 2706.284736 \\ & 2452.610478 \end{aligned}$	$\begin{aligned} & 418.668745 \\ & 435.485924 \\ & 442.632926 \end{aligned}$	$\begin{aligned} & 1380.619888 \\ & 1589.970994 \\ & 1410.021913 \end{aligned}$	$\begin{aligned} & \hline 2743.492781 \\ & 2716.636394 \\ & 2681.626441 \end{aligned}$	$\begin{aligned} & 437.732730 \\ & 442.398058 \\ & 411.371732 \end{aligned}$	$\begin{aligned} & 2117.203302 \\ & 2089.990010 \\ & 2080.640491 \end{aligned}$	$\begin{aligned} & 2741.728843 \\ & 2686.460880 \\ & 2672.713330 \end{aligned}$
әе	$\begin{aligned} & \hline 542.681113 \\ & 535.417692 \\ & 488.410433 \end{aligned}$	$\begin{aligned} & \hline 2007.859503 \\ & 2020.940274 \\ & 2021.310018 \end{aligned}$	$\begin{aligned} & 2813.135196 \\ & 2846.871141 \\ & 2835.198684 \end{aligned}$	$\begin{aligned} & 527.894597 \\ & 532.981245 \\ & 466.744946 \end{aligned}$	2214.289530 2189.782580 2213.315129	2893.110112 2879.623329 2894.858969	430.544832 453.077628 433.158451	$\begin{aligned} & \hline 2403.823821 \\ & 2446.834067 \\ & 2346.107229 \end{aligned}$	$\begin{aligned} & \hline 2882.999063 \\ & 3108.682167 \\ & 2864.558608 \end{aligned}$
2 ai	$\begin{aligned} & 877.594710 \\ & 930.057579 \\ & 857.509541 \end{aligned}$	$\begin{aligned} & 1660.312008 \\ & 1476.527398 \\ & 1607.829606 \end{aligned}$	$\begin{aligned} & 2962.498983 \\ & 3024.672084 \\ & 2948.152372 \end{aligned}$	$\begin{aligned} & 633.938713 \\ & 708.189861 \\ & 670.711526 \end{aligned}$	$\begin{aligned} & 2115.668233 \\ & 1761.016995 \\ & 1831.931550 \end{aligned}$	$\begin{aligned} & 2948.602030 \\ & 2857.121569 \\ & 2618.839808 \end{aligned}$	$\begin{aligned} & 393.473637 \\ & 362.530473 \\ & 368.203477 \end{aligned}$	$\begin{aligned} & 1896.355141 \\ & 2978.891061 \\ & 2761.746335 \end{aligned}$	$\begin{aligned} & 3101.385582 \\ & 3255.000675 \\ & 3172.727850 \end{aligned}$
ae	$\begin{aligned} & 843.854189 \\ & 845.624814 \\ & 845.432435 \end{aligned}$	1463.040736 1478.623325 1462.635198	$\begin{aligned} & 2849.621146 \\ & 2814.467867 \\ & 2827.111794 \end{aligned}$	$\begin{aligned} & 719.068262 \\ & 666.487467 \\ & 721.356089 \end{aligned}$	2027.442441 2116.927975 2023.702454	$\begin{aligned} & \hline 3000.177506 \\ & 3012.779302 \\ & 2964.480419 \end{aligned}$	$\begin{aligned} & \hline 518.970543 \\ & 495.191083 \\ & 472.604110 \end{aligned}$	$\begin{aligned} & \hline 2542.473839 \\ & 2496.201537 \\ & 2501.421637 \end{aligned}$	$\begin{aligned} & 3084.266091 \\ & 3128.749575 \\ & 3050.225534 \end{aligned}$
ao	$\begin{aligned} & 708.558661 \\ & 794.926929 \\ & 676.564395 \end{aligned}$	$\begin{aligned} & 1222.844595 \\ & 1262.453804 \\ & 1147.453798 \end{aligned}$	$\begin{aligned} & 2780.750318 \\ & 2789.423260 \\ & 2951.933644 \end{aligned}$	$\begin{aligned} & 615.701502 \\ & 778.962058 \\ & 464.395645 \end{aligned}$	$\begin{aligned} & 1061.198981 \\ & 1297.289728 \\ & 937.995670 \end{aligned}$	$\begin{aligned} & 2760.335865 \\ & 2683.452425 \\ & 3002.760192 \end{aligned}$	$\begin{aligned} & 294.336388 \\ & 490.644489 \\ & 647.490242 \end{aligned}$	$\begin{aligned} & 805.056341 \\ & 930.474690 \\ & 1630.465592 \end{aligned}$	$\begin{aligned} & 3019.809906 \\ & 3179.610917 \\ & 3065.511464 \end{aligned}$
iu	$\begin{aligned} & \hline 457.216374 \\ & 463.152133 \\ & 441.653899 \end{aligned}$	$\begin{aligned} & \hline 1844.404294 \\ & 2263.730257 \\ & 2516.517483 \end{aligned}$	$\begin{aligned} & 2731.349477 \\ & 2737.705741 \\ & 2763.961138 \end{aligned}$	$\begin{aligned} & \hline 546.311949 \\ & 536.198518 \\ & 425.151495 \end{aligned}$	$\begin{aligned} & 1914.532029 \\ & 1174.152745 \\ & 1515.380323 \end{aligned}$	$\begin{aligned} & \hline 2711.622542 \\ & 2647.530208 \\ & 2812.062477 \end{aligned}$	$\begin{aligned} & \hline 494.842171 \\ & 531.368742 \\ & 577.658744 \end{aligned}$	$\begin{aligned} & \hline 2402.790808 \\ & 2184.577835 \\ & 2287.323489 \end{aligned}$	$\begin{aligned} & 3035.129325 \\ & 3078.365209 \\ & 3249.145804 \end{aligned}$
a	$\begin{aligned} & 806.241946 \\ & 816.445224 \\ & 811.863501 \end{aligned}$	$\begin{aligned} & 1911.485512 \\ & 1685.659082 \\ & 1806.368001 \end{aligned}$	$\begin{aligned} & 2807.460684 \\ & 2747.658552 \\ & 2657.103791 \end{aligned}$	$\begin{aligned} & 851.522206 \\ & 888.616756 \\ & 892.506313 \end{aligned}$	$\begin{aligned} & 1556.532151 \\ & 1435.366397 \\ & 1552.503032 \end{aligned}$	2979.615626 2848.753720 2932.349311	$\begin{aligned} & 875.718570 \\ & 870.933313 \\ & 739.076108 \end{aligned}$	$\begin{aligned} & 1381.060229 \\ & 1432.921273 \\ & 1234.045669 \end{aligned}$	$\begin{aligned} & \hline 3005.695734 \\ & 3186.074238 \\ & 2792.365556 \end{aligned}$
au^{\sim}	$\begin{aligned} & 707.872647 \\ & 776.203861 \\ & 765.677003 \end{aligned}$	$\begin{aligned} & 1163.326464 \\ & 1158.828328 \\ & 1103.604570 \end{aligned}$	$\begin{aligned} & \hline 3499.127164 \\ & 3081.393324 \\ & 2849.792026 \end{aligned}$	$\begin{aligned} & 531.669772 \\ & 495.329025 \\ & 476.109407 \end{aligned}$	$\begin{aligned} & 996.129928 \\ & 927.629230 \\ & 1016.178831 \end{aligned}$	$\begin{aligned} & 2705.529609 \\ & 2529.296549 \\ & 2742.638882 \end{aligned}$	$\begin{aligned} & 486.970730 \\ & 665.918662 \\ & 371.424138 \end{aligned}$	$\begin{aligned} & 2418.749350 \\ & 1342.140706 \\ & 779.800022 \end{aligned}$	$\begin{aligned} & 3067.167465 \\ & 2856.774650 \\ & 2733.754425 \end{aligned}$
oi	$\begin{aligned} & 468.429973 \\ & 447.279375 \\ & 417.473550 \end{aligned}$	$\begin{aligned} & 1463.844285 \\ & 1402.199325 \\ & 1252.258313 \end{aligned}$	$\begin{aligned} & 2675.582693 \\ & 2797.240674 \\ & 2629.586784 \end{aligned}$	$\begin{aligned} & 460.007036 \\ & 443.933131 \\ & 391.318674 \end{aligned}$	$\begin{aligned} & 2195.516276 \\ & 2286.236289 \\ & 2119.930903 \end{aligned}$	$\begin{aligned} & 2807.849353 \\ & 2798.128642 \\ & 2936.712893 \end{aligned}$	$\begin{aligned} & 310.924444 \\ & 289.105534 \\ & 283.592234 \end{aligned}$	$\begin{aligned} & 2817.455375 \\ & 2056.715636 \\ & 1643.624685 \end{aligned}$	$\begin{aligned} & 2948.092709 \\ & 3119.234758 \\ & 3102.781096 \end{aligned}$
oe	$\begin{aligned} & \hline 483.016975 \\ & 474.242289 \\ & 504.838640 \end{aligned}$	$\begin{aligned} & 1312.237037 \\ & 1249.792842 \\ & 1487.620135 \end{aligned}$	$\begin{aligned} & 2659.103960 \\ & 2780.541361 \\ & 2545.674529 \end{aligned}$	$\begin{aligned} & \hline 507.097577 \\ & 500.991390 \\ & 528.176207 \end{aligned}$	$\begin{aligned} & 1836.344043 \\ & 1960.827240 \\ & 2013.518856 \end{aligned}$	2600.274685 2697.200691 2513.373346	$\begin{aligned} & 484.944609 \\ & 474.525319 \\ & 403.557770 \end{aligned}$	$\begin{aligned} & \hline 2291.158591 \\ & 2463.445804 \\ & 2512.410506 \end{aligned}$	$\begin{aligned} & \hline 2790.940397 \\ & 2831.408188 \\ & 2839.479494 \end{aligned}$
oir	$\begin{aligned} & 467.553510 \\ & 444.682763 \\ & 435.130333 \end{aligned}$	$\begin{aligned} & 1217.136366 \\ & 1581.899922 \\ & 1596.001777 \end{aligned}$	$\begin{aligned} & \hline 2482.792190 \\ & 2766.897696 \\ & 2938.654040 \end{aligned}$	$\begin{aligned} & 476.692869 \\ & 435.790243 \\ & 409.930660 \end{aligned}$	2371.119936 2213.545833 2161.975090	$\begin{aligned} & \hline 2989.169668 \\ & 3002.971213 \\ & 2923.570846 \end{aligned}$	$\begin{aligned} & 321.503665 \\ & 431.042907 \\ & 392.682609 \end{aligned}$	$\begin{aligned} & 3037.674512 \\ & 3044.799317 \\ & 2511.011680 \end{aligned}$	$\begin{aligned} & 3519.735156 \\ & 3481.334604 \\ & 3297.188071 \end{aligned}$
əi	$\begin{aligned} & \hline 506.150076 \\ & 519.906602 \\ & 573.354190 \end{aligned}$	$\begin{aligned} & 2197.331480 \\ & 2234.907700 \\ & 2144.233702 \end{aligned}$	$\begin{aligned} & 2851.002521 \\ & 2863.571240 \\ & 2850.984388 \end{aligned}$	$\begin{aligned} & 434.780700 \\ & 422.550655 \\ & 400.107396 \end{aligned}$	$\begin{aligned} & 2614.276012 \\ & 2551.410821 \\ & 2601.322380 \end{aligned}$	$\begin{aligned} & 3032.525496 \\ & 2915.521756 \\ & 3041.036753 \end{aligned}$	$\begin{aligned} & 300.597786 \\ & 312.712853 \\ & 347.898906 \end{aligned}$	$\begin{aligned} & 2926.723287 \\ & 2816.400964 \\ & 2739.397222 \end{aligned}$	$\begin{aligned} & 3459.055912 \\ & 3193.736867 \\ & 3320.946421 \end{aligned}$
aẽ	$\begin{aligned} & 747.229223 \\ & 788.668249 \end{aligned}$	$\begin{aligned} & 1633.609730 \\ & 1806.686325 \\ & \hline \end{aligned}$	$\begin{aligned} & 3151.664442 \\ & 3086.856993 \end{aligned}$	$\begin{aligned} & 571.533743 \\ & 690.335933 \end{aligned}$	$\begin{aligned} & 2201.008458 \\ & 2141.182905 \end{aligned}$	$\begin{aligned} & \hline 3214.276839 \\ & 3103.564563 \end{aligned}$	$\begin{aligned} & 461.146696 \\ & 461.089998 \end{aligned}$	$\begin{aligned} & 2766.893073 \\ & 2620.119422 \end{aligned}$	$\begin{aligned} & 3020.695241 \\ & 2963.664410 \end{aligned}$

